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Abstract
1.	 Predicting the likelihood of wildlife presence at potential wildlife–livestock in-
terfaces is challenging. These interfaces are usually relatively small geographical 
areas where landscapes show large variation over small distances. Models of 
wildlife distribution based on coarse data over wide geographical ranges may 
not be representative of these interfaces. High-resolution data can help identify 
fine-scale predictors of wildlife habitat use at a local scale and provide more 
accurate predictions of species habitat use. These data may be used to inform 
knowledge of interface risks, such as disease transmission between wildlife and 
livestock, or human–wildlife conflict.

2.	 This study uses fine-scale habitat use data from wild boar (Sus scrofa) based on 
activity signs and direct field observations in and around the Forest of Dean in 
Gloucestershire, England. Spatial logistic regression models fitted using a variant 
of penalized quasi-likelihood were used to identify habitat-based and anthropo-
genic predictors of wild boar signs.

3.	 Our models showed that within the Forest of Dean, wild boar signs were more 
likely to be seen in spring, in forest-type habitats, closer to the center of the 
forest and near litter bins. In the area surrounding the Forest of Dean, wild boar 
signs were more likely to be seen in forest-type habitats and near recreational 
parks and less likely to be seen near livestock.

4.	 This approach shows that wild boar habitat use can be predicted using fine-
scale data over comparatively small areas and in human-dominated landscapes, 
while taking account of the spatial correlation from other nearby fine-scale data-
points. The methods we use could be applied to map habitat use of other wildlife 
species in similar landscapes, or of movement-restricted, isolated, or fragmented 
wildlife populations.

K E Y W O R D S
fine-scale predictors, spatial logistic regression, species distribution, wild boar, wildlife habitat 
use, wildlife–livestock interface

http://www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0003-1491-2476
https://orcid.org/0000-0003-3845-3016
https://orcid.org/0000-0003-0538-4173
https://orcid.org/0000-0003-0709-8066
http://creativecommons.org/licenses/by/4.0/
mailto:sbacigalupo@rvc.ac.uk


2 of 12  |     BACIGALUPO et al.

1  |  INTRODUC TION

Many infectious diseases pass between livestock and wildlife, in 
both directions. The westerly spread of African swine fever (affect-
ing domestic pigs and wild boar, Sus scrofa) across Eastern Europe 
since 2007 (Sanchez-Vizcaino et al., 2013) and the seasonal occur-
rence of avian influenza (affecting poultry and wild birds) (European 
Food Safety Authority et al.,  2020) are two recent examples. 
Focus is usually placed on the risks to livestock from wildlife res-
ervoirs of disease, with much less consideration given to the risks 
that livestock may pose to wildlife (Beauvais et al., 2019; Bozzuto 
et al., 2020; Wiethoelter et al., 2015). Wild boar are one of the most 
widely distributed mammals globally since being introduced in the 
16th century onward to continents outside of their native Eurasia 
(Long, 2003; Massei et al., 2011; Massei & Genov, 2004). They are 
susceptible to diseases of major economic importance to the live-
stock industry such as African swine fever, foot-and-mouth disease, 
and bovine tuberculosis (Dixon et al., 2019; Grubman & Baxt, 2004; 
Naranjo et al., 2008). Monitoring wild boar distributions and sam-
pling their populations are necessary in order to better understand, 
detect, manage, and even predict the occurrence of such diseases.

Monitoring elusive wildlife species such as wild boar is chal-
lenging owing to their wide geographic spread (Long,  2003), the 
resources and personnel needed (Engeman et al., 2013), their wari-
ness of humans and limitations in the available methods of detec-
tion (Enetwild Consortium, Keuling et al., 2018). A variety of survey 
methods has been used to monitor wild boar abundance including 
tracking plots, dung counts, arial surveys, counts from vehicles, an-
imal marking, hunting take rates, camera traps, and plot occupancy 
based on presence–absence observations (Engeman et al.,  2013). 
While these methods aim to assess population size or estimate pop-
ulation trends in areas of known wild boar activity, it would also be 
useful to be able to estimate and predict the spatial distribution and 
abundance of wild boar in other areas where less is known about 
their occurrence (Vergne et al., 2020).

Identifying predictors of wild boar presence (or absence) can in-
form the development of models to predict current, and potentially 
future, wild boar distributions from global to regional scales (Enetwild 
Consortium, Croft et al., 2018; Rutten et al., 2019). Environmental 
predictors of wild boar presence such as habitat suitability, climate, 
topography, vegetation, and snow cover have been used to model wild 
boar distributions (Bosch et al., 2014; Vilaça et al., 2014), as well as an-
thropogenic predictors such as human disturbance (Croft et al., 2017). 
These predictions of wild boar distributions can be used to inform 
the development of transmission models for disease such as African 
swine fever virus (ASFV) and foot-and-mouth disease virus (FMDV) 
(Bosch et al., 2017; Croft et al., 2019; Croft, Massei et al., 2020) and to 
identify areas of spatial overlap between wild boar and domestic pigs 

where interspecies transmission could occur (Enetwild Consortium 
et al.,  2020, 2021). Identifying areas of potential wildlife–livestock 
transmission (interfaces) could lead to more efficient disease surveil-
lance, control, and prevention (Cross et al., 2019; Laguna et al., 2021). 
These data can be used along with livestock-wild boar contact rates to 
model potential disease spill-over events and evaluate the effective-
ness of mitigation strategies (Manlove et al., 2019).

Predicting the presence or distribution of wildlife, such as wild 
boar, is often done over large distances which means generalizations 
are made based on broad-scale data (e.g., many kilometers) (Enetwild 
Consortium, Croft et al., 2018), which may not reflect differences in 
habitat use over comparatively small areas. For example, in areas 
where wild boar enter areas of human activity and come into contact 
with people, large-scale generalizations that wild boar avoid areas of 
human activity may not usefully inform local policy (Castillo-Contreras 
et al., 2018; Dutton et al., 2015). Fine-scale data have been used to 
more accurately identify areas of increased wildlife habitat use, partic-
ularly in areas where there are habitat variations over small distances, 
such as intertidal habitats (e.g., foraging preferences of oystercatchers, 
Haematopus ostralegus on seashores; Schwemmer et al., 2016) and in 
human-modified landscapes (e.g., abundance of red foxes, Vulpes vulpes 
on farmland; Kammerle et al., 2018). Fine-scale data allows for more 
accurate predictions about habitat use (Barbosa et al., 2010; Gastón 
& García-Viñas, 2010; McPherson et al., 2006) and identifying predic-
tors in areas near livestock could be used to inform knowledge of the 
risk of disease transmission from wild boar to livestock, and vice versa 
(Triguero-Ocaña et al., 2021). One challenge of analyzing such fine-
scale data is how to control for spatial autocorrelation when sampling 
over increasingly smaller areas (Dormann, 2007; Legendre, 1993).

The aim of this study was to identify fine-scale predictors for wild-
life habitat use in areas with high levels of human activity where there 
is potential for wildlife contact with livestock, using a wild boar popu-
lation the Forest of Dean in southwest England as an example. More 
broadly, the approach could be used to map habitat use of other wild-
life species in similar landscapes, or movement-restricted, isolated, or 
fragmented wildlife populations where broad-scale data are not avail-
able or not representative. This information could be used in future 
to parameterize mathematical models of disease transmission within 
wildlife populations and between wildlife and livestock.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This study was conducted in and around the Forest of Dean in 
Gloucestershire, United Kingdom, between the Severn and Wye riv-
ers on the southern end of the English–Welsh border (Figure 1). The 
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Forest of Dean is a popular tourist destination and hosts the larg-
est population of wild boar in England, estimated at 1172 individuals 
(95% confidence interval: 885–1552) in 2019 (Gill & Waeber, 2019). 
The forest comprises 75 km2 of a mixture of broadleaved and conif-
erous woodland managed by Forestry England who also manage the 
wild boar population through year-round culling. Sheep are free to 
roam freely within the Forest under Common Law. The surrounding 
landscape is predominantly arable, pastures and smaller woodlands 
and the decision to manage wild boar rests with individual landown-
ers and local communities, and there is no requirement to control 
wild boar. This study covered an area encompassing the forest and 
extending to five kilometers outside the Forest of Dean statutory 
boundary (Figure 1).

2.2  |  Data collection

Twelve transect bearings radiating outward from the central point 
of the Forest of Dean (51.80°N, 2.53°W) were selected by first di-
viding the forest into 12 equal 30-degree segments (from 000 to 
029 degrees, 030 to 059 degrees, etc.), and then one bearing within 
each of these segments was randomly selected. This systematic ap-
proach ensured all regions of the forest were sampled. As it was not 
possible to walk straight along the exact bearing of each transect, 
public paths and roads that most closely followed each transect 
bearing were used. These were identified using the ViewRanger app 
(Augmentra Ltd, Cambridge, UK). Transects started from 3 km inside 
the statutory forest boundary and ended 5 km outside the boundary 
(Figure 1).

One transect per day was walked starting at sunrise, by the same 
person in October 2019 and again in March 2020. Location track-
ing in the ViewRanger app recorded regular GPS coordinates of the 
surveyor, the distance traveled and the time, automatically, allowing 

the route taken and the time at each location to be documented. 
While walking, paths, roads, and verges within approximately a 5-m 
line of sight were scanned visually for wild boar signs. Locations of 
wild boar activity signs (footprints/tracks, rooting, rubbing, wallows, 
and boar sounds and sightings (Goulding, 2003)—see Table S1 for 
photos and descriptions) were recorded using the ViewRanger app 
on a mobile phone. Footprints were only included if they could be 
distinguished from other ungulates present in the forest (fallow 
deer (Dama dama), roe deer (Capreolus capreolus), muntjac (Mutiacus 
reevesi), and domestic sheep (Ovis aries)) as described in Table  S1. 
Potential predictors of wild boar habitat use relating to habitat 
and human activity were recorded in the same way, regardless of 
whether wild boar signs were present or not—see Table S2 for pre-
dictors and definitions. The start and end locations of activity signs 
and predictors were recorded where they covered large areas, either 
in the Viewranger app or in voice recordings, and the time that these 
voice recordings were made was used to determine the location 
along the transect. Detailed information on the recording protocol 
can be found in Tables S1 and S2.

2.3  |  Data analysis

Straight-line distances between all recorded locations (of habitats, 
features, and wild boar signs) and the center of the forest were cal-
culated. Data were then collated into 50 m segments for analysis 
(i.e., 50 m-spaced concentric rings emanating from the center of the 
Forest). Autumn transects were split into 1763 segments (744 in-
side the forest boundary; 1019 outside the forest boundary) while 
Spring transects were split into 1749 segments (740 inside the forest 
boundary; 1009 outside the forest boundary), due to locations not 
being recorded in four segments in Spring and three segments in 
Autumn, and there being 13 flooded segments at the end of transect 

F I G U R E  1 Map of the randomly 
selected line transects (red) and actual 
routes walked (blue) across the Forest of 
Dean (green). Transects started 3 to 4 km 
inside the forest boundary (black) and 
ended up to 5 km outside of it. Inset: Map 
of the location of the Forest of Dean (red 
circle) in Great Britain
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4 in Spring. Where the walking routes overlapped, for example, in 
transects 8 and 9, data from only one transect were used for these 
parts, decided randomly by a coin toss.

Spatial autocorrelation between the residuals of logistic re-
gression models for all subsets of data was assessed with Moran's 
I test statistic in the DHARMa package (version 0.3.1) in (Hartig & 
Hartig, 2020; Kelejian & Prucha, 2001; Moran, 1950) in R (version 
4.0.0) (R Core Team, 2020).

Initial exploratory analyses of potential predictors of wild boar 
activity signs were done using univariable spatial logistic regression, 
using the SPAMM package (version 3.3.0) in R (Rousset, 2020). Odds 
ratios (OR) and 95% confidence intervals (CI) were reported. All vari-
ables were included in the final multivariable analysis regardless of 
performance in the univariable models. Predictors for the presence 
of wild boar activity signs were identified through backward step-
wise multivariable spatial logistic regression with repeated mea-
sures, using the SPAMM package (version 3.3.0). Best performing 
multivariable models were selected based on the inclusion of pre-
dictors with a p-value < .2 and by AIC due to the large number of 
sample points in the models. Odds ratios (OR) and 95% confidence 
intervals (CI) were reported. Data collected inside and outside the 
statutory forest boundary were analyzed separately due to the 
variation in habitat types and other predictors between the two 
regions. For example, some predictors such as crops were absent 
inside the Forest, and because of differences in management of wild 
boar between these areas. Spatial autocorrelation was accounted 
for by including a Matérn covariance function as a random effect 
(Rousset & Ferdy, 2014). Residual diagnostics of the spatial logistic 
regression models were visually inspected for outliers and evaluated 
using DHARMA scaled residual plots. Multi-collinearity of model 
predictors was informed by VIF using the Performance package in 
R (version 0.9.0).

3  |  RESULTS

3.1  |  Wild boar activity signs and predictors 
recorded

In Autumn, signs of wild boar activity were observed in 561/744 
(75%) of transect segments inside the forest boundary, and 
132/1019 (13%) of transect segments outside the forest boundary. 
In Spring, signs of wild boar activity were observed in 615/740 (83%) 
of transect segments inside the forest boundary, and 132/1009 
(13%) of transect segments outside the forest boundary (Figure 2). 
Rooting was the most commonly recorded sign and was present in 
97% (1400/1440) of the total segments with wild boar activity, fol-
lowed by footprints (19%; 279/1440), wallows (3%; 43/1440), fence 
damage (0.8%; 11/1440), sightings (0.8%; 8/1440), tree/post rub-
bing (0.4%; 6/1440), and feces (0.1%; 2/1440). Wild boars were di-
rectly sighted on four occasions in Autumn 2019 and four occasions 
in Spring 2020.

Predictors recorded in Spring and Autumn are shown in Table 1. 
The most frequently recorded habitat type was forest (52% and 51% 
of segments in Autumn and Spring, respectively) followed by field 
(37% and 36%) and residential (16% and 17%). Tarmac roads (44% 
and 48%) and dirt paths (26% and 27%) were the most common track 
types. All predictors showed considerable differences in frequency 
inside and outside the statutory forest boundary, notably livestock 
were recorded in a total of 15 segments inside the forest boundary 
compared to 234 segments outside, and crop fields were only re-
corded in segments outside the forest boundary in both seasons.

The segments inside the statutory forest boundary contain-
ing wild boar activity signs featured forest and scrubland habitats 
(Figure 3). The majority of the segments with wild boar activity signs 
outside the forest boundary also featured forest habitats, although 
wild boar signs were also recorded in field and residential habitats 
within 2 km of the forest boundary (Figure 3). Segments with wild 
boar activity signs more than 2 km from the forest boundary were 
recorded in two north-eastern transects that re-entered the statu-
tory Forest of Dean (Transects 1 and 2), and in privately owned for-
ested areas to the south and west of the Forest of Dean (Transects 
6 and 7) (Figures 2 and 3).

3.2  |  Spatial logistic regression analysis

Moran's I test statistic showed significant spatial autocorrelation 
between the residuals of multivariable logistic regression models 
for all subsets of data. Spatial correlation was close to zero when (a) 
distances between locations approached 1 km inside the forest, and 
(b) distances between locations approached 5 km outside the forest 
(Figure S1).

Initial exploratory univariable analysis using all data suggested 
wild boar signs were more likely to be observed in spring compared 
to autumn (OR: 1.45; 95% CI: 1.15, 1.83). Univariable models for 
spring and autumn separately showed wild boar signs were more 
likely to be observed inside than outside the forest boundary in both 
seasons of the study (autumn OR: 5.74; 95% CI: 1.30, 25.34; spring 
OR: 6.32; 95% CI: 1.84, 21.61). Data were therefore separated by 
both season and by whether observations occurred inside or out-
side the forest boundary. Comparing the predictors and their effect 
sizes between univariable and multivariable models (Figures S2 and 
S3) indicated reasonable consistency between seasons and more 
variability for inside and outside the forest boundary. The marked 
variation between the presence of wild boar signs, habitat types, and 
the presence of different predictors inside and outside the forest 
boundary meant that many interactions between the forest bound-
ary and other predictors would need to be accounted for. Therefore, 
the forest boundary was not included as a variable and two separate 
spatial repeated measures logistic regression models, for wild boar 
signs inside and outside the forest boundary, were developed.

Further exploratory univariable spatial logistic regression anal-
yses of data stratified by forest boundary (Figure  4 and Table  2) 
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show that wild boar signs were more likely to be seen inside the 
forest boundary in Spring (OR: 1.91; 95% CI: 1.41, 2.59) but sea-
son was not a significant predictor of wild boar signs outside the 
forest boundary. Wild boar signs were more likely to be seen in for-
ested segments both inside (OR: 5.35; 95% CI: 1.55, 18.46) and out-
side the statutory forest boundary (OR: 2.63; 95% CI: 1.06, 6.57). 
Distance from the forest boundary was allocated a negative value 
inside the forest, zero at the boundary, and a positive value outside 
of the forest. Thus, the lowest value (−4 km) occurred at the center 
of the forest near where the transects started, and the highest value 
(5 km) occurred outside the forest at the end of the transects (e.g., 
Figure 2b). Inside the forest, wild boar signs were less likely to be 
seen as distance from the center of the forest increased (OR: 0.98 
per 50 m distance moved from center), and outside the forest they 
were less likely to be recorded further away from the forest bound-
ary (OR: 0.92 per 50 m distance). Inside the forest, wild boar signs 
were more likely to be seen in segments with gravel roads, and less 
likely to be seen in segments with no path or road present. Outside 

the forest, wild boar signs were more likely to be recorded in seg-
ments with recreational parks and were less likely to be recorded in 
segments with livestock and dirt paths.

Final multivariable analyses (Figure 5 and Table 3) revealed that 
inside the forest boundary, there were increased odds of wild boar 
activity signs in Spring compared to Autumn (OR: 2.04; 95% CI: 1.49, 
2.78) but season did not appear in the model for outside the forest. 
Forest habitat was a significant predictor of wild boar signs both in-
side (OR 5.33; 95% CI: 1.41, 20.17) and outside the statutory forest 
boundary (OR: 5.79; 95% CI: 2.07, 16.21). Inside the forest boundary, 
wild boar signs were more likely to be seen in transect segments 
containing litter bins (OR: 2.04; 95% CI: 0.50, 73.79). Outside the 
forest boundary, wild boar signs were less likely to be seen in seg-
ments where livestock were recorded (OR: 0.12; 95% CI: 0.04, 0.38), 
but more likely to be seen in segments featuring parks (OR: 21.83; 
95% CI: 2.18, 218.43). Aside from the comparing the number of wild 
boar signs inside and outside the forest boundary, the size of the 
differences in habitat preferences between the two regions were 

F I G U R E  2 Presence of wild boar signs 
inside and outside the Forest of Dean. 
(a) Distribution of wild boar activity signs 
along transects (dark gray) in autumn 
(red) and spring (blue) with jitter; (b) 
Distribution of 50 m-segments with (red) 
and without (gray) wild boar activity signs 
in terms of distance from the boundary 
of the forest (green line), in autumn and 
spring, with vertical jitter
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difficult to quantify since some predictors that remained in the final 
model for inside the forest boundary were absent from the model 
for outside the forest boundary, and vice versa, and predictors that 
remained in both models appeared to overlap in their confidence 
intervals.

The residuals of both multivariable spatial logistic regression 
models were standardized to values between 0 and 1 (Figure S4). 
Residuals appeared randomly distributed with no obvious disper-
sion in the Q-Q plots and good agreement between observed and 
expected values. There was low collinearity between predictors for 
both models.

4  |  DISCUSSION

4.1  |  The need for fine-scale data of species habitat 
use

The logistic regression models developed in this study are based on 
fine-scale observations of wild boar field signs to infer habitat use 
data at a 50-m resolution. Other models have used environmen-
tal factors to predict wild boar data sampled over comparatively 

larger areas, for example, regional models developed for regions of 
Spain and Japan used wild boar presence–absence data at around 
150 and 25 km2 resolutions, respectively (Acevedo et al.,  2011; 
Honda, 2009). This more coarse data is useful where environmen-
tal conditions such as climate and topography vary over large dis-
tances, but for isolated populations mostly confined to a relatively 
small region, or where the area of interest is a comparatively small 
geographical range such as at human–wildlife interfaces, fine-scale 
data may be more suitable since some environmental factors may be 
fairly homogenous across the area and wildlife may behave differ-
ently in these areas. Furthermore, in areas with high levels of human 
activity, habitat suitability and anthropogenic features show strong 
variation over small distances, which can only be accounted for by 
finer-scale data. Wild boar in the Forest of Dean are in close proxim-
ity to areas of human activity and enter surrounding towns and vil-
lages to forage (Dutton et al., 2015), and this study identified signs of 
wild boar habitat use in these areas (Figure 3). Therefore, wild boar 
behavior in human-dominated landscapes may not be representa-
tive of behaviors seen in other wild boar populations or predicted in 
other models. Our finding that forest-type habitat is a consistently 
significant predictor of wild boar habitat use, agrees with findings of 
other distribution models (Enetwild Consortium, Croft et al., 2018). 

TA B L E  1 Number of transect segments containing potential predictors of wild boar habitat use, stratified by season and whether inside 
or outside the statutory boundary of the Forest of Dean

Predictor

Autumn Spring

Inside forest Outside forest Total (%) Inside forest Outside forest Total (%)

Habitat

Forest 717 208 925 (52) 711 182 893 (51)

Scrubland 51 21 72 (4) 35 9 44 (3)

Residential 29 250 279 (16) 32 272 304 (17)

Field 28 632 660 (37) 29 608 637 (36)

Other habitat 6 38 44 (2) 6 37 43 (2)

Track

No path 54 208 262 (15) 31 186 217 (12)

Dirt path 302 160 462 (26) 333 136 469 (27)

Dirt road 58 24 82 (5) 39 29 68 (4)

Gravel path 40 23 63 (4) 49 24 73 (4)

Gravel road 171 110 281 (16) 148 114 262 (15)

Tarmac path 10 10 20 (1) 14 10 24 (1)

Tarmac road 203 581 784 (44) 221 613 834 (48)

Feature

Livestock 9 147 156 (9) 6 87 93 (5)

Water 25 5 30 (2) 16 6 22 (1)

Crops 0 80 80 (5) 0 25 25 (1)

Litter bin 3 18 21 (1) 3 21 24 (1)

Park 3 13 16 (1) 2 13 15 (1)

Building outside of a 
residential habitat

54 166 220 (12) 45 160 205 (12)
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F I G U R E  3 Wild boar signs by habitat type. Distribution of 50 m-segments with (red) and without (gray) wild boar activity signs in each 
type of habitat in autumn, in terms of distance from the boundary of the forest (green line)

F I G U R E  4 Univariable spatial analysis results (log odds ratios and 95% confidence intervals) for predictors of wild boar activity signs 
inside and outside the forest boundary, estimated using a repeated measures model. Predictors with p < .05 are shown in red. Data are 
unavailable for three predictors where numerical issues arose due to separation among the sample points
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However, by using fine-scale field observations along transects, 
this study has shown that additional predictors of wild boar habitat 
use can be identified that may be particular to human-dominated 
landscapes, such as livestock, litter bins, gravel paths and roads, and 
recreational parks. Findings such as these could help target further 
monitoring of wild boar populations in areas surrounding the Forest 
of Dean and in other places where wild boar occur in areas of high 
human activity and could inform more precise models of wild boar 
habitat use across these regions.

4.2  |  Informing further wild boar monitoring

Wild boar in the Forest of Dean are currently a relatively isolated 
population due to being surrounded by main roads, the rivers Severn 
and Wye, and there is anecdotal evidence of private hunting pres-
sure in areas surrounding the forest (Croft, Franzetti et al., 2020). 
This relative isolation means that wild boar densities in the Forest 
of Dean are high; 15 per km2 compared with European populations 
density where estimates over 2 per km2 could be considered high 
(Gill & Waeber, 2019; Pittiglio et al., 2018). This, as well as culling 

pressure from Forestry England, might encourage wild boar to dis-
perse and their distribution to expand, and there are numerous areas 
outside the Forest of Dean that could form suitable wild boar habi-
tat. Such areas could be surveyed to monitor this expansion by look-
ing for predictors of habitat use, for example, forest-type habitat 
and areas close to forest boundaries, and areas with recreational 
parks and litter bins. Surveying forest-type areas in Spring may in-
crease the likelihood of detecting wild boar presence in new areas. 
Additionally, predictors of decreased likelihood of wild boar habitat 
use could be surveyed less or not at all, such as areas inside forests 
with no paths.

The spatial analysis incorporated into these models revealed 
correlation between locations was near zero when approaching dis-
tances of 1 km inside the Forest of Dean boundary, and at distances 
of 5 km outside the forest boundary. This suggests that monitoring 
wild boar using transects spaced these distances apart could achieve 
an adequate resolution of the likelihood of wild boar habitat use in 
that area (and that closer transects are unnecessary). Understanding 
where likely areas of wild boar expansion are likely to be, and con-
firming wild boar habitat use in those areas, is an important step in 
order to assess the disease risk to and from livestock.

TA B L E  2 Univariable spatial analysis showing odds ratios and 95% confidence intervals for predictors of wild boar activity signs inside 
and outside the forest using a repeated measures model

Predictor

Inside forest Outside forest

Odds ratio (95% CI) p Value Odds ratio (95% CI) p Value

Habitat Forest 5.35 (1.55, 18.46) <.01 2.63 (1.06, 6.57) .04

Scrubland 2.13 (0.65, 7.01) .21 0.40 (0.08, 2.00) .27

Residential 0.44 (0.16, 1.22) .11 0.92 (0.34, 2.46) .87

Field 0.51 (0.19, 1.33) .17 0.62 (0.28, 1.38) .24

Other habitat 0.84 (0.18, 3.96) .83

Track No path 0.35 (0.15, 0.77) .01 2.77 (0.82, 9.39) .10

Dirt path 1.39 (0.81, 2.36) .23 0.38 (0.15, 0.95) .04

Dirt road 1.24 (0.45, 3.38) .68 1.40 (0.11, 17.56) .79

Gravel path 3.54 (0.88, 14.22) .07 0.68 (0.10, 4.52) .69

Gravel road 3.50 (1.58, 7.76) <.01 3.40 (0.88, 13.22) .08

Tarmac path 0.54 (0.12, 2.50) .43 1.06 (0.11, 10.01) .96

Tarmac road 0.79 (0.42, 1.48) .46 1.32 (0.51, 3.40) .57

Feature Livestock 0.73 (0.19, 2.88) .65 0.15 (0.05, 0.46) <.001

Crops 0.65 (0.14, 3.09) .59

Water 0.97 (0.31, 2.99) .95

Litter bin 7.97 (0.67, 95.09) .10 2.37 (0.52, 10.79) .26

Park 1.51 (0.18, 12.64) .71 26.93 (2.17, 333.81) .01

Buildinga 0.91 (0.44, 1.87) .80 0.52 (0.21, 1.31) .17

Distance from forest 
boundary

0.98 (0.96, 0.99) <.01 0.92 (0.87, 0.98) .01

Season 1.91 (1.41, 2.59) <.001 0.97 (0.66, 1.41) .87

Note: Predictors with p < .05 are shown in bold. Data are missing for some predictors that caused numerical issues due to separation among the 
sample points (shaded gray boxes).
aSpecifically, a building located outside of a residential habitat.
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4.3  |  Informing wild boar distribution models

Fine-scale data are needed to model wildlife habitat use in areas 
with strong environmental gradients (Schwemmer et al., 2016) and 
is important in the Forest of Dean due to the variation in landscape 
over relatively short distances, the limited distribution of wild boar, 
and the high levels of human activity and anthropogenic features. 
We have shown that fine-scale data can be useful to identify predic-
tors of wild boar habitat use in this area, and the effects of these 
predictors could be incorporated into wild boar distribution models. 
The incorporation of models based on fine-scale data into existing 
broad-scale wild boar distribution models may increase their pre-
cision and go some way to addressing the uncertainty that is seen 
where there is strong landscape variation on local scales (McInerny 
& Purves, 2011). Our finding that anthropogenic features such as 
litter bins, parks, and livestock could be important predictors of 
wild boar activity in human-dominated landscapes could be used to 
model wild boar habitat use at the interface where human activity 
encroaches into wild boar habitat. This information could be further 
used to parameterize models of disease transmission between wild 
boar and livestock. However, collection of such high-resolution data 
and fine-scale habitat use data is time-consuming and so focusing 
the collection of this data to areas of high broad-scale model un-
certainty, and the continued use of coarse data to model wild boar 
distributions across large regions, would be necessary to increase 
efficiency.

This study has some limitations. The use of transects and field 
observations mean data were recorded at only a snapshot in time, 
and repeated studies would be needed to identify variations over 
longer time periods. Wild boar activity signs indicate only habitat 
use of wild boar, not non-use which is important to establish when 
monitoring wild boar in new areas of introduction; a lack of activ-
ity signs does not necessarily mean a lack of wild boar, particularly 
in areas where signs may be hard to detect, such as on tarmac in 
residential areas. In these areas, it may be appropriate to collect 
presence data in other ways such as by direct observation, public 
sightings, or camera traps.

4.4  |  Applications of fine-scale habitat use data to 
other systems

The approach used in this study is not limited to wild boar popula-
tions. It is applicable to other systems where fine-scale data may 
more precisely represent wildlife distributions on a local scale, such as 
movement-restricted, isolated, or fragmented populations. Potential 
systems include small populations concentrated over smaller dis-
tances, for example, endangered populations of babirusa (Babyrousa 
spp.) occupying smaller and smaller habitats (Macdonald,  2017), 
or populations over small land areas such as invasive alien species 
on islands (Russell et al.,  2017), or species where small numbers 
have been introduced and have not yet expanded such as Eurasian 

F I G U R E  5 Multivariable spatial analysis results (log odds ratios and 95% confidence intervals) for predictors of wild boar activity signs 
with p-values-values < .2 inside and outside the forest boundary, estimated using a repeated measures model. Predictors with p < .05 are 
shown in red
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beaver reintroduction to parts of Europe (Smeraldo et al.,  2017). 
Importantly, they are applicable to other interfaces where wildlife 
and human activities overlap, in particular around livestock farming. 
While the methods used here are more suitable for wildlife species 
and habitat types for which detection by direct sightings or indirect 
field activity signs is favorable, habitat use data collected by other 
means such as camera traps or arial surveys, or global positioning 
system collars, could also be used to identify predictors of habitat 
use, as long as data are collected on a sufficiently fine-scale relative 
to the study area of interest.

As human activity and particularly livestock farming further ex-
pands into wildlife habitats, predicting the presence of wildlife spe-
cies such as wild boar will become increasingly important to target 
population monitoring and disease surveillance efforts. This study 
demonstrates techniques to establish predictors of wildlife habitat 
use at a fine resolution using wild boar as an example. These meth-
ods could be applied to map habitat use of other wildlife species in 
similar landscapes, or movement-restricted, isolated, or fragmented 
wildlife populations where broad-scale data are not available or not 
representative.
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