
Citation: Huang, P.-H.; Chen, L.-Y.;

Chung, W.-C.; Sheu, C.-C.; Hsiao,

T.-C.; Tsai, J.-R. Toward Evaluating

Critical Factors of Extubation

Outcome with XCSR-Generated

Rules. Bioengineering 2022, 9, 701.

https://doi.org/10.3390/

bioengineering9110701

Academic Editor: Kaoru Sakatani

Received: 21 October 2022

Accepted: 15 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Toward Evaluating Critical Factors of Extubation Outcome with
XCSR-Generated Rules
Po-Hsun Huang 1,† , Lian-Yu Chen 1,†, Wei-Chan Chung 2, Chau-Chyun Sheu 3,4 , Tzu-Chien Hsiao 5,6,*
and Jong-Rung Tsai 7,8,*

1 Institute of Computer Science and Engineering, College of Computer Science, National Yang Ming Chiao
Tung University, Hsinchu 30010, Taiwan

2 Division of Respiratory Therapy, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
3 Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital,

Kaohsiung 80708, Taiwan
4 School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
5 Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University,

Hsinchu 30010, Taiwan
6 Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
7 Department of Internal Medicine, Kaohsiung Municipal Cijin Hospital, Kaohsiung 80544, Taiwan
8 Division of Respiratory Therapy, College of Medicine, Kaohsiung Medical University,

Kaohsiung 80708, Taiwan
* Correspondence: labview@cs.nycu.edu.tw (T.-C.H.); jrtsai@kmu.edu.tw (J.-R.T.)
† These authors contributed equally to this work.

Abstract: Predicting the correct timing for extubation is pivotal for critically ill patients with me-
chanical ventilation support. Evidence suggests that extubation failure occurs in approximately
15–20% of patients, despite their passing of the extubation evaluation, necessitating reintubation.
For critically ill patients, reintubation invariably increases mortality risk and medical costs. The
numerous parameters that have been proposed for extubation decision-making, which constitute the
key predictors of successful extubation, remains unclear. In this study, an extended classifier system
capable of processing real-value inputs was proposed to select features of successful extubation. In
total, 40 features linked to clinical information and variables acquired during spontaneous breathing
trial (SBT) were used as the environmental inputs. According to the number of “don’t care” rules
in a population set, Probusage, the probability of the feature not being classified as above rules, can
be calculated. A total of 228 subjects’ results showed that Probusage was higher than 90% for minute
ventilation at the 1st, 30th, 60th, and 90th minutes; respiratory rate at the 90th minute; and body
weight, indicating that the variance in respiratory parameters during an SBT are critical predictors of
successful extubation. The present XCSR model is useful to evaluate critical factors of extubation
outcomes. Additionally, the current findings suggest that SBT duration should exceed 90 min, and
that clinicians should consider the variance in respiratory variables during an SBT before making
extubation decisions.

Keywords: mechanical ventilation; spontaneous breathing trial; successful extubation; extended
classifier system

1. Introduction

In the intensive care unit (ICU), intubation with mechanical ventilators necessarily
saves the lives of critically ill patients immediately fighting for their lives and gaining
extra time to treat and recover. However, clinical reports provide evidence that prolonged
mechanical ventilation can lead to the impairment of diaphragmatic or lung function [1–3].
Similarly, respiratory failure requiring reintubation occurs in approximately 15–20% of
patients after extubation [4]. Delayed extubation or reintubation tends to increase mortality
risk in critically ill patients. Therefore, it is critical to accurately determine whether patients
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still require mechanical ventilation support. The timing of weaning from mechanical
ventilation also constitutes a crucial concern.

Patients who are intubated and undergoing machine ventilation support require
frequent physician visits and checkups. After the stabilization of original cause, there
is a procedure for determining the patient’s health status called the ventilator weaning
protocol. The first step is to observe the patient’s daily assessment of readiness to wean,
and to meet and check the weaning profiles, including the rapid shallow breathing index
(RSBI), maximal inspiratory pressure (Pimax), cuff leak test, etc. [5–8]. The second step
was to conduct a spontaneous breathing trial (SBT) with 120 min of low pressure support
ventilation. The third step of airway protection and cough function assessment was
performed. After all of them have passed, the decision to turn off mechanical ventilation
and remove the endotracheal tube is made by a trained and certified physician. The strictly
refined process still produces 15~20% extubation failure rate; therefore, many studies
have introduced multivariate analysis, artificial intelligence, and other methods to find
the appropriate factors. During SBT, respiratory distress may occur [9] and changes in the
respiratory variables may also be associated with successful extubation [10]. It is, however,
still not possible to completely exclude the possibility of failed extubation. The search for
other key variables, the development of novel features, and the establishment of accurate
predictive models for extubation based on physician decision rules are the major research
and development in this study.

A learning classifier system (LCS), which is a rule-based machine learning method,
interacts with the environment to generate an optimal policy, modifying the classifier
parameter values according to the environmental feedback to formulate more effective
rules. A popular type of LCS is the extended classifier system (XCS), for which numerous
applications have been proposed [11,12]. The input data for the original XCS must be
encoded into binary format. However, most problems are more easily addressed by
encoding with real values. Therefore, Wilson modified the XCS for the adoption of real-
value inputs; an XCS that can process such inputs is called an XCSR [13]. One feature of
XCS is the “don’t care” bits in the rules. This feature enables users to determine which
variables are less important in some situations but more important in other situations. A
study applied this feature to identify the critical variables for detecting Internet addiction
in patients [14]. Thus, the XCSR is suitable for the present objective: determining and
evaluating SBT-related variables are more important for successful extubation than others.
The aim of this study was not only to construct a model for predicting extubation outcomes
but also to evaluate the critical SBT effect with other variables.

2. Experimental and Computational Details
2.1. Subjects Description

This retrospective study of the electronic medical records (EMR) database has been
approved by the Institutional Review Board of Kaohsiung Medical University Chung-Ho
Memorial Hospital (the approval number: KUMHIRB-F(1)-20200033). A total of 262 dei-
dentified patient data were obtained from the above hospital. The recruited patient is
on a ventilator for the first time and for more than 48 h and has stable vital signs before
extubation. Since the literature has indicated that SBT with limited pressure support is more
effective than T-tubes [15,16], the data of a 6 cmH2O pressure-supported SBT is collected in
this study.

Figure 1 presents the extubation procedure used in the ICU of the internal medicine
department. The intensivist decides to stop ventilation support and execute the extubation
procedure after each index meting the relevant criteria. Within 48 h of extubation, the
patient who experienced respiratory failure or died is defined as the extubation failure
group, and the patient who did not is defined as the extubation success group. Descriptions
of the variables obtained from the EMR are presented in the following section.
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Figure 1. Ventilator weaning protocol in ICU of Kaohsiung Medical University Chung-Ho Memo-
rial Hospital.

2.2. Variable

For evaluating critical factors, 40 variables for each patient were selected as the input
variables. Table 1 lists the selected 19 variables of clinical information, consisting of
basic patient information, two severity scales, mechanical ventilator-related information,
hemodynamics situation before doing SBT, maximal inspiratory pressure, and disease
history (Table 1). Table 2 presents another 21 variables of acquired information when
doing SBT, including the hemodynamics and ventilation level at the 1st, 30th, 60th, and
90th minute. Regarding the output variable, the patient in the extubation failure group is
encoded as 0 and the one in the success group is encoded as 1.

Table 1. Selected clinical variables.

Variable (Unit) Definition

Basic information
Gender (a.u.) Subject gender (1: male; 2: female)
Age (year) Subject age
Height (cm) Height
BW (kg) Body weight
IBW (kg) Ideal body weight

Severity scale
APACHEII (a.u.) Acute physiology and chronic health evaluation II
GCS_enter_ICU (a.u.) Glasgow coma scale when entering ICU
GCS_before_SBT (a.u.) Glasgow coma scale before doing SBT



Bioengineering 2022, 9, 701 4 of 13

Table 1. Cont.

Variable (Unit) Definition

Mechanical ventilator
Endo_size (mm) Endotracheal tube diameter
cuff_leak (mL) Leak of cuff of endotracheal tube
Reason_using_MV (a.u.) Reason of using mechanical ventilator

Hemodynamicsbefore SBT
SBP_before_SBT (mmHg) Systolic blood pressure before SBT
DBP_before_SBT (mmHg) Diastolic blood pressure before SBT
HR_before_SBT (bpm) Heart rate before SBT
SpO2_before_SBT (%) Pulse oxygen saturation before SBT

Ventilation

Pimax (cmH2O) Maximal inspiratory pressure

Disease history (0: no; 1: yes)
HX_Res (a.u.) History of respiratory disease
HX_CV (a.u.) History of cardiovascular disease
HX_NM (a.u.) History of neuromuscular disease

Table 2. SBT-related cardiovascular and respiratory variables.

Variable Definition

SBT_times (a.u.) How many times of doing SBT

Hemodynamicsduring SBT

mX_HR (bpm) Xth minute heart rate

mX_SpO2 (%) Xth minute pulse oxygen saturation

Ventilation during SBT

mX_VE (mL) Xth minute ventilation volume

mX_SponVT (mL) Xth minute spontaneous tidal volume

mX_RR (bpm) Xth minute respiratory rate

2.3. XCS and XCSR

The learning classification system (LCS) is a rule-based machine learning method that
combines exploration components (evolutionary computation, EC) and learning compo-
nents (reinforcement learning, RL). The development of LCS has been decades-long, and the
most famous descendant in the field of the LCS is the extended classifier system (XCS). The
XCS retains the main components of the LCS, but still achieves similar performance or even
better. The streamlined architecture makes the XCS a benchmark for future development in
the LCS field.

The architecture of the XCS is a standard RL. The XCS can be regarded as an agent
interacting with the environment to achieve the desired goal. The environment can be
a database to be explored or a problem to be solved. The XCS uses a set of cooperative
rules to express the solutions it has learned. The rules are easily interpretable, and the
expression of the rules is “IF condition THEN action”. In addition, each rule also contains
3 parameters to evaluate the quality of the rule: (1) prediction, predict the reward after the
action is executed; (2) prediction error, calculate the error between predicted and actual
reward; (3) fitness, evaluate the quality and reliability of rule. The reward received from the
environment is used to update the rule parameters using Q-learning and the Widrow–Hoff
delta rule. Introducing EC can help the XCS reorganize and explore better rules. The XCS
has also been proven to be able to find the most general and accurate rules.

The operation process of the XCS is described as follows: (1) Environmental input is
converted to binary encoding through the detector. The set of rules is called population



Bioengineering 2022, 9, 701 5 of 13

[P] in the XCS. The condition part of the rule will correspond to the environmental input
and use ternary-alphabet {0, 1, #} for encoding. The # symbol is treated as “don’t care”,
which means it can match regardless of whether the corresponding environmental input is
0 or 1. The action part of the rule adopts binary encoding. The XCS will search for all the
rules in [P] and move the rules whose condition part matches the environmental input to
the matching set [M]. If [M] is empty, the XCS will start the covering mechanism. In the
covering mechanism, the XCS will generate a new rule that matches the condition part
with the environmental input and randomly give a binary code to the action part. In the
condition part, there is a certain probability to replace the regular bit with the # symbol.
The remaining parameters are given random initial values. The generated rule will be
placed in [P] and rescan [P] to generate [M]; (2) The rules in [M] may contain different
actions. To calculate the expected reward for each action, the rules in [M] with the same
action are used to execute the fitness weighted average as the expected reward of the action.
The prediction array [PA] can be built after calculating the expected reward of each action.
The XCS has two modes to select action for execution, namely exploration and exploitation.
In the exploration mode, the XCS adopts the roulette-wheel method, which means that
the larger the expected reward, the easier to be picked. In the exploitation mode, the XCS
directly selects the action with the most expected reward to execute. The selected action
will be executed through the effector, and the environment will give reward. The rules in
[M] whose action is the same as the selected action will be moved to action set [A]; (3) The
reward obtained from the environment will be used to update the prediction, prediction
error, and fitness parameters of rules in [A] through Q-learning and the Widrow–Hoff delta
rule; (4) The parameters of the rule corresponding to [A] in [P] will be updated; (5) The EC
method in the XCS is to use genetic algorithm (GA). When the average time of the rule in
[A] from the last GA execution is greater than the threshold, GA will execute. GA will use
fitness as the probability to select two rules for crossover and mutation to generate two new
rules. In the XCS, the alleles of condition in the two rules will be exchanged with probability
χ, and the alleles will be randomly flipped and mutated with the probability µ; (6) The XCS
also has subsumption mechanism to assist in learning the most general and most accurate
rules. The XCS will determine two rules corresponding to the same environmental input,
and whether the more general rule has enough experience and reliability to accommodate
another specific rule; (7) The XCS will repeat the above steps until it converges or reaches
the maximum number of iterations.

The variables in real-world data are often continuous values. A new encoding is
proposed in the condition part of the rule to allow the XCS to handle input data other
than binary. The modified XCS version is called XCS with real-valued input (XCSR) [13].
The schematic of the XCSR and the corresponding operation procedure are shown in
Figures 2 and 3, respectively. The XCSR mainly converts the encoding of the condition of
the rules from ternary-alphabet to interval predicates. The expression of interval predicate
is inti = (ci, si), where inti represents the i-th interval predicate corresponding to the i-th
input variable, ci represents the center, and si represents the spread. When an i-th input
variable xi can match the i-th interval predicate inti, it means (ci − si ≤ xi < ci + si). The
operating mechanism of XCSR is the same as XCS, except that the mechanism is slightly
changed in covering and GA. When covering generates a new rule, it will generate inti
corresponding to the xi in the condition of the rule, where the value of ci is set to xi, and the
value of si is set to a random number ranging from 0 to sr, where sr is defined by the user.
In the part of GA, the inti of the two rules will be exchanged with probability χ. ci and si
will randomly add or subtract the value of mi with probability µ, where mi is defined by
the user.
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2.4. Data Analysis

This study will import clinical data of 228 patients with 40 variables as input data for
the XCSR. The rule condition of the XCSR contains 40 interval predicates, and the output
action is the success or failure of extubation. Table 3 shows the parameter settings of XCSR
used in this study. The detailed description of XCSR can be referred to [13]. After the values
of the 40 variables of the 228 patients were input into the XCSR, it generated 154 rules for
extubation outcome prediction after the model reached stability. Therefore, according to
the number of “don’t care” bits of each variable in the rules, the usage probability Probusage
can be calculated. A larger Probusage in the ith variable indicates that more model rules
use this variable to determine the extubation outcomes. The Probusage of the ith variable is
calculated as follows:
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Probusage(i) =
total rules number − don’t care bit number(i)

total rules number
× 100% (1)

We constructed the model 10 times to verify the stability of the Probusage of each
variable. Therefore, the results are presented as means ± standard deviations of Probusage.

Table 3. Parameter setting.

Parameter Value Definition

Epoch 100 Number of dataset iterations
N 1500 Maximum number of rules in [P]
β 0.2 Learning rate for updating the parameters
α 0.1 Decline rate of fitness
ν 0.1 Exponent of fitness
ε0 10 Acceptable range of prediction error threshold
θGA 25 The threshold for GA executing
χ 0.8 Probability of GA performing crossover
µ 0.04 Probability of GA performing mutation
θdel 20 The threshold for deleting rule
δ 0.1 The fraction of the mean fitness in [P]
θsub 20 The threshold for subsumption

P# 0.5 When covering, the range of inti can cover the maximum and
minimum values of xi with a certain probability

pi 10 Initial value of prediction
εi 0 Initial value of prediction error
Fi 10 Initial value of fitness
θmna 2 Maximum number of actions

2.5. Statistical Analysis

Because the two groups were of unequal size, the nonparametric Mann–Whitney U
test was performed to examine the distribution between extubation success and failure.
The continuous variables are expressed as means ± standard deviations, and the discrete
variables are expressed as numbers. A p value of <0.01 indicated a significant difference
between two groups in two-tailed tests. The area under the receiver operating characteristic
(ROC) curve (AUC) was used to test the discriminatory ability of each variable, with results
expressed as the AUC values. The analyses were conducted and the XCSR was coded using
the LabVIEW platform (National Instruments Corporation, Austin, TX, USA).

3. Results and Discussion

After exclusions were made for 34 of the 262 patients because of missing data, the data
of 228 patients remained for analysis. Table 4 presents the clinical information of the final
sample. Height and ideal body weight (IBW) differed significantly between the two groups.
The AUC of these two variables were both 0.63.

Table 4. Characteristics of the final sample of 228 patients.

Clinical Characteristics Extubation Failure (n = 40) Successful Extubation (n = 188) Total (n = 228) AUC

Basic information
Gender (male/female) 18/22 118/70 136/92 -
Age (year) 72.62 ± 14.05 67.53 ± 15.76 68.42 ± 15.57 0.60
Height (cm) 158.5 ± 9.05 162.60 ± 08.56 * 161.89 ± 8.76 0.63
BW (kg) 60.73 ± 13.22 60.94 ± 14.54 60.90 ± 14.29 0.51
IBW (kg) 55.51 ± 6.36 58.27 ± 06.03 * 57.78 ± 6.16 0.63

Severity scale
APACHEII 24.43 ± 8.19 21.29 ± 08.33 21.84 ± 8.38 0.61
GCS_enter_ICU 6.30 ± 3.41 6.84 ± 03.52 6.74 ± 3.28 0.55
GCS_before_SBT 9.55 ± 2.00 10.10 ± 01.63 10.00 ± 1.71 0.60
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Table 4. Cont.

Clinical Characteristics Extubation Failure (n = 40) Successful Extubation (n = 188) Total (n = 228) AUC

Mechanical ventilator
Endo_size
7.0 # (%) 9 (3.9) 31 (13.6) 40 (17.5) -
7.5 # (%) 31 (13.6) 156 (68.4) 188 (82.5) -
cuff_leak 203.47 ± 124.36 245.65 ± 107.31 * 283.25 ± 111.36 0.63
Reason_using_MV 21/19 93/95 114/114 -

Hemodynamics before SBT
SBP_before_SBT 144.25 ± 26.34 140.94 ± 26.47 141.52 ± 26.42 0.53
DBP_before_SBT 71.40 ± 17.39 70.89 ± 15.86 70.98 ± 16.10 0.52
HR_before_SBT 92.95 ± 16.96 88.15 ± 15.91 88.99 ± 16.16 0.57
SpO2_before_SBT 97.50 ± 2.18 98.22 ± 01.87 98.09 ± 1.95 0.60

Ventilation
Pimax 33.25 ± 11.99 34.82 ± 12.19 34.55 ± 12.14 0.54

Disease history
HX_Res (yes/no) 12/28 44/144 58/170 -
HX_CV (yes/no) 30/20 104/84 134/94 -
HX_NM (yes/no) 4/36 31/157 35/193 -

* p < 0.01 between extubation failure and successful extubation.

Table 5 lists the variables measured during the SBTs of the 228 patients. A significant
between-group difference was only observed for the heart rate (HR) in the 60th minute.
The AUC of this variable was 0.63.

Table 5. SBT variables of the 228 patients.

Variables during SBT Extubation Failure (n = 40) Successful Extubation (n = 188) Total (n = 228) AUC

SBT_times 2.58 ± 1.41 2.49 ± 1.49 2.51 ± 1.56 0.54
Hemodynamics

m1_HR 94.15 ± 16.28 89.07 ± 15.77 89.96 ± 15.94 0.59
m1_SpO2 97.70 ± 2.29 98.02 ± 2.13 97.96 ± 2.15 0.54
m30_HR 93.90 ± 15.97 88.69 ± 17.55 89.60 ± 17.36 0.60
m30_SpO2 97.40 ± 3.10 97.71 ± 2.46 97.65 ± 2.58 0.51
m60_HR 96.40 ± 17.04 88.12 ± 20.33 * 89.57 ± 20.01 0.63
m60_SpO2 97.58 ± 2.77 96.12 ± 12.47 96.38 ± 11.39 0.52
m90_HR 92.17 ± 21.86 85.94 ± 20.36 89.04 ± 20.72 0.61
m90_SpO2 87.78 ± 29.73 92.12 ± 23.11 91.36 ± 24.38 0.53

Ventilation
m1_VE 7.93 ± 2.97 7.94 ± 2.56 7.94 ± 2.63 0.52
m1_SponVT 420.40 ± 206.83 463.26 ± 222.54 455.74 ± 220.03 0.58
m1_RR 19.60 ± 6.89 18.73 ± 6.61 18.88 ± 6.66 0.53
m30_VE 7.53 ± 2.46 7.90 ± 2.78 7.83 ± 2.72 0.53
m30_SponVT 442.27 ± 244.51 531.98 ± 706.51 516.24 ± 650.11 0.60
m30_RR 18.65 ± 6.19 17.37 ± 5.68 17.60 ± 5.78 0.57
m60_VE 8.20 ± 3.46 7.84 ± 2.62 7.90 ± 2.78 0.52
m60_SponVT 451.43 ± 208.80 472.49 ± 174.87 468.79 ± 180.95 0.55
m60_RR 18.87 ± 6.22 17.57 ± 6.17 17.80 ± 6.19 0.57
m90_VE 7.65 ± 2.63 7.81 ± 2.45 7.82 ± 2.43 0.53
m90_SponVT 466.93 ± 191.02 478.64 ± 187.76 478.68 ± 185.68 0.55
m90_RR 17.65 ± 4.01 17.52 ± 6.12 17.62 ± 5.69 0.53

* p < 0.01 between extubation failure and successful extubation.

Figure 4 presents the performance of one of the XCSR models (a total of 10 models were
built, one of them for an example). A problem refers to an iteration of a prediction that has
been created. For the model to approach 100% accuracy, only approximately 125 problems
were required. Though the possibility of over fitting of the XCSR model cannot be excluded,
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the analysis of the rules created by the XCSR can still be useful information for clinical
doctors to make a decision.
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Figure 5 presents the “don’t care” numbers of each variable in all rules after sorting.
The first six variables had significantly fewer “don’t care” numbers, meaning that they had
higher usage probabilities. Table 6 lists both these high-performing variables and some
others with lower rankings.
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Variables ranked 1–6 had a substantially higher Probusage than did other model
variables. The Probusage of all variables ranked ≥7 was lower than 36%.

Although height, IBW, and HR in the 60th minute typically differ significantly between
the extubation failure and success groups in relevant studies, the AUC values remain lower
than 0.63. Few studies using the XCSR have applied the ROC analysis. However, in
clinical research, ROC analysis is the most common method for comparing different models
and variables. Therefore, in the present study, the rewards in the prediction array were
applied to the XCSR model for the ROC analysis. The AUC of 0.993 was significantly
higher than that of individual variables. Moreover, the accuracy of the XCSR model in
predicting extubation outcomes approached 100% after training. For comparison with the
XCSR model, the accuracy of height, IBW, and HR in the 60th minute was determined
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as 59%, 65%, and 65%, respectively, by using the cutoff point from the ROC analysis
to predict extubation outcomes. The prediction accuracy for individual variables was
relatively low because the ratio between the number of extubation failures and successes
was approximately 0.83, meaning that the accuracy would be 83% if the model predicted
that all extubation outcomes would be successful. Nevertheless, these results demonstrate
how powerful the present XCSR model is. In the population rule set, 130 and 24 rules
predicted extubation success and failure, respectively. Overall, the rules predicted the
extubation outcomes with high accuracy.

Table 6. Usage probabilities of the top 10 variables. The first 6 variables have significant higher prob-
abilities.

Ranking Variable Probusage (%)

1 m90_RR 96.74 ± 1.27
2 m60_VE 96.58 ± 1.92
3 m90_VE 96.07 ± 1.67
4 m30_VE 95.90 ± 1.49
5 m1_VE 95.71 ± 1.54
6 BW 95.61 ± 2.70
7 age 36.10 ± 5.23
8 Height 35.29 ± 3.33
9 SpO2_before_SBT 34.93 ± 4.77
10 DBP_before_SBT 34.76 ± 4.43
. . . . . . . . .
40 HX_NM 26.03 ± 5.28

After the model was constructed 10 times, although the Probusage rank of some vari-
ables differed, the first six positions remained filled by the same variables. Moreover,
the Probusage of these six variables was higher than 95%, with small standard deviations.
Overall, the results indicate that the respiratory rate (RR) and minute ventilation (VE)
measured during the SBTs, as well as body weight (BW), were more important than the
other variables. In particular, VE was critical at all-time points during the SBT. Studies have
demonstrated that some SBT-related respiratory variables are risk factors for extubation
failure [10,17–19]. One study noted that VE is a parameter that is easy to measure during
SBTs that can guide decisions regarding the discontinuation of mechanical ventilation [17].
Another study reported that including all variables (especially the variables in 90th minutes)
assessed during SBTs in a training model resulted in higher performance [20]. The current
results also suggest that VE during SBT is a key predictor of successful extubation.

Patients who are able to complete an SBT are likely to have more stable breathing than
those who are not. This may explain why respiratory rate in the 90th minute constitutes a
major factor in extubation decision-making. Notably, BW can also be a critical factor for
successful extubation. Because the rules generated by the XCSR are presented in a range,
the values may not be continuous. However, the reason BW is typically used for rules in
XCSR models remains unclear. We speculate that patients may feel more comfortable and
breathe more stably if their BW is regulated within a certain range. Further research is
warranted to confirm this supposition.

Some studies have also applied machine learning to predict extubation success or
failure. Zeggwagh used multivariable logistic regression (MLR) and three variables (vital
capacity, RSBI, and maximal expiratory pressure) to create a prediction model [21]. Mueller
(2004) observed that a model created using an artificial neural network (ANN) outper-
formed one created using MLR [22] in predicting extubation outcomes in infants. Another
study revealed that an ANN model more accurately predicted extubation failure [23].
Mueller (2013) tested five machine learning methods, namely MLR, ANNs, boosted deci-
sion trees, naïve Bayesian classifiers, and support vector machines, to predict extubation
outcomes in a large sample of premature infants [24]. Two common statistical models, MLR
and partial least squares (PLS) regression, were also used to test the same dataset of present
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study. The AUCs of MLR (0.660) and PLS (0.812) were significantly lower than that of the
XCSR model (0.993). Table 7 presents a summary of the AUC results obtained in previous
studies and the current study. Because each study applied different database and variables
for model training, the summary of Table 7 is just for reference instead of comparison.
Interpreting the nonlinear models and determining which variables were more important
than others are challenging, especially when ANNs are used. Relevant studies have typi-
cally employed the trial-and-error approach to fine-tune models and variables. Though
some method had been proposed for NN model interpreting, the XCSR model is easier to
interpret. In the present study, each rule created by the XCSR was readable (each variable
in a rule would be a range of value or “don’t care”). In general, interpreting an XCSR
model is easier than a model formulated using other nonlinear machine learning methods.
The usage probabilities calculated in the present study may be useful for identifying the
importance of each variable. In addition, the distributions of each variable in different rules
also can be useful information for finding the physiological meaning of patients with fail
extubation and patients with successful extubation. These rules may serve as a valuable
reference for further research.

Recently, a study also proposed a method to visualize rule-based machine learning [25].
In future work, it is possible to apply the method for identifying the importance of each
variable to compare with present study and to explore detailed information from the XCSR.
In addition, the original XCSR had been proposed for almost two decades. Many modified
versions of the XCSR were proposed in these years. To study which one of the modified
XCSRs is more suitable for the purpose of this study is also a future work.

The present XCSR system is already built in the system of Kaohsiung Medical Uni-
versity Chung-Ho Memorial Hospital for providing the extubation suggestion. In the
future work, the prospective research of this XCSR system for extubation suggestion will
be investigated.

Table 7. AUC results of the current and previous studies (bold text: the result of our group).

Ref. Method Type Extubation Failure n (%) AUC

Zeggwagh, et al. (1999) [21] MLR Calibration 22 (36.67) 0.913
MLR Validation 22 (37.29) 0.855

Mueller, et al. (2004) [22]

MLR Calibration 22 (16.92) 0.810
MLR Validation 13 (24.53) 0.750
ANN Calibration 22 (16.92) 0.810
ANN Validation 13 (24.53) 0.870

Mueller, et al. (2013) [24]

MLR Calibration 59 (12.14) 0.880
MLR Validation 59 (12.14) 0.762
ANN Calibration 59 (12.14) 0.930
ANN Validation 59 (12.14) 0.753
BDT Calibration 59 (12.14) 1.000
BDT Validation 59 (12.14) 0.513
NBC Calibration 59 (12.14) 0.610
NBC Validation 59 (12.14) 0.626
SVM Validation 59 (12.14) 0.493

Hsieh, et al. (2018) [23] ANN Calibration 185 (5.14) 0.850

Chung, et al. (2020) [20] MLR Calibration 28 (16.57) 0.889

This study (2022)
MLR Calibration 40 (17.54) 0.660
PLS Calibration 40 (17.54) 0.812

XCSR Calibration 40 (17.54) 0.993

4. Conclusions

The XCSR model trained in the present study had a prediction accuracy of almost 100%.
We identified critical factors of extubation success and failure from among 40 variables,
observing that the respiratory variables assessed during SBTs were more important. The
generated rules used over 95% of the VE measured in the 1st, 30th, 60th, and 90th minutes,
as well as the respiratory rate in the 90th minute and BW. These parameters, especially VE,
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are the key to determining extubation success or failure. These findings suggest that the
duration of an SBT should be longer than 90 min, and that extubation decisions should
be made in consideration of the variability in such respiratory parameters during an SBT.
Overall, relative to those of other methods, the AUC of the XCSR model was higher,
facilitating the evaluation of the importance of each variable. Furthermore, each generated
rule may constitute a useful reference for future investigations.
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