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Abstract

Background: Multiple sequence alignment (MSA) is a fundamental analysis method used in bioinformatics and
many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have
only addressed the first stage of progressive alignment and consequently exhibit performance limitations
according to Amdahl’s Law. This work is the first known to accelerate the third stage of progressive alignment on
reconfigurable hardware.

Results: We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the
accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data
set when compared to a 2.4 GHz Core2 processor.

Conclusions: Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing
and allows researchers to solve the larger problems that confront biologists today. Program source is available
from http://dna.cs.byu.edu/msa/.

Background
Biologists and other researchers use multiple sequence
alignment (MSA) as a fundamental analysis method to
find similarities among nucleotide (DNA/RNA) or amino
acid (protein) sequences. The compute time for an opti-
mal MSA grows exponentially with respect to the num-
ber of sequences. Consequently, producing timely results
on large problems requires more efficient algorithms and
the use of parallel computing resources. Reconfigurable
computing hardware, such as Field-Programmable Gate
Arrays (FPGAs), provides one approach to the accelera-
tion of biological sequence alignment. Other acceleration
methods typically encounter scaling problems that arise
from the overhead of inter-process communication and
from the lack of parallelism. Reconfigurable computing
allows a greater scale of parallelism using many fine-
grained custom processing elements that have a low-
overhead interconnect.
The most common algorithm used to solve the MSA

problem is progressive alignment [1-3]. This algorithm
consists of three main stages. The first stage compares
all the sequences with each other producing similarity

scores only. Since this stage is easily parallelized, it has
traditionally been the focus of parallelization efforts;
however, speedup is limited without accelerating the fol-
lowing stages. The second stage of MSA groups the
most similar sequences together using the similarity
scores to form a tree that guides alignment in the next
stage. Finally, the third stage successively aligns the
most similar sequences and groups of sequences until
all the sequences are aligned. Groups of aligned
sequences are converted into profiles before alignment
with a pairwise dynamic programming algorithm. A pro-
file represents the character frequencies for each column
in an alignment. In Stage 3, traceback information from
full pairwise alignment is required to align groups of
sequences.
Accelerator technology requires moving data from the

host address space to the accelerator before computation.
If the computation rate on the accelerator exceeds the
communication rate with the host, performance will be
limited. Ideally, the communication rate is at least equal
to or greater than the computation rate. FPGAs are cap-
able of handling parallel computations on many small
integer data types; however, floating-point operations
require more resources and consequently fewer opera-
tions fit within the same logic. Reducing complex profiles
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to a simpler integer form allows greater performance on
the accelerator by lowering the needed communication
rate and permitting more processing elements.
In this work, a new method for accelerating the third

stage is described that reduces subgroups of aligned
sequences into discrete profiles before they are pairwise
aligned on the accelerator. Our pairwise alignment algo-
rithm [4] produces the required traceback information
and does not limit the sequence length by the number
of processing elements (PEs) or by the amount of block
RAM on the accelerator. Other hardware acceleration
methods are inadequate for use in the third stage
because the sequence length is severely limited or only
similarity scores are computed.
Alignment quality of the new method is assessed with

the BRAliBase benchmark RNA alignment database [5]
that consists of 18,990 RNA alignments and with the
MDSA data set [6]. Discrete profile alignment is shown
to have comparable quality to other popular MSA pro-
grams and an accelerated version of the program
demonstrates two orders of magnitude speedup.

Related Work
Most efforts to accelerate bio-sequence applications with
hardware have focused solely on database searches and
have employed a pairwise local comparison algorithm.
Ramdas and Egan [7] discuss several FPGA-based archi-
tectures in their survey. Other pairwise comparison
accelerators have also been described in [8-10]. A few
methods to accelerate MSA with hardware have been
demonstrated, but they fail to use all the available parallel
resources in every stage of MSA; consequently, perfor-
mance is reduced in some stages with idle processors.
Without accelerating the most time consuming stages

of progressive MSA, Amdahl’s law [11] limits the overall
speedup. For example, if the third stage takes 5% of the
computation time, the overall speedup is limited to about
20 even if the other stages are infinitely fast. If the time
in Stage 1 is reduced with faster comparison techniques,
then the acceleration of Stage 3 becomes more critical.
Newer programs like MUSCLE [12] and MAFFT [13] use
a faster alignment-free comparison method; therefore,
the third stage usually dominates the computation time.
Even though these newer methods show greater perfor-
mance, most of the related work has still focused on
accelerating ClustalW where the first stage dominates
the run time.
Multiprocessor-Supercomputer
Most attempts to accelerate MSA have been on

shared-memory or distributed-memory systems using a
coarse-grained parallel approach. Mikhailov et al. [14]
shows a 10x speedup with 16 processors by parallelizing
all three stages of ClustalW [3] with OpenMP [15] on a
shared-memory SGI Origin machine. A notable feature

of this effort is the parallelization of the guide tree cal-
culation in the second stage. Deng et al. [16] parallelized
several stages of MUSCLE [12] to realize a speedup of
15 on a 16 processor shared-memory machine. Several
attempts [17-20] have been made to parallelize ClustalW
on distributed-memory systems using message passing.
In these cases, Stages 1 and 3 were parallelized with the
best performance reported by Lin et al. [21] having a
speedup of 29 on 64 CPUs. Tan et al. [22] achieved a
speedup of 35 on a hybrid multiprocessor-cluster system
of 40 nodes with 80 CPUs. In the third stage, Tan’s
method distributes group-to-group alignments to system
nodes using a method that is based upon guide-tree and
recursive parallelism. The main contribution comes
from computing the forward and backward DP scans in
parallel on processors within a node. The small speedup
achieved in the third stage, which is under 10 in most
cases, limits the overall speedup of the progressive
algorithms.
Cell BE
Recently, the Cell Broadband Engine has received

attention as an accelerator for MSA. Vandierendonck et
al. [23] have accelerated ClustalW by a factor of 8 when
compared with a 2.13 GHz Intel Core2 Duo processor
running a single thread. Stages 1 and 3 were parallelized
on two Cell BEs by vectorizing DP matrix calculations
and scheduling independent tasks across the 16 available
synergistic processing elements. Using a Playstation3,
Wirawan et al. [24] achieved a peak speedup of 108 on
the first stage when compared with a 3.0 GHz Pentium
4. Overall, a speedup of only 13.7 was observed on 1000
sequences with an average length of 446. However, the
announcement from IBM to discontinue Cell production
for technical computing [25] may diminish further inter-
est in the Cell.
GPU
Another popular acceleration technology is the general

purpose graphics processing unit. Its commodity nature
has sparked much interest outside of the graphics com-
munity as an acceleration engine. Liu et al. [26] acceler-
ated all three stages of ClustalW on the GPU, with the
parallel portions programmed using CUDA [27]. When
independent task and guide tree parallelism is low, cells
of DP matrix calculations are computed in parallel. An
overall peak speedup of 41.53 was demonstrated on
1000 sequences of average length 858 with 1 GPU card
(GeForce GTX 280) when compared with a 3.0 GHz
Pentium 4. The best speedup obtained in each of the
three stages is 47.13, 11.08, and 5.9 respectively. Again,
the small gain in the third stage limits the overall
speedup.
FPGA
Reconfigurable computing approaches accelerate the

first stage of MSA by computing pairwise alignments
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with a pipeline of processing elements (PEs). This linear
systolic array operates with fine-grained parallelism
along a wavefront of cells in the DP matrix. The Clus-
talW algorithm does not use the score obtained from a
pairwise alignment directly. Instead, the number of iden-
tical characters in an alignment are used to compute the
fractional identity. Oliver et al. [28] accelerates the first
stage of ClustalW, but leaves the second and third
stages for execution on the host processor. Instead of
actually aligning the sequences, a custom algorithm on
the accelerator counts the number of identical charac-
ters during the forward scan without performing trace-
back. The best overall speedup was 13.3 compared to
ClustalW running on a 3.0 GHz Pentium 4. For Stage 1,
a PCI-based accelerator board reaches a peak speedup
of 50.9 with 92 PEs in a Xilinx XC2V6000. In another
approach, Lin et al. [21] demonstrated an overall
speedup of 34.6 using 10 Altera Stratix PEIS30 with a
total of 3072 PEs. For the first stage, a speedup of
1697.5 was achieved when compared with a 2.8 GHz
Xeon. The number of identical characters is deduced
from the comparison score returned from the accelera-
tor and the sequence lengths. Even with the impressive
speedup in the first stage, the overall speedup is still
limited by the third stage. Greater performance may be
achieved, however, by accelerating the third stage of
progressive alignment.

Methods
Discrete Profile Alignment
The third stage of MSA pairwise aligns profiles in a
similar way to sequences, but it must also work with the
extra information in profiles. Each position of a profile
designates a point in continuous profile space with a
vector of character frequencies (see Figure 1 and 2).
Profile-based MSA applications typically use floating-
point numbers or scaled integers to represent these
character frequencies. The extra size and dimension of
profiles, in relation to sequences, adds to the complexity
of alignment. Hence, a reduced representation of pro-
files that retains as much information as possible simpli-
fies alignment. By reducing profiles to discrete profiles–
essentially sequences with an extended alphabet–they
may be aligned with a simpler, higher-performing, pair-
wise sequence alignment algorithm.
The concept of discrete profile space was introduced by

Eskin [29] with application to DNA motif search, which
finds relatively short patterns in a subject sequence. For
instance, when searching for promoter sequences, query
profiles have a length of about 8-12 positions. In Eskin’s
method, a motif is represented as a small, discrete profile
that contains the probabilities of finding each nucleotide
at the respective positions. A similar work by Wang and
Stormo [30] partitions a four-dimensional continuous

profile space into 15 subspaces based upon a supervised
learning algorithm. Each dimension corresponds to a
nucleotide frequency fN = {A, C, G, T} with the constraint Σ
fN = 1. Any point falling within a partition is then repre-
sented by a discrete profile symbol.
For the application of discrete profile space to MSA, a

few issues and extensions must be addressed. For exam-
ple, an additional dimension must be added to profile
space to accommodate gaps. Also, sample points from
profile space must be selected for representation with
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Figure 1 Example multiple alignment and derived profile. Each
position in a profile consists of a vector with character frequencies
fN for the corresponding column in a group of aligned sequences.
(a) Multiple alignment of sequences si. (b) Profile derived from the
alignment.

Figure 2 Profile space. In three dimensions, profile space is a
triangle on the plane x + y + z = 1; however, five dimensions are
required to represent DNA alignments. Points in profile space are
shown with coordinates and an aligned column example
(transposed). The corners of profile space represent columns of an
alignment that contain all the same character.
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discrete symbols, and substitution costs need to be cal-
culated between these sample points. Furthermore, a
reduction method from continuous space to discrete
symbols must be devised that can operate efficiently on
genomic-sized profiles.
Sample Points
Five dimensions in profile space are required to repre-
sent profiles that contain nucleotide and gap character
frequencies. Each position of a profile can be mapped to
a point that falls on the bounded hyperplane fA + fC +
fG + fT + fgap = 1 in Euclidean space where 0 ≤ fN ≤ 1
and N = {A, C, G, T, “-"}. To reduce the number of pos-
sible points, a discrete number of sample points are
selected from continuous profile space. These sample
points and a corresponding discrete symbol represent
nearby points in profile space.
Given D dimensions, a selection algorithm determines

sample points by projecting lattice points p in D-space
onto the profile hyperplane according to the parametric
equation p’= tp, where t = (1 - Σpi)/D. Let L denote the
number of lattice points on the interval [0,1] of each axis.
Lattice points (see Figure 3) are evenly spaced by a dis-
tance of 1/L in each dimension; however, only points that
lie in a band near the hyperplane are considered. Given
the sum of lattice point coordinates S = Σpi, the consid-

ered points fall between (1 − D−1
L ) ≤ S ≤ (1 − 1

L ) . Intui-

tively, these lattice points reside on parallel hyperplanes

that are a distance of ε =
√

D/DL from each other (see
Figure 4). Corners of profile space that consist of all one
nucleotide are also included as sample points, but the
point indicating a profile of all gaps is excluded.
The number of sample points is reduced further by fil-

tering points that represent less probable nucleotide

frequencies. Nucleotides from the same group, either
purine or pyrimidine, have a higher probability of being
aligned, while those from different groups have a lower
probability. Substitution tables reflect this probability in
their cost values and influence alignment algorithms
accordingly. Therefore, sample points with a high fre-
quency of both purines and pyrimidines are eliminated
if they meet the condition

(fi + fj > Tc) ∧ (| fi − fj | < Td)

where i Î {A, G} and j Î {C, T}. The first term asserts
that the combined frequency of purines and pyrimidines
is above a threshold Tc, and the second term asserts
that both groups have similar frequencies with a differ-
ence less than Td. Threshold values can be adjusted to
allow more or less sample points depending on the
desired number of discrete symbols. Effective starting
values for the thresholds are Tc = 0.75 and Td = 0.30.
Substitution Table
After sample points in profile space are selected, the
substitution cost between these representative points
can be determined. Instead of calculating the cost every
time sample points are compared during alignment, the
cost can be computed once and stored in a new sample
substitution table. The discrete symbols associated with
each sample point become the indices into the table and
the codebook for a quantization algorithm.
Substitution costs between sample points are com-

puted from the individual nucleotide frequencies and

Figure 3 Sample point determination. Sample points are
determined by projecting lattice points onto the profile plane.

Figure 4 Planes parallel to profile space. Planes parallel to profile
space are separated by a distance of ε =

√
D/DL . For this

example, D = 3 and L = 4.
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substitution costs. Since a hardware constrained imple-
mentation of the sample substitution table may only
have 4 or 8-bit entries, a scaling factor adapts the range
of computed values to fit within entry size limits. Given
the nucleotide substitution table s of size N × N, an
array of sample points c, and a scaling factor b, the sub-
stitution cost s’ between each sample point is deter-
mined by

s′i,j =
[

N∑
m = 1

N∑
n = 1

cj, n ci, m sn, m

]
β .

The substitution cost of a gap and a nucleotide is the
gap extension cost plus one. This prevents a gap in one
sequence from being followed by a gap in the other
sequence during pairwise alignment of discrete profiles.
Reduction
For the accelerator to sustain maximum performance, the
host system must supply reduced profiles at the accelera-
tor’s input data rate (see Figure 5). Profiles are reduced
to discrete profiles to support a simpler, higher-perform-
ing pairwise alignment algorithm on an accelerator that
only aligns sequences of symbols. A new quantization
technique is used for this reduction on the host to reach
the needed performance. For each continuous profile
position, the reduction algorithm searches for a nearby
sample point and then returns the corresponding discrete
symbol. Finding a nearby point in less time is preferred to
a nearest neighbor search with greater overhead. Also,
constraining the search to the profile hyperplane Σ fN = 1
allows for some optimization.
A near neighbor search finds a sample point that is

close to the given continuous point, but not necessarily
the closest point. This relaxation of proximity allows the
search to proceed in deterministic time, and thereby
keep up with the accelerated pairwise alignment. Search
begins by scaling and truncating each nucleotide fre-
quency to form a partially quantized point. Then these
integral coordinates are used as indices into a lookup
table R that contains references to nearby sample points.
The scale factor determines the number of quantization

levels for each coordinate and also the size of the
lookup table. As a result of the search, points in contin-
uous profile space are mapped to a small set of symbols
that represent sample points. Not every element of the
D-dimensional lookup table requires storage since the
partially quantized points lie within a scaled distance of
(D - 1)ε from the profile hyperplane. A ragged array
with only the needed locations is used to implement the
lookup table R.
Example
An example of discrete profile alignment is presented
starting with two groups of aligned sequences. Profile
formation, reduction, and pairwise alignment of the pro-
files are included in this example. A simplified alphabet
Σ’ = {A, C, “-"} is used so that the character frequencies
correspond with the X, Y and Z axes of a depictable
three-dimensional profile space.
Figures 6 and 7 show instances of profile calculation

and reduction. Each profile position is calculated inde-
pendently and corresponds with a column of aligned
sequences. Given two groups of sequences {s1, s2} and
{s3, s4}, continuous profiles are calculated by counting
the occurrence of characters in each column and divid-
ing by the number of sequences to produce a vector of
frequencies (fA, fC, fgap). Profile reduction proceeds by
scaling each vector and truncating the values to form
indices into the three-dimensional reduction table RA,C,

gap. In this example, the scale factor is equivalent to the
size of R in each dimension. Table lookup values, which
are references to nearby sample points, are used for each
position of the discrete profiles p1,2 and p3,4. Figure 8
depicts two points in profile space and the nearby sample
points found by lookup in the reduction table R. Less
probable sample points are not removed in this instance.
Figure 9 shows the discrete profile alignment process and
the final alignment of the original groups. The discrete
profiles p1,2 and p3,4 are aligned with a pairwise algorithm
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that returns the edit string E1,2,3,4 composed of the opera-
tions ei Î {(Mis)Match, Insert, Delete}. This edit string
also applies to the groups of sequences {s1, s2} and {s3, s4}
because of the position correspondence between align-
ments and derived profiles.

Experimental Setup
The following components were incorporated into
MUSCLE [12], an open-source MSA program, to
demonstrate accelerated large-scale MSA.
• SSE accelerated sequence similarity algorithms for

the first stage of MSA
• A discrete profile alignment algorithm for the third

stage of MSA
• An FPGA accelerated pairwise alignment algorithm

[4]

Corresponding code in MUSCLE was replaced with
our highly-parallel code that uses SSE instructions and
the FPGA accelerator. Discrete profile alignment
replaced the float-based alignment used in each step of
progressive alignment. Whenever two continuous pro-
files are aligned, discrete profiles are first computed and
then aligned.
Pairwise sequence alignment is a fundamental sub-

component of the discrete profile alignment algorithm.
Sequences are aligned on the FPGA accelerator with a
space-efficient dynamic programming algorithm and a
traceback procedure. Given two sequences, the accelera-
tor returns an edit string that describes an optimal
alignment. This alignment functionality is incorporated
into a C library that is called from the host platform.
MUSCLE uses different methods to calculate sequence

similarity in the first and second iterations. Both of
these methods have been optimized with SSE instruc-
tions. The first method does not compare sequences
directly, but instead compares two vectors that contain
k-mer counts from corresponding sequences. These vec-
tors are compared 16 elements at a time with SSE
instructions to find the minimum values. The second
method determines the percent identity of two aligned
sequences by counting the number of matched symbols.
To accelerate this method, SSE instructions compare 16
symbols from each sequence at once and increment cor-
responding counts in a vector register.
Two versions of the modified MUSCLE are used for

analysis. One version (MUDISC) implements our pair-
wise alignment in software on the host, while the other
(MUFPGA) accelerates pairwise alignment on the FPGA.
MUDISC is compared with other popular MSA programs
such as ClustalW [3], Kalign [31], MAFFT [13], MUSCLE
[12], and POA [32]. Program version numbers and com-
mand-line options are shown in Table 1. For those
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programs that support iterations, a maximum of two are
used. The non-accelerated MSA programs and MUDISC
execute only on the conventional processor and
MUFPGA additionally uses the FPGA accelerator. Both
alignment quality and program performance are
measured.
Nucleotide adaptations [6] of the BAliBASE [33] and

SMART [34] reference alignments are used to compare
the quality of the MSA programs. BAliBASE alignments
have been determined to be correct based upon known
three-dimensional structure. Another assessment of
alignment quality is obtained with the BRAliBase bench-
mark RNA alignment database [5] that consists of 18,990
RNA alignments. Unaligned versions of the reference
alignments are realigned to produce test alignments.
Reference and test alignments are then compared with
the scoring programs MSCORE and SCIF to produce an
accuracy metric between 0 and 1. The MSCORE program
combines several scoring methods, which are described
in the Results section.
A performance analysis uses a few large-scale, viral data

sets that range in average length up to 167,043 nucleo-
tides or contain up to 12,104 sequences. Overall program
performance for MUSCLE, MUDISC, and MUFPGA is
measured by the wall-clock time needed to align a data
set and includes all three stages of progressive alignment.
For accurate timing, the host processor’s performance
counters are used.
The host platform consists of a desktop computer with

8 GB of DRAM and a 2.4 GHz Intel Core2 Duo proces-
sor running 64-bit Fedora 13 Linux as the operating sys-
tem. All benchmark applications execute in a single
thread and are compiled with gcc using -O3 optimiza-
tion. An 8-lane PCI Express [35] add-in card with a
Xilinx Virtex-4 FX100 FPGA provides the hardware
acceleration for pairwise alignment. Acceleration occurs
on a pipeline of 256 PEs driven by a 100 MHz clock.
Each PE requires one block RAM to implement the sub-

stitution cost s′i,j as a lookup table. The accelerator

supports linear gap costs and up to 64 points in profile
space with 6-bit symbol values.

Results and Discussion
Alignment quality with BRAliBase 2.1 is depicted in
Figure 10 for MUDISC and several other MSA pro-
grams. The BRAliScore, which reflects the alignment
accuracy, is plotted in relation to the average pairwise
sequence identity (APSI) of the reference alignment.
Identical sequences have an APSI of 100%. BRAliScore
is composed of two independent scores and is calculated
by multiplying the fractional identity (FI) [36] and the
structure conservation index (SCI) [37]. The FI score is
based on the fraction of matching characters between
the test and reference alignment, whereas the SCI is not
based on the reference alignment, but indicates the
amount of secondary structure conserved in the

Table 1 Program version numbers and command-line
options

Version Program Options

1.83 ClustalW -type = dna

2.04 Kalign –nuc

6.811 MAFFT –nuc

3.8.31a MUDISC -seqtype rna -maxiters 2

3.8.31a MUSCLE -seqtype rna -maxiters 2

2 POA -do_global -do_progressive

MUDISC and MUSCLE additionally use the option “-termgaps full” on
BRAliBase and “-termgaps ext” on MDSA when assessing alignment quality.
MUDISC, MUFPGA, and MUSCLE use the options “-termgaps full -seqtype dna
-gapopen 0 -center -300 -maxiters 2” for the performance test.

Figure 10 Alignment quality on the BRAliBase data set. MUDISC
(the new method) is compared with several alignment programs on
a seven (k7) and fifteen (k15) sequence RNA reference set from
BRAliBase 2.1. A higher score indicates better quality and is shown
in relation to the average pairwise sequence identity (APSI). MUDISC
uses discrete profile alignment.
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multiple alignment. A local smoothing of score values is
applied with the acsplines option in gnuplot and a
weighting factor of 5e-3. Above 60% APSI, there is little
difference in the alignment quality between the pro-
grams; however, MUDISC is one of the top performers
on data sets below 60% APSI.
A comparison of alignment quality with the MDSA

reference sets is reported in Figure 11. The Q score,
which is equivalent to the sum-of-pairs score (SPS)
score [38], is shown in relation to the APSI. Unlike the
FI, the Q score only considers residue pairs correctly
aligned in the test alignment compared with the refer-
ence and does not count residue-gap pairs. The acs-
plines smoothing option is again used, but with a
weighting factor of 1e-2. MUDISC is on par with other
MSA programs down to about 40% APSI and is still
comparable in accuracy below 40% APSI.

The average alignment quality of MUSCLE and
MUDISC is shown in Table 2. A variant of MUDISC
that uses the nearest neighbor search method is also
shown. According to the Friedman rank test [39] with
an adjustment for ties, the difference in quality between
the near and nearest neighbor search methods is not
significant. Even though the average scores are very
similar, the difference between MUSCLE and MUDISC
is significant with MUSCLE ranking higher on BRAli-
Base and MUDISC ranking higher on the MDSA data
set.
Program run times for MUSCLE, MUDISC, and

MUFPGA are reported in Table 3. MUFPGA obtains an
overall speedup of 33 relative to MUSCLE on the Influ-
enza data set and a speedup of 154 on the HIV data set.
Run times for MUFPGA on the Corona and Herpes data
sets are estimated since the accelerator currently only
supports sequence lengths up to 16 K. This maximum
length is a function of the FPGA register sizes and the
amount of memory configured to buffer intermediate
sequences and is not limited by the method. The esti-
mated run times for MUFPGA show the benefits of dis-
crete profile alignment on long sequences when pairwise
alignment is significantly accelerated. To calculate these
values, the pairwise alignment time in MUDISC is
reduced by a factor of 290, which is extrapolated from
timings on the Influenza and HIV data sets. Pairwise
alignment in the third stage is accelerated by a factor of
176 on the Influenza data set and a factor of 283 on the
HIV data set. Our prior work [4] has characterized the
pairwise alignment performance of the FPGA accelerator
and has shown a speedup over 300 relative to a desktop
computer.
Figure 12 shows the proportion of time spent in the

three stages of alignment on the Influenza and HIV data
sets. The time for each stage includes both iterations.
SSE acceleration improves the first stage run time with a
speedup of 31 on the Influenza data set and a speedup of
79 on the Corona data set. Notice that the proportion of
time spent in similarity calculations on the Influenza data
set is greater with more sequences and limits the overall
speedup. The Stage 3 run time of MUFPGA is faster than
MUSCLE by a factor of 60 on the Influenza data set and
by a factor of 198 on the HIV data set. The profile reduc-
tion rate ranges from 44.1 to 98.1 Mpos/s and the reduc-
tion time ranges from 5.4 to 11.7% of the pairwise
alignment time on the accelerator.

Conclusions
The discrete profile alignment algorithm presented here
produces alignments with quality comparable to other
leading MSA programs and enables the acceleration of
progressive alignment. A speedup over 150 is demon-
strated when discrete profile alignment is combined

Figure 11 Alignment quality on the MDSA data set. MUDISC
(the new method) is compared with several alignment programs on
the MDSA data set which contains nucleotide adaptations of the
BAliBASE and SMART reference alignments. BAliBASE includes
reference sets 1-7. MUDISC uses discrete profile alignment.
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with an FPGA accelerator that uses a fine-grained paral-
lel approach for the DP calculations of pairwise align-
ment. Previous coarse-grained approaches are limited by
insufficient parallelism, particularly in the third stage of
MSA. The discrete profile alignment algorithm in con-
junction with a fast pairwise alignment algorithm
advance the capabilities and performance of large-scale
MSA. A key component of our method is a fast profile
reduction algorithm on the host that can supply
sequences at a rate comparable to the accelerator’s
input data rate. The reduction algorithm uses a near
neighbor search in hyper-dimensional profile space to
quantize profile positions at a rate up to 100 Mpos/s on

a single core. Since this rate is sufficient to support the
high-end performance of reconfigurable computing,
other acceleration methods based on GPUs or SSE
instructions may also be a viable option.
Minimizing the time for sequence similarity calcula-

tions in Stage 1 is also important to achieve significant
speedup, especially for data sets with large numbers of
sequences. Using SSE instructions reduces the time for
sequence similarity calculations by a factor of 30-80.
Thousands of sequences can be aligned in a few minutes
when Stage 1 is accelerated with SSE instructions and
Stage 3 is accelerated with reconfigurable computing.
Future work includes the extension of discrete profile

alignment to support proteins that have a larger alpha-
bet by adding more dimensions to profile space. Since
proteins have an amino acid alphabet of 20 characters,
instead of 4 like DNA, an alphabet compression scheme
would be necessary to reduce the number of characters
and the corresponding dimensionality of profile space to
a practical number. Reducing the alphabet to six classes
based on physico-chemical properties, as done in
MAFFT, would only require 6 dimensions for the classes
plus 1 for gaps.
Another area of investigation is to apply the coarse-

grained parallelism of cluster supercomputers and the
fine-grained parallelism of reconfigurable computing to
multiple sequence alignment. Since this work only uses
a single core and one accelerator, a cluster with reconfi-
gurable computing could provide an estimated 20-30x
speedup beyond this work.
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