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Abstract
1.	 Predicting	the	likelihood	of	wildlife	presence	at	potential	wildlife–	livestock	in-
terfaces	is	challenging.	These	interfaces	are	usually	relatively	small	geographical	
areas	where	 landscapes	 show	 large	 variation	over	 small	 distances.	Models	of	
wildlife	distribution	based	on	coarse	data	over	wide	geographical	 ranges	may	
not	be	representative	of	these	interfaces.	High-	resolution	data	can	help	identify	
fine-	scale	predictors	of	wildlife	habitat	use	at	 a	 local	 scale	 and	provide	more	
accurate	predictions	of	species	habitat	use.	These	data	may	be	used	to	inform	
knowledge	of	interface	risks,	such	as	disease	transmission	between	wildlife	and	
livestock,	or	human–	wildlife	conflict.

2.	 This	study	uses	fine-	scale	habitat	use	data	from	wild	boar	(Sus scrofa)	based	on	
activity	signs	and	direct	field	observations	in	and	around	the	Forest	of	Dean	in	
Gloucestershire,	England.	Spatial	logistic	regression	models	fitted	using	a	variant	
of	penalized	quasi-	likelihood	were	used	to	identify	habitat-	based	and	anthropo-
genic	predictors	of	wild	boar	signs.

3.	 Our	models	showed	that	within	the	Forest	of	Dean,	wild	boar	signs	were	more	
likely	 to	be	seen	 in	spring,	 in	 forest-	type	habitats,	 closer	 to	 the	center	of	 the	
forest	and	near	litter	bins.	In	the	area	surrounding	the	Forest	of	Dean,	wild	boar	
signs	were	more	likely	to	be	seen	in	forest-	type	habitats	and	near	recreational	
parks	and	less	likely	to	be	seen	near	livestock.

4.	 This	 approach	 shows	 that	wild	 boar	 habitat	 use	 can	 be	 predicted	 using	 fine-	
scale	data	over	comparatively	small	areas	and	in	human-	dominated	landscapes,	
while	taking	account	of	the	spatial	correlation	from	other	nearby	fine-	scale	data-	
points.	The	methods	we	use	could	be	applied	to	map	habitat	use	of	other	wildlife	
species	in	similar	landscapes,	or	of	movement-	restricted,	isolated,	or	fragmented	
wildlife	populations.
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1  |  INTRODUC TION

Many	 infectious	 diseases	 pass	 between	 livestock	 and	 wildlife,	 in	
both	directions.	The	westerly	spread	of	African	swine	fever	(affect-
ing	domestic	pigs	and	wild	boar,	Sus scrofa)	across	Eastern	Europe	
since	2007	(Sanchez-	Vizcaino	et	al.,	2013)	and	the	seasonal	occur-
rence	of	avian	influenza	(affecting	poultry	and	wild	birds)	(European	
Food	 Safety	 Authority	 et	 al.,	 2020)	 are	 two	 recent	 examples.	
Focus	 is	 usually	 placed	on	 the	 risks	 to	 livestock	 from	wildlife	 res-
ervoirs	of	disease,	with	much	 less	consideration	given	 to	 the	 risks	
that	 livestock	may	pose	 to	wildlife	 (Beauvais	et	al.,	2019;	Bozzuto	
et	al.,	2020;	Wiethoelter	et	al.,	2015).	Wild	boar	are	one	of	the	most	
widely	distributed	mammals	globally	since	being	 introduced	 in	 the	
16th	century	onward	 to	continents	outside	of	 their	native	Eurasia	
(Long,	2003;	Massei	et	al.,	2011;	Massei	&	Genov,	2004).	They	are	
susceptible	 to	diseases	of	major	economic	 importance	 to	 the	 live-
stock	industry	such	as	African	swine	fever,	foot-	and-	mouth	disease,	
and	bovine	tuberculosis	(Dixon	et	al.,	2019;	Grubman	&	Baxt,	2004; 
Naranjo	et	al.,	2008).	Monitoring	wild	boar	distributions	and	sam-
pling	their	populations	are	necessary	in	order	to	better	understand,	
detect,	manage,	and	even	predict	the	occurrence	of	such	diseases.

Monitoring	 elusive	 wildlife	 species	 such	 as	 wild	 boar	 is	 chal-
lenging	 owing	 to	 their	 wide	 geographic	 spread	 (Long,	 2003),	 the	
resources	and	personnel	needed	(Engeman	et	al.,	2013),	their	wari-
ness	of	humans	and	 limitations	 in	 the	available	methods	of	detec-
tion	(Enetwild	Consortium,	Keuling	et	al.,	2018).	A	variety	of	survey	
methods	has	been	used	to	monitor	wild	boar	abundance	 including	
tracking	plots,	dung	counts,	arial	surveys,	counts	from	vehicles,	an-
imal	marking,	hunting	take	rates,	camera	traps,	and	plot	occupancy	
based	 on	 presence–	absence	 observations	 (Engeman	 et	 al.,	 2013). 
While	these	methods	aim	to	assess	population	size	or	estimate	pop-
ulation	trends	in	areas	of	known	wild	boar	activity,	it	would	also	be	
useful	to	be	able	to	estimate	and	predict	the	spatial	distribution	and	
abundance	of	wild	boar	 in	other	areas	where	 less	 is	 known	about	
their	occurrence	(Vergne	et	al.,	2020).

Identifying	predictors	of	wild	boar	presence	 (or	absence)	can	 in-
form	 the	development	of	models	 to	predict	 current,	 and	potentially	
future,	wild	boar	distributions	from	global	to	regional	scales	(Enetwild	
Consortium,	 Croft	 et	 al.,	2018;	 Rutten	 et	 al.,	2019).	 Environmental	
predictors	of	wild	boar	presence	 such	 as	habitat	 suitability,	 climate,	
topography,	vegetation,	and	snow	cover	have	been	used	to	model	wild	
boar	distributions	(Bosch	et	al.,	2014;	Vilaça	et	al.,	2014),	as	well	as	an-
thropogenic	predictors	such	as	human	disturbance	(Croft	et	al.,	2017). 
These	 predictions	 of	wild	 boar	 distributions	 can	 be	 used	 to	 inform	
the	development	of	transmission	models	for	disease	such	as	African	
swine	 fever	virus	 (ASFV)	 and	 foot-	and-	mouth	disease	virus	 (FMDV)	
(Bosch	et	al.,	2017;	Croft	et	al.,	2019;	Croft,	Massei	et	al.,	2020)	and	to	
identify	areas	of	spatial	overlap	between	wild	boar	and	domestic	pigs	

where	 interspecies	 transmission	 could	 occur	 (Enetwild	 Consortium	
et	 al.,	 2020,	 2021).	 Identifying	 areas	 of	 potential	 wildlife–	livestock	
transmission	(interfaces)	could	lead	to	more	efficient	disease	surveil-
lance,	control,	and	prevention	(Cross	et	al.,	2019;	Laguna	et	al.,	2021). 
These	data	can	be	used	along	with	livestock-	wild	boar	contact	rates	to	
model	potential	disease	spill-	over	events	and	evaluate	the	effective-
ness	of	mitigation	strategies	(Manlove	et	al.,	2019).

Predicting	 the	 presence	 or	 distribution	 of	 wildlife,	 such	 as	 wild	
boar,	 is	often	done	over	 large	distances	which	means	generalizations	
are	made	based	on	broad-	scale	data	(e.g.,	many	kilometers)	(Enetwild	
Consortium,	Croft	et	 al.,	2018),	which	may	not	 reflect	differences	 in	
habitat	 use	 over	 comparatively	 small	 areas.	 For	 example,	 in	 areas	
where	wild	boar	enter	areas	of	human	activity	and	come	into	contact	
with	people,	 large-	scale	generalizations	that	wild	boar	avoid	areas	of	
human	activity	may	not	usefully	inform	local	policy	(Castillo-	Contreras	
et	al.,	2018;	Dutton	et	al.,	2015).	Fine-	scale	data	have	been	used	to	
more	accurately	identify	areas	of	increased	wildlife	habitat	use,	partic-
ularly	in	areas	where	there	are	habitat	variations	over	small	distances,	
such	as	intertidal	habitats	(e.g.,	foraging	preferences	of	oystercatchers,	
Haematopus ostralegus	on	seashores;	Schwemmer	et	al.,	2016)	and	in	
human-	modified	landscapes	(e.g.,	abundance	of	red	foxes,	Vulpes vulpes 
on	farmland;	Kammerle	et	al.,	2018).	Fine-	scale	data	allows	for	more	
accurate	predictions	about	habitat	use	 (Barbosa	et	al.,	2010;	Gastón	
&	García-	Viñas,	2010;	McPherson	et	al.,	2006)	and	identifying	predic-
tors	in	areas	near	livestock	could	be	used	to	inform	knowledge	of	the	
risk	of	disease	transmission	from	wild	boar	to	livestock,	and	vice	versa	
(Triguero-	Ocaña	 et	 al.,	2021).	One	 challenge	 of	 analyzing	 such	 fine-	
scale	data	is	how	to	control	for	spatial	autocorrelation	when	sampling	
over	increasingly	smaller	areas	(Dormann,	2007;	Legendre,	1993).

The	aim	of	this	study	was	to	identify	fine-	scale	predictors	for	wild-
life	habitat	use	in	areas	with	high	levels	of	human	activity	where	there	
is	potential	for	wildlife	contact	with	livestock,	using	a	wild	boar	popu-
lation	the	Forest	of	Dean	in	southwest	England	as	an	example.	More	
broadly,	the	approach	could	be	used	to	map	habitat	use	of	other	wild-
life	species	in	similar	landscapes,	or	movement-	restricted,	isolated,	or	
fragmented	wildlife	populations	where	broad-	scale	data	are	not	avail-
able	or	not	 representative.	This	 information	could	be	used	 in	 future	
to	parameterize	mathematical	models	of	disease	transmission	within	
wildlife	populations	and	between	wildlife	and	livestock.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This	 study	 was	 conducted	 in	 and	 around	 the	 Forest	 of	 Dean	 in	
Gloucestershire,	United	Kingdom,	between	the	Severn	and	Wye	riv-
ers	on	the	southern	end	of	the	English–	Welsh	border	(Figure 1). The 
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Forest	of	Dean	 is	a	popular	tourist	destination	and	hosts	the	 larg-
est	population	of	wild	boar	in	England,	estimated	at	1172	individuals	
(95%	confidence	interval:	885–	1552)	in	2019	(Gill	&	Waeber,	2019). 
The	forest	comprises	75 km2	of	a	mixture	of	broadleaved	and	conif-
erous	woodland	managed	by	Forestry	England	who	also	manage	the	
wild	boar	population	through	year-	round	culling.	Sheep	are	free	to	
roam	freely	within	the	Forest	under	Common	Law.	The	surrounding	
landscape	is	predominantly	arable,	pastures	and	smaller	woodlands	
and	the	decision	to	manage	wild	boar	rests	with	individual	landown-
ers	and	 local	communities,	and	 there	 is	no	 requirement	 to	control	
wild	boar.	This	study	covered	an	area	encompassing	the	forest	and	
extending	 to	 five	kilometers	outside	 the	Forest	of	Dean	statutory	
boundary	(Figure 1).

2.2  |  Data collection

Twelve	transect	bearings	radiating	outward	from	the	central	point	
of	the	Forest	of	Dean	(51.80°N,	2.53°W)	were	selected	by	first	di-
viding	 the	 forest	 into	12	 equal	 30-	degree	 segments	 (from	000	 to	
029	degrees,	030	to	059	degrees,	etc.),	and	then	one	bearing	within	
each	of	these	segments	was	randomly	selected.	This	systematic	ap-
proach	ensured	all	regions	of	the	forest	were	sampled.	As	it	was	not	
possible	to	walk	straight	along	the	exact	bearing	of	each	transect,	
public	 paths	 and	 roads	 that	 most	 closely	 followed	 each	 transect	
bearing	were	used.	These	were	identified	using	the	ViewRanger	app	
(Augmentra	Ltd,	Cambridge,	UK).	Transects	started	from	3	km	inside	
the	statutory	forest	boundary	and	ended	5	km	outside	the	boundary	
(Figure 1).

One	transect	per	day	was	walked	starting	at	sunrise,	by	the	same	
person	 in	October	2019	and	again	 in	March	2020.	Location	track-
ing	in	the	ViewRanger	app	recorded	regular	GPS	coordinates	of	the	
surveyor,	the	distance	traveled	and	the	time,	automatically,	allowing	

the	 route	 taken	 and	 the	 time	 at	 each	 location	 to	be	documented.	
While	walking,	paths,	roads,	and	verges	within	approximately	a	5-	m	
line	of	sight	were	scanned	visually	for	wild	boar	signs.	Locations	of	
wild	boar	activity	signs	(footprints/tracks,	rooting,	rubbing,	wallows,	
and	boar	 sounds	 and	 sightings	 (Goulding,	2003)—	see	Table	S1	 for	
photos	and	descriptions)	were	recorded	using	the	ViewRanger	app	
on	a	mobile	phone.	Footprints	were	only	included	if	they	could	be	
distinguished	 from	 other	 ungulates	 present	 in	 the	 forest	 (fallow	
deer	(Dama dama),	roe	deer	(Capreolus capreolus),	muntjac	(Mutiacus 
reevesi),	 and	domestic	 sheep	 (Ovis aries))	 as	 described	 in	Table	 S1. 
Potential	 predictors	 of	 wild	 boar	 habitat	 use	 relating	 to	 habitat	
and	human	activity	were	 recorded	 in	 the	 same	way,	 regardless	of	
whether	wild	boar	signs	were	present	or	not—	see	Table	S2	for	pre-
dictors	and	definitions.	The	start	and	end	locations	of	activity	signs	
and	predictors	were	recorded	where	they	covered	large	areas,	either	
in	the	Viewranger	app	or	in	voice	recordings,	and	the	time	that	these	
voice	 recordings	 were	 made	 was	 used	 to	 determine	 the	 location	
along	the	transect.	Detailed	information	on	the	recording	protocol	
can	be	found	in	Tables	S1	and	S2.

2.3  |  Data analysis

Straight-	line	distances	between	all	 recorded	 locations	 (of	habitats,	
features,	and	wild	boar	signs)	and	the	center	of	the	forest	were	cal-
culated.	 Data	 were	 then	 collated	 into	 50 m	 segments	 for	 analysis	
(i.e.,	50 m-	spaced	concentric	rings	emanating	from	the	center	of	the	
Forest).	Autumn	 transects	were	 split	 into	1763	 segments	 (744	 in-
side	the	forest	boundary;	1019	outside	the	forest	boundary)	while	
Spring	transects	were	split	into	1749	segments	(740	inside	the	forest	
boundary;	1009	outside	the	forest	boundary),	due	to	locations	not	
being	 recorded	 in	 four	 segments	 in	 Spring	 and	 three	 segments	 in	
Autumn,	and	there	being	13	flooded	segments	at	the	end	of	transect	

F I G U R E  1 Map	of	the	randomly	
selected	line	transects	(red)	and	actual	
routes	walked	(blue)	across	the	Forest	of	
Dean	(green).	Transects	started	3	to	4	km	
inside	the	forest	boundary	(black)	and	
ended	up	to	5	km	outside	of	it.	Inset:	Map	
of	the	location	of	the	Forest	of	Dean	(red	
circle)	in	Great	Britain
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4	 in	Spring.	Where	the	walking	routes	overlapped,	 for	example,	 in	
transects	8	and	9,	data	from	only	one	transect	were	used	for	these	
parts,	decided	randomly	by	a	coin	toss.

Spatial	 autocorrelation	 between	 the	 residuals	 of	 logistic	 re-
gression	models	for	all	subsets	of	data	was	assessed	with	Moran's	
I	test	statistic	 in	the	DHARMa	package	(version	0.3.1)	 in	 (Hartig	&	
Hartig,	2020;	Kelejian	&	Prucha,	2001;	Moran,	1950)	 in	R	 (version	
4.0.0)	(R	Core	Team,	2020).

Initial	exploratory	analyses	of	potential	predictors	of	wild	boar	
activity	signs	were	done	using	univariable	spatial	logistic	regression,	
using	the	SPAMM	package	(version	3.3.0)	in	R	(Rousset,	2020). Odds 
ratios	(OR)	and	95%	confidence	intervals	(CI)	were	reported.	All	vari-
ables	were	included	in	the	final	multivariable	analysis	regardless	of	
performance	in	the	univariable	models.	Predictors	for	the	presence	
of	wild	boar	activity	signs	were	 identified	through	backward	step-
wise	 multivariable	 spatial	 logistic	 regression	 with	 repeated	 mea-
sures,	 using	 the	SPAMM	package	 (version	3.3.0).	Best	performing	
multivariable	models	were	selected	based	on	the	 inclusion	of	pre-
dictors	with	a	p-	value < .2	 and	by	AIC	due	 to	 the	 large	number	of	
sample	points	in	the	models.	Odds	ratios	(OR)	and	95%	confidence	
intervals	 (CI)	were	reported.	Data	collected	 inside	and	outside	the	
statutory	 forest	 boundary	 were	 analyzed	 separately	 due	 to	 the	
variation	 in	 habitat	 types	 and	 other	 predictors	 between	 the	 two	
regions.	 For	 example,	 some	predictors	 such	 as	 crops	were	 absent	
inside	the	Forest,	and	because	of	differences	in	management	of	wild	
boar	 between	 these	 areas.	 Spatial	 autocorrelation	was	 accounted	
for	 by	 including	 a	Matérn	 covariance	 function	 as	 a	 random	effect	
(Rousset	&	Ferdy,	2014).	Residual	diagnostics	of	the	spatial	logistic	
regression	models	were	visually	inspected	for	outliers	and	evaluated	
using	 DHARMA	 scaled	 residual	 plots.	 Multi-	collinearity	 of	 model	
predictors	was	 informed	by	VIF	using	the	Performance	package	 in	
R	(version	0.9.0).

3  |  RESULTS

3.1  |  Wild boar activity signs and predictors 
recorded

In	 Autumn,	 signs	 of	wild	 boar	 activity	were	 observed	 in	 561/744	
(75%)	 of	 transect	 segments	 inside	 the	 forest	 boundary,	 and	
132/1019	(13%)	of	transect	segments	outside	the	forest	boundary.	
In	Spring,	signs	of	wild	boar	activity	were	observed	in	615/740	(83%)	
of	 transect	 segments	 inside	 the	 forest	 boundary,	 and	 132/1009	
(13%)	of	transect	segments	outside	the	forest	boundary	(Figure 2). 
Rooting	was	the	most	commonly	recorded	sign	and	was	present	in	
97%	(1400/1440)	of	the	total	segments	with	wild	boar	activity,	fol-
lowed	by	footprints	(19%;	279/1440),	wallows	(3%;	43/1440),	fence	
damage	 (0.8%;	 11/1440),	 sightings	 (0.8%;	 8/1440),	 tree/post	 rub-
bing	(0.4%;	6/1440),	and	feces	(0.1%;	2/1440).	Wild	boars	were	di-
rectly	sighted	on	four	occasions	in	Autumn	2019	and	four	occasions	
in	Spring	2020.

Predictors	recorded	in	Spring	and	Autumn	are	shown	in	Table 1. 
The	most	frequently	recorded	habitat	type	was	forest	(52%	and	51%	
of	segments	 in	Autumn	and	Spring,	 respectively)	 followed	by	field	
(37%	and	36%)	and	residential	 (16%	and	17%).	Tarmac	roads	 (44%	
and	48%)	and	dirt	paths	(26%	and	27%)	were	the	most	common	track	
types.	All	predictors	showed	considerable	differences	in	frequency	
inside	and	outside	the	statutory	forest	boundary,	notably	livestock	
were	recorded	in	a	total	of	15	segments	inside	the	forest	boundary	
compared	 to	234	segments	outside,	and	crop	 fields	were	only	 re-
corded	in	segments	outside	the	forest	boundary	in	both	seasons.

The	 segments	 inside	 the	 statutory	 forest	 boundary	 contain-
ing	wild	boar	activity	 signs	 featured	 forest	and	scrubland	habitats	
(Figure 3).	The	majority	of	the	segments	with	wild	boar	activity	signs	
outside	the	forest	boundary	also	featured	forest	habitats,	although	
wild	boar	signs	were	also	recorded	in	field	and	residential	habitats	
within	2 km	of	 the	forest	boundary	 (Figure 3).	Segments	with	wild	
boar	activity	signs	more	than	2 km	from	the	forest	boundary	were	
recorded	in	two	north-	eastern	transects	that	re-	entered	the	statu-
tory	Forest	of	Dean	(Transects	1	and	2),	and	in	privately	owned	for-
ested	areas	to	the	south	and	west	of	the	Forest	of	Dean	(Transects	
6	and	7)	(Figures 2	and	3).

3.2  |  Spatial logistic regression analysis

Moran's	 I	 test	 statistic	 showed	 significant	 spatial	 autocorrelation	
between	 the	 residuals	 of	 multivariable	 logistic	 regression	 models	
for	all	subsets	of	data.	Spatial	correlation	was	close	to	zero	when	(a)	
distances	between	locations	approached	1	km	inside	the	forest,	and	
(b)	distances	between	locations	approached	5	km	outside	the	forest	
(Figure	S1).

Initial	 exploratory	univariable	 analysis	using	 all	 data	 suggested	
wild	boar	signs	were	more	likely	to	be	observed	in	spring	compared	
to	 autumn	 (OR:	 1.45;	 95%	CI:	 1.15,	 1.83).	 Univariable	models	 for	
spring	 and	 autumn	 separately	 showed	wild	 boar	 signs	were	more	
likely	to	be	observed	inside	than	outside	the	forest	boundary	in	both	
seasons	of	the	study	(autumn	OR:	5.74;	95%	CI:	1.30,	25.34;	spring	
OR:	6.32;	95%	CI:	1.84,	21.61).	Data	were	 therefore	separated	by	
both	 season	and	by	whether	observations	occurred	 inside	or	out-
side	the	forest	boundary.	Comparing	the	predictors	and	their	effect	
sizes	between	univariable	and	multivariable	models	(Figures	S2	and	
S3)	 indicated	 reasonable	 consistency	 between	 seasons	 and	 more	
variability	 for	 inside	and	outside	the	forest	boundary.	The	marked	
variation	between	the	presence	of	wild	boar	signs,	habitat	types,	and	
the	presence	of	 different	 predictors	 inside	 and	outside	 the	 forest	
boundary	meant	that	many	interactions	between	the	forest	bound-
ary	and	other	predictors	would	need	to	be	accounted	for.	Therefore,	
the	forest	boundary	was	not	included	as	a	variable	and	two	separate	
spatial	repeated	measures	logistic	regression	models,	for	wild	boar	
signs	inside	and	outside	the	forest	boundary,	were	developed.

Further	exploratory	univariable	 spatial	 logistic	 regression	anal-
yses	 of	 data	 stratified	 by	 forest	 boundary	 (Figure 4	 and	 Table 2) 



    |  5 of 12BACIGALUPO et al.

show	 that	wild	 boar	 signs	were	more	 likely	 to	 be	 seen	 inside	 the	
forest	 boundary	 in	 Spring	 (OR:	 1.91;	 95%	CI:	 1.41,	 2.59)	 but	 sea-
son	was	 not	 a	 significant	 predictor	 of	wild	 boar	 signs	 outside	 the	
forest	boundary.	Wild	boar	signs	were	more	likely	to	be	seen	in	for-
ested	segments	both	inside	(OR:	5.35;	95%	CI:	1.55,	18.46)	and	out-
side	the	statutory	 forest	boundary	 (OR:	2.63;	95%	CI:	1.06,	6.57).	
Distance	from	the	forest	boundary	was	allocated	a	negative	value	
inside	the	forest,	zero	at	the	boundary,	and	a	positive	value	outside	
of	the	forest.	Thus,	the	lowest	value	(−4	km)	occurred	at	the	center	
of	the	forest	near	where	the	transects	started,	and	the	highest	value	
(5	km)	occurred	outside	the	forest	at	the	end	of	the	transects	(e.g.,	
Figure 2b).	 Inside	 the	 forest,	wild	boar	signs	were	 less	 likely	 to	be	
seen	as	distance	from	the	center	of	the	forest	increased	(OR:	0.98	
per	50 m	distance	moved	from	center),	and	outside	the	forest	they	
were	less	likely	to	be	recorded	further	away	from	the	forest	bound-
ary	 (OR:	0.92	per	50 m	distance).	 Inside	the	forest,	wild	boar	signs	
were	more	likely	to	be	seen	in	segments	with	gravel	roads,	and	less	
likely	to	be	seen	in	segments	with	no	path	or	road	present.	Outside	

the	forest,	wild	boar	signs	were	more	likely	to	be	recorded	in	seg-
ments	with	recreational	parks	and	were	less	likely	to	be	recorded	in	
segments	with	livestock	and	dirt	paths.

Final	multivariable	analyses	(Figure 5	and	Table 3)	revealed	that	
inside	the	forest	boundary,	there	were	increased	odds	of	wild	boar	
activity	signs	in	Spring	compared	to	Autumn	(OR:	2.04;	95%	CI:	1.49,	
2.78)	but	season	did	not	appear	in	the	model	for	outside	the	forest.	
Forest	habitat	was	a	significant	predictor	of	wild	boar	signs	both	in-
side	(OR	5.33;	95%	CI:	1.41,	20.17)	and	outside	the	statutory	forest	
boundary	(OR:	5.79;	95%	CI:	2.07,	16.21).	Inside	the	forest	boundary,	
wild	 boar	 signs	were	more	 likely	 to	 be	 seen	 in	 transect	 segments	
containing	 litter	bins	 (OR:	2.04;	95%	CI:	0.50,	73.79).	Outside	 the	
forest	boundary,	wild	boar	signs	were	less	likely	to	be	seen	in	seg-
ments	where	livestock	were	recorded	(OR:	0.12;	95%	CI:	0.04,	0.38),	
but	more	likely	to	be	seen	in	segments	featuring	parks	(OR:	21.83;	
95%	CI:	2.18,	218.43).	Aside	from	the	comparing	the	number	of	wild	
boar	 signs	 inside	 and	outside	 the	 forest	boundary,	 the	 size	of	 the	
differences	 in	 habitat	 preferences	 between	 the	 two	 regions	were	

F I G U R E  2 Presence	of	wild	boar	signs	
inside	and	outside	the	Forest	of	Dean.	
(a)	Distribution	of	wild	boar	activity	signs	
along	transects	(dark	gray)	in	autumn	
(red)	and	spring	(blue)	with	jitter;	(b)	
Distribution	of	50 m-	segments	with	(red)	
and	without	(gray)	wild	boar	activity	signs	
in	terms	of	distance	from	the	boundary	
of	the	forest	(green	line),	in	autumn	and	
spring,	with	vertical	jitter
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difficult	to	quantify	since	some	predictors	that	remained	in	the	final	
model	for	 inside	the	forest	boundary	were	absent	from	the	model	
for	outside	the	forest	boundary,	and	vice	versa,	and	predictors	that	
remained	 in	 both	models	 appeared	 to	 overlap	 in	 their	 confidence	
intervals.

The	 residuals	 of	 both	 multivariable	 spatial	 logistic	 regression	
models	were	 standardized	 to	values	between	0	and	1	 (Figure	S4). 
Residuals	 appeared	 randomly	 distributed	 with	 no	 obvious	 disper-
sion	in	the	Q-	Q	plots	and	good	agreement	between	observed	and	
expected	values.	There	was	low	collinearity	between	predictors	for	
both	models.

4  |  DISCUSSION

4.1  |  The need for fine- scale data of species habitat 
use

The	logistic	regression	models	developed	in	this	study	are	based	on	
fine-	scale	observations	of	wild	boar	field	signs	to	infer	habitat	use	
data	 at	 a	 50-	m	 resolution.	 Other	 models	 have	 used	 environmen-
tal	 factors	 to	 predict	 wild	 boar	 data	 sampled	 over	 comparatively	

larger	areas,	for	example,	regional	models	developed	for	regions	of	
Spain	and	Japan	used	wild	boar	presence–	absence	data	at	around	
150	 and	 25 km2	 resolutions,	 respectively	 (Acevedo	 et	 al.,	 2011; 
Honda,	2009).	This	more	coarse	data	 is	useful	where	environmen-
tal	conditions	such	as	climate	and	 topography	vary	over	 large	dis-
tances,	but	for	isolated	populations	mostly	confined	to	a	relatively	
small	region,	or	where	the	area	of	interest	is	a	comparatively	small	
geographical	range	such	as	at	human–	wildlife	interfaces,	fine-	scale	
data	may	be	more	suitable	since	some	environmental	factors	may	be	
fairly	homogenous	across	the	area	and	wildlife	may	behave	differ-
ently	in	these	areas.	Furthermore,	in	areas	with	high	levels	of	human	
activity,	habitat	suitability	and	anthropogenic	features	show	strong	
variation	over	small	distances,	which	can	only	be	accounted	for	by	
finer-	scale	data.	Wild	boar	in	the	Forest	of	Dean	are	in	close	proxim-
ity	to	areas	of	human	activity	and	enter	surrounding	towns	and	vil-
lages	to	forage	(Dutton	et	al.,	2015),	and	this	study	identified	signs	of	
wild	boar	habitat	use	in	these	areas	(Figure 3).	Therefore,	wild	boar	
behavior	 in	 human-	dominated	 landscapes	may	not	 be	 representa-
tive	of	behaviors	seen	in	other	wild	boar	populations	or	predicted	in	
other	models.	Our	finding	that	forest-	type	habitat	is	a	consistently	
significant	predictor	of	wild	boar	habitat	use,	agrees	with	findings	of	
other	distribution	models	(Enetwild	Consortium,	Croft	et	al.,	2018). 

TA B L E  1 Number	of	transect	segments	containing	potential	predictors	of	wild	boar	habitat	use,	stratified	by	season	and	whether	inside	
or	outside	the	statutory	boundary	of	the	Forest	of	Dean

Predictor

Autumn Spring

Inside forest Outside forest Total (%) Inside forest Outside forest Total (%)

Habitat

Forest 717 208 925	(52) 711 182 893	(51)

Scrubland 51 21 72	(4) 35 9 44	(3)

Residential 29 250 279	(16) 32 272 304	(17)

Field 28 632 660	(37) 29 608 637	(36)

Other	habitat 6 38 44	(2) 6 37 43	(2)

Track

No	path 54 208 262	(15) 31 186 217	(12)

Dirt	path 302 160 462	(26) 333 136 469	(27)

Dirt	road 58 24 82	(5) 39 29 68	(4)

Gravel	path 40 23 63	(4) 49 24 73	(4)

Gravel	road 171 110 281	(16) 148 114 262	(15)

Tarmac	path 10 10 20	(1) 14 10 24	(1)

Tarmac	road 203 581 784	(44) 221 613 834	(48)

Feature

Livestock 9 147 156	(9) 6 87 93	(5)

Water 25 5 30	(2) 16 6 22	(1)

Crops 0 80 80	(5) 0 25 25	(1)

Litter	bin 3 18 21	(1) 3 21 24	(1)

Park 3 13 16	(1) 2 13 15	(1)

Building	outside	of	a	
residential	habitat

54 166 220	(12) 45 160 205	(12)
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F I G U R E  3 Wild	boar	signs	by	habitat	type.	Distribution	of	50 m-	segments	with	(red)	and	without	(gray)	wild	boar	activity	signs	in	each	
type	of	habitat	in	autumn,	in	terms	of	distance	from	the	boundary	of	the	forest	(green	line)

F I G U R E  4 Univariable	spatial	analysis	results	(log	odds	ratios	and	95%	confidence	intervals)	for	predictors	of	wild	boar	activity	signs	
inside	and	outside	the	forest	boundary,	estimated	using	a	repeated	measures	model.	Predictors	with	p < .05	are	shown	in	red.	Data	are	
unavailable	for	three	predictors	where	numerical	issues	arose	due	to	separation	among	the	sample	points
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However,	 by	 using	 fine-	scale	 field	 observations	 along	 transects,	
this	study	has	shown	that	additional	predictors	of	wild	boar	habitat	
use	 can	 be	 identified	 that	may	 be	 particular	 to	 human-	dominated	
landscapes,	such	as	livestock,	litter	bins,	gravel	paths	and	roads,	and	
recreational	parks.	Findings	such	as	these	could	help	target	further	
monitoring	of	wild	boar	populations	in	areas	surrounding	the	Forest	
of	Dean	and	in	other	places	where	wild	boar	occur	in	areas	of	high	
human	activity	and	could	inform	more	precise	models	of	wild	boar	
habitat	use	across	these	regions.

4.2  |  Informing further wild boar monitoring

Wild	boar	 in	 the	Forest	of	Dean	are	currently	a	 relatively	 isolated	
population	due	to	being	surrounded	by	main	roads,	the	rivers	Severn	
and	Wye,	and	there	is	anecdotal	evidence	of	private	hunting	pres-
sure	 in	areas	surrounding	 the	 forest	 (Croft,	Franzetti	et	al.,	2020). 
This	relative	 isolation	means	that	wild	boar	densities	 in	the	Forest	
of	Dean	are	high;	15	per	km2	compared	with	European	populations	
density	where	estimates	over	2	per	km2	 could	be	considered	high	
(Gill	&	Waeber,	2019;	Pittiglio	et	al.,	2018).	This,	as	well	as	culling	

pressure	from	Forestry	England,	might	encourage	wild	boar	to	dis-
perse	and	their	distribution	to	expand,	and	there	are	numerous	areas	
outside	the	Forest	of	Dean	that	could	form	suitable	wild	boar	habi-
tat.	Such	areas	could	be	surveyed	to	monitor	this	expansion	by	look-
ing	 for	 predictors	 of	 habitat	 use,	 for	 example,	 forest-	type	 habitat	
and	 areas	 close	 to	 forest	 boundaries,	 and	 areas	with	 recreational	
parks	and	litter	bins.	Surveying	forest-	type	areas	in	Spring	may	in-
crease	the	likelihood	of	detecting	wild	boar	presence	in	new	areas.	
Additionally,	predictors	of	decreased	likelihood	of	wild	boar	habitat	
use	could	be	surveyed	less	or	not	at	all,	such	as	areas	inside	forests	
with	no	paths.

The	 spatial	 analysis	 incorporated	 into	 these	 models	 revealed	
correlation	between	locations	was	near	zero	when	approaching	dis-
tances	of	1	km	inside	the	Forest	of	Dean	boundary,	and	at	distances	
of	5	km	outside	the	forest	boundary.	This	suggests	that	monitoring	
wild	boar	using	transects	spaced	these	distances	apart	could	achieve	
an	adequate	resolution	of	the	likelihood	of	wild	boar	habitat	use	in	
that	area	(and	that	closer	transects	are	unnecessary).	Understanding	
where	likely	areas	of	wild	boar	expansion	are	likely	to	be,	and	con-
firming	wild	boar	habitat	use	in	those	areas,	is	an	important	step	in	
order	to	assess	the	disease	risk	to	and	from	livestock.

TA B L E  2 Univariable	spatial	analysis	showing	odds	ratios	and	95%	confidence	intervals	for	predictors	of	wild	boar	activity	signs	inside	
and	outside	the	forest	using	a	repeated	measures	model

Predictor

Inside forest Outside forest

Odds ratio (95% CI) p Value Odds ratio (95% CI) p Value

Habitat Forest 5.35 (1.55, 18.46) <.01 2.63 (1.06, 6.57) .04

Scrubland 2.13	(0.65,	7.01) .21 0.40	(0.08,	2.00) .27

Residential 0.44	(0.16,	1.22) .11 0.92	(0.34,	2.46) .87

Field 0.51	(0.19,	1.33) .17 0.62	(0.28,	1.38) .24

Other	habitat 0.84	(0.18,	3.96) .83

Track No path 0.35 (0.15, 0.77) .01 2.77	(0.82,	9.39) .10

Dirt path 1.39	(0.81,	2.36) .23 0.38 (0.15, 0.95) .04

Dirt	road 1.24	(0.45,	3.38) .68 1.40	(0.11,	17.56) .79

Gravel	path 3.54	(0.88,	14.22) .07 0.68	(0.10,	4.52) .69

Gravel road 3.50 (1.58, 7.76) <.01 3.40	(0.88,	13.22) .08

Tarmac	path 0.54	(0.12,	2.50) .43 1.06	(0.11,	10.01) .96

Tarmac	road 0.79	(0.42,	1.48) .46 1.32	(0.51,	3.40) .57

Feature Livestock 0.73	(0.19,	2.88) .65 0.15 (0.05, 0.46) <.001

Crops 0.65	(0.14,	3.09) .59

Water 0.97	(0.31,	2.99) .95

Litter	bin 7.97	(0.67,	95.09) .10 2.37	(0.52,	10.79) .26

Park 1.51	(0.18,	12.64) .71 26.93 (2.17, 333.81) .01

Buildinga 0.91	(0.44,	1.87) .80 0.52	(0.21,	1.31) .17

Distance from forest 
boundary

0.98 (0.96, 0.99) <.01 0.92 (0.87, 0.98) .01

Season 1.91 (1.41, 2.59) <.001 0.97	(0.66,	1.41) .87

Note: Predictors with p < .05	are	shown	in	bold.	Data	are	missing	for	some	predictors	that	caused	numerical	issues	due	to	separation	among	the	
sample	points	(shaded	gray	boxes).
aSpecifically,	a	building	located	outside	of	a	residential	habitat.
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4.3  |  Informing wild boar distribution models

Fine-	scale	 data	 are	 needed	 to	model	wildlife	 habitat	 use	 in	 areas	
with	strong	environmental	gradients	(Schwemmer	et	al.,	2016)	and	
is	important	in	the	Forest	of	Dean	due	to	the	variation	in	landscape	
over	relatively	short	distances,	the	limited	distribution	of	wild	boar,	
and	 the	high	 levels	of	human	activity	and	anthropogenic	 features.	
We	have	shown	that	fine-	scale	data	can	be	useful	to	identify	predic-
tors	of	wild	boar	habitat	use	 in	 this	area,	and	the	effects	of	 these	
predictors	could	be	incorporated	into	wild	boar	distribution	models.	
The	incorporation	of	models	based	on	fine-	scale	data	into	existing	
broad-	scale	wild	 boar	 distribution	models	may	 increase	 their	 pre-
cision	and	go	some	way	to	addressing	the	uncertainty	that	 is	seen	
where	there	is	strong	landscape	variation	on	local	scales	(McInerny	
&	Purves,	2011).	Our	 finding	 that	 anthropogenic	 features	 such	 as	
litter	 bins,	 parks,	 and	 livestock	 could	 be	 important	 predictors	 of	
wild	boar	activity	in	human-	dominated	landscapes	could	be	used	to	
model	wild	boar	habitat	use	at	the	interface	where	human	activity	
encroaches	into	wild	boar	habitat.	This	information	could	be	further	
used	to	parameterize	models	of	disease	transmission	between	wild	
boar	and	livestock.	However,	collection	of	such	high-	resolution	data	
and	 fine-	scale	habitat	use	data	 is	 time-	consuming	and	so	 focusing	
the	 collection	of	 this	 data	 to	 areas	of	 high	broad-	scale	model	 un-
certainty,	and	the	continued	use	of	coarse	data	to	model	wild	boar	
distributions	 across	 large	 regions,	would	be	necessary	 to	 increase	
efficiency.

This	study	has	some	limitations.	The	use	of	transects	and	field	
observations	mean	data	were	recorded	at	only	a	snapshot	 in	time,	
and	 repeated	 studies	would	be	needed	 to	 identify	 variations	over	
longer	 time	periods.	Wild	 boar	 activity	 signs	 indicate	only	 habitat	
use	of	wild	boar,	not	non-	use	which	is	important	to	establish	when	
monitoring	wild	boar	 in	new	areas	of	 introduction;	a	 lack	of	activ-
ity	signs	does	not	necessarily	mean	a	lack	of	wild	boar,	particularly	
in	 areas	where	 signs	may	be	hard	 to	detect,	 such	as	on	 tarmac	 in	
residential	 areas.	 In	 these	 areas,	 it	 may	 be	 appropriate	 to	 collect	
presence	data	 in	other	ways	 such	as	by	direct	observation,	public	
sightings,	or	camera	traps.

4.4  |  Applications of fine- scale habitat use data to 
other systems

The	approach	used	in	this	study	is	not	limited	to	wild	boar	popula-
tions.	 It	 is	 applicable	 to	 other	 systems	where	 fine-	scale	 data	may	
more	precisely	represent	wildlife	distributions	on	a	local	scale,	such	as	
movement-	restricted,	isolated,	or	fragmented	populations.	Potential	
systems	 include	 small	 populations	 concentrated	 over	 smaller	 dis-
tances,	for	example,	endangered	populations	of	babirusa	(Babyrousa 
spp.)	 occupying	 smaller	 and	 smaller	 habitats	 (Macdonald,	 2017),	
or	populations	over	small	 land	areas	such	as	 invasive	alien	species	
on	 islands	 (Russell	 et	 al.,	 2017),	 or	 species	 where	 small	 numbers	
have	been	introduced	and	have	not	yet	expanded	such	as	Eurasian	

F I G U R E  5 Multivariable	spatial	analysis	results	(log	odds	ratios	and	95%	confidence	intervals)	for	predictors	of	wild	boar	activity	signs	
with p-	values-	values	< .2	inside	and	outside	the	forest	boundary,	estimated	using	a	repeated	measures	model.	Predictors	with	p < .05	are	
shown	in	red
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beaver	 reintroduction	 to	 parts	 of	 Europe	 (Smeraldo	 et	 al.,	 2017). 
Importantly,	 they	are	applicable	 to	other	 interfaces	where	wildlife	
and	human	activities	overlap,	in	particular	around	livestock	farming.	
While	the	methods	used	here	are	more	suitable	for	wildlife	species	
and	habitat	types	for	which	detection	by	direct	sightings	or	indirect	
field	activity	signs	is	favorable,	habitat	use	data	collected	by	other	
means	such	as	camera	 traps	or	arial	 surveys,	or	global	positioning	
system	collars,	could	also	be	used	to	 identify	predictors	of	habitat	
use,	as	long	as	data	are	collected	on	a	sufficiently	fine-	scale	relative	
to	the	study	area	of	interest.

As	human	activity	and	particularly	livestock	farming	further	ex-
pands	into	wildlife	habitats,	predicting	the	presence	of	wildlife	spe-
cies	such	as	wild	boar	will	become	increasingly	important	to	target	
population	monitoring	and	disease	surveillance	efforts.	This	 study	
demonstrates	techniques	to	establish	predictors	of	wildlife	habitat	
use	at	a	fine	resolution	using	wild	boar	as	an	example.	These	meth-
ods	could	be	applied	to	map	habitat	use	of	other	wildlife	species	in	
similar	landscapes,	or	movement-	restricted,	isolated,	or	fragmented	
wildlife	populations	where	broad-	scale	data	are	not	available	or	not	
representative.
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TA B L E  3 Multivariable	spatial	analysis	showing	odds	ratios	and	95%	confidence	intervals	for	predictors	of	wild	boar	activity	signs	with	
p-	values < .2	inside	and	outside	the	forest	using	a	repeated	measures	model

Predictor

Inside forest Outside forest

Odds ratio (95% CI) p Value Odds ratio (95% CI) p Value

Habitat Forest 5.33 (1.41, 20.17) .01 5.79 (2.07, 16.21) <.001

Scrubland 3.33	(0.96,	11.61) .06

Field 0.52	(0.19,	1.40) .19

Track No path 0.40 (0.17, 0.92) .03 3.54 (1.02, 12.33) .05

Dirt	path 0.35	(0.12,	1.01) .05

Gravel	path 3.62	(0.87,	15.05) .08

Gravel road 3.17 (1.49, 6.74) <.01 5.70 (1.45, 22.30) .01

Feature Livestock 0.12 (0.04, 0.38) <.001

Litter	bin 6.05	(0.50,	73.79) .16

Park 21.83 (2.18, 218.43) <.01

Distance from forest boundary 0.98 (0.97, 0.99) <.01 0.92 (0.87, 0.97) <.01

Season 2.04 (1.49, 2.78) <.001

Note: Predictors with p < .05	in	the	final	model	are	shown	in	bold.	Data	are	missing	for	predictors	with	p	>0.2	that	were	excluded	from	the	model	
(shaded	gray	boxes).
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