
Microbial communities have co‑evolved with humans 
and our ancestors for millions of years and they inhabit 
all surfaces of the human body, including the respiratory 
tract mucosa. Specific sites in the respiratory tract contain 
specialized bacterial communities that are thought to have 
a major role in the maintenance of human health. In the 
past decade, next-generation sequencing has led to major 
advances in our understanding of the possible functions of 
the resident microbiota. So far, research has largely focused 
on the gut microbiota and gut microbiota-derived metab‑
olites, and their influence on host metabolism and immu‑
nity. However, recent studies on microbial ecosystems at 
other body sites, including the respiratory tract, reveal an 
even broader role for the microbiota in human health1.

The respiratory tract is a complex organ system that 
is divided into the upper respiratory tract (URT) and 
the lower respiratory tract (LRT). The URT includes the 
anterior nares, nasal passages, paranasal sinuses, the naso
pharynx and oropharynx, and the portion of the larynx 
above the vocal cords, whereas the LRT includes the 
portion of the larynx below the vocal cords, the trachea, 
smaller airways (that is, bronchi and bronchioli) and 
alveoli. The primary function of the respiratory tract in 
human physiology is the exchange of oxygen and carbon 
dioxide. For this purpose, the adult human airways have 
a surface area of approximately 70 m2, which is 40 times 
larger than the surface area of the skin2. This entire sur‑
face is inhabited by niche-specific bacterial communi‑
ties, with the highest bacterial densities observed in the 
URT (FIG. 1). Over the years, evidence for the roles that 

bacterial communities in the URT have in preventing 
respiratory pathogens from establishing an infection on 
the mucosal surface and spreading to the LRT has accu‑
mulated. For most respiratory bacterial pathogens, colo-
nization of the URT is a necessary first step before causing 
an upper, lower or disseminated respiratory infection3. 
Inhibition of this first step of pathogenesis for respira‑
tory infections by the resident microbiota, a process that 
is also called ‘colonization resistance’, might be of para‑
mount importance to respiratory health. Furthermore, 
if a pathogen has colonized the mucosal surface, it might 
be beneficial to both the microbial community and the 
host that these pathogens are kept at bay, preventing 
their overgrowth, inflammation and subsequent local 
or systemic spread4. In addition to this symbiotic relation-
ship, the respiratory microbiota probably has a role in 
the structural maturation of the respiratory tract5 and 
in shaping local immunity6,7.

Current research questions address how the healthy 
respiratory microbiota is established and what ecologi‑
cal and environmental factors govern its development. 
Concurrently, the broad range of functions of the res‑
piratory microbiome is starting to become clear. In this 
Review, we focus on the role that the respiratory micro‑
biota has in the development and maintenance of human 
respiratory health.

Anatomical development and the microbiota
Anatomical development and physiology. The develop
ment of the structures of the human respiratory tract is 
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Microbiota
The microorganisms  
(including bacteria, archaea 
and single-celled eukaryotes) 
and viruses that inhabit a 
particular niche.

Anterior nares
Openings in the nose  
that connect the external 
environment and the  
nasal cavity.
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Abstract | The respiratory tract is a complex organ system that is responsible for the exchange of 
oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung 
alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the 
respiratory tract probably acts as a gatekeeper that provides resistance to colonization by 
respiratory pathogens. The respiratory microbiota might also be involved in the maturation and 
maintenance of homeostasis of respiratory physiology and immunity. The ecological and 
environmental factors that direct the development of microbial communities in the respiratory 
tract and how these communities affect respiratory health are the focus of current research. 
Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the 
physiology of the human host are being studied in detail. In this Review, we will discuss the 
epidemiological, biological and functional evidence that support the physiological role of the 
respiratory microbiota in the maintenance of human health.
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Colonization
The act of settlement and 
reproduction of organisms that 
are subject to selective 
pressure.

Symbiotic relationship
A close biological interaction 
between two different species.

Microbiome
All of the genetic content of a 
microbial community.

Nasal placodes
A thickening of the embryonic 
head ectoderm that occurs in 
the fifth embryonic week and 
marks the start of the 
formation of the nose and 
nasal cavity.

Oropharyngeal membrane
A transient bilaminar 
(ectoderm and endoderm) 
membrane that appears in the 
fourth embryonic week during 
the development of the 
primitive mouth and pharynx.

Lung buds
A pair of endodermal 
outgrowths of the foregut that 
develop into the larynx, 
trachea and lungs.

Nasopharynx-associated 
lymphoid tissue
(NALT). One of the anatomical 
locations of mucosa-associated 
lymphoid tissue (MALT), which, 
in humans, consists of the 
lymphoid tissue of Waldeyer’s 
pharyngeal ring, including the 
adenoids (the unpaired 
nasopharyngeal tonsil) and the 
paired palatine tonsils.

a complex multistage process that begins in the fourth 
week of gestation with the development of the nasal pla-
codes, the oropharyngeal membrane and the lung buds8,9. 
The anatomy of the URT at birth is substantially dif‑
ferent from the configuration in adults owing to the 
higher position of the larynx, which results in a large 
nasopharynx relative to the oropharynx10. In addition, 
the lack of alveoli in the newborn lungs underlines the 
immaturity of the LRT at birth. Indeed, the formation of 
alveoli begins in a late fetal stage and their development 
continues throughout the first three years of life11. By 
adulthood, many distinct subcompartments have devel‑
oped in the respiratory tract, each of which has specific 
microbial, cellular and physiological features, such as 
oxygen and carbon dioxide tension, pH, humidity and 
temperature (FIG. 1).

Microbiota and the morphogenesis of the respiratory 
tract. Similar to the anatomical development of the res‑
piratory tract, the initial acquisition of microorganisms 
marks the establishment of the respiratory microbiota 
in early life. The establishment of the respiratory micro
biota is thought to have an effect on the morphogenesis 
of the respiratory tract. Indeed, germ-free rodents tend to 
have smaller lungs12 and a decreased number of mature 
alveoli5. The latter finding was supported by experi‑
ments in which the nasal cavities of germ-free mouse 
pups were colonized with Lactobacillus spp., after which 
the number of mature alveoli normalized5. Intriguingly, 

the nasopharyngeal-associated lymphoid tissue (NALT) 
also develops mostly after birth, which suggests that  
its development requires environmental cues —  
for example, from the local microbiota13.

Development of healthy microbiota. In contrast to the 
long-standing hypothesis that we are born sterile, it was 
recently suggested that babies acquire microorganisms 
in utero14,15, although this suggestion is controversial16. 
Irrespectively, the transfer of maternal antibodies and 
microbial molecules in utero markedly influences post‑
natal immune development17,18. This, in turn, primes the 
newborn for the substantial exposure to microorganisms 
that occurs after birth. During the first hours of life, a wide 
range of microorganisms can be detected in the URT of 
healthy term neonates19,20. At first, these microorganisms 
are nonspecific and are of presumed maternal origin. 
During the first week of life, niche differentiation in the 
URT leads to a high abundance of Staphylococcus spp., 
followed by the enrichment of Corynebacterium spp. and 
Dolosigranulum spp., and the subsequent predominance 
of Moraxella spp.20. Microbiota profiles that are charac‑
terized by Corynebacterium spp. and Dolosigranulum spp. 
early in life, and Moraxella spp. at 4–6 months of age, have 
been shown to correlate to a stable bacterial community 
composition and respiratory health21,22.

Birth mode and feeding type are important drivers 
of the early maturation of the microbiota, with children 
who are born vaginally and/or are breastfed transitioning 

Figure 1 | Physiological and microbial gradients along the respiratory tract. Physiological and microbial gradients exist 
along the nasal cavity, nasopharynx, oropharynx, trachea and the lungs. The pH gradually increases along the respiratory 
tract177–180, whereas most of the increases in relative humidity (RH) and temperature occur in the nasal cavity181–183. 
Furthermore, the partial pressures of oxygen (pO2) and carbon dioxide (pCO2) have opposing gradients180 that are 
determined by environmental air conditions and gas exchange at the surface of the lungs181,184,185. Inhalation results in the 
deposition of particles from the environment into the respiratory tract; inhaled particles that are more than 10 μm in diameter 
are deposited in the upper respiratory tract (URT), whereas particles less than 1 μm in diameter can reach the lungs. These 
particles include bacteria-containing and virus-containing particles, which are typically larger than 0.4 μm in diameter186.
These physiological parameters determine the niche-specific selective growth conditions that ultimately shape the microbial 
communities along the respiratory tract. The unit by which bacterial density is measured varies per niche; the density in the 
environment is depicted as bacteria per cm3 (indoor) air187, density measures in the nasal cavity and nasopharynx are shown 
as an estimated number of bacteria per nasal swab74, and the densities in the oropharynx and the lungs represent the 
estimated number of bacteria per ml of oral wash57,74 or bronchoalveolar lavage (BAL)57,74,153, respectively.
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towards a presumed health-promoting microbiota pro‑
file more often and more swiftly20,23. These findings 
were corroborated by epidemiological findings that 
showed breastfeeding-mediated protection against 
infections24, which is presumably a consequence of the 
transfer of maternal antibodies18 and beneficial micro
organisms in breast milk, such as Bifidobacterium spp. 
and Lactobacillus spp.25,26. Conversely, the development 
of the respiratory microbiota can be disturbed, for exam‑
ple, through the use of antibiotics, which are commonly 
used in young children to treat infections27. Antibiotic 
perturbations were characterized by a decreased abun‑
dance of presumed beneficial commensal bacteria, such 
as Dolosigranulum spp. and Corynebacterium spp. in 
the URT of healthy children22,28,29. This, in turn, might 
increase the risk of respiratory tract infections following 
antibiotic treatment30. In addition, season, vaccination, 
presence of siblings, day-care attendance, exposure to 
smoke and prior infections can also affect the infant 
microbiota22,31–35, which indicates that the microbiota 
during early life is dynamic and affected by numerous 
host and environmental factors (FIG. 2). Host genetics 
seems to have a minor effect on the URT microbiota 
in healthy individuals, only influencing nasal bacterial 
density and not the composition of the microbiota36. 
By contrast, the composition of the sputum microbi‑
ota seems to be influenced equally by host genetics and  
environmental factors37.

Although the gut microbiota matures into an adult-
like community during the first 3 years of life38, the 
time that is required to establish a stable respiratory 
microbiota remains to be determined. Although niche 
differentiation occurs as early as 1 week after birth20, 
the respiratory microbiota evolves throughout the first 
few years of life21,33,39. After the respiratory microbiota 
is established, antibiotic treatment remains an impor‑
tant perturbing factor of the microbial equilibrium 

throughout life40. Active smoking also affects the micro‑
bial communities in the URT37,41; however, in the LRT, 
smoking has no clear influence on the composition of 
the microbiota42. Interestingly, it has been suggested 
that the niche-specific differences disappear again in 
the elderly43.

Remarkably, not only exposure to beneficial bacteria 
seems to be important but also the timing of these expo‑
sures seems to play a crucial part in the maintenance 
of respiratory health, as especially aberrant respiratory 
colonization patterns in infancy seem to be a major 
determinant of respiratory disease later in life21,22,44. This 
could be due to the effect of host–microbial interactions 
in immune education during early life6. It has been pro‑
posed that the dynamic nature of the developing micro‑
biota early in life might provide a window of opportunity 
for the modulation of the microbiota towards a bene
ficial composition45; however, the extent of this period 
of time is currently unknown.

The microbiota of the upper respiratory tract
Gatekeeper to respiratory health. The URT consists of 
distinct anatomical structures that have different epithe‑
lial cell types and is exposed to various environmental 
factors. These diverse micro-niches are colonized by  
specialized bacterial communities, viruses and fungi.

The anterior nares are closest to the external envi‑
ronment and are lined with a skin-like keratinized 
squamous epithelium, including serous and sebaceous 
glands, the latter of which produces sebum, which leads 
to the enrichment of lipophilic skin colonizers, includ‑
ing Staphylococcus spp., Propionibacterium spp. and 
Corynebacterium spp.46–48. Bacteria that are frequently 
found in other respiratory niches, including Moraxella 
spp., Dolosigranulum spp. and Streptococcus spp., have 
also been observed in the anterior nares29,43,48,49. The 
nasopharynx is located deeper in the nasal cavity and 

Figure 2 | Host and environmental factors that influence the respiratory microbiota. During early life, microbial 
communities in the respiratory tract are highly dynamic and are driven by multiple factors, including mode of birth, 
feeding type, crowding conditions and antibiotic treatment. Together, these host and environmental factors can change 
the composition of the microbiota towards a stable community at equilibrium that is resistant to pathogen overgrowth, or, 
conversely, an unstable community develops that is predisposed to infection and inflammation.

R E V I E W S

NATURE REVIEWS | MICROBIOLOGY	  VOLUME 15 | MAY 2017 | 261

©
 
2017

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



Biodiversity
The composite of species 
richness (the number of 
species present in an 
ecosystem) and evenness (the 
equitability of the abundance 
of these species).

Acute otitis media
(AOM). An acute-onset viral 
and/or bacterial infection of 
the middle ear.

Chronic rhinosinusitis
A common condition that is 
typified by prolonged 
inflammation of the paranasal 
sinuses.

Keystone species
A sole species that is typically 
not highly abundant but is 
disproportionally important in 
maintaining the organization 
and structure of an entire 
community.

Biofilms
Microorganisms embedded in 
a self-produced matrix of 
extracellular polymeric 
substances that are adherent 
to each other and/or a surface.

Bronchoalveolar lavages
(BALs). A technique in  
which fluid that contains 
bronchoalveolar cells is 
obtained by infusing and 
extracting saline during 
bronchoscopy.

Mucosal dispersion
The separation and scattering 
of organisms from the mucosa.

Micro-aspiration
Subclinical aspiration of small 
droplets.

is covered by a stratified squamous epithelium that is 
punctuated by patches of respiratory epithelial cells. 
The composition of the bacterial communities in the 
nasopharynx is more diverse than in the anterior parts50 
and demonstrates considerable overlap with the ante‑
rior nares; it also contains Moraxella spp., Staphylococcus 
spp. and Corynebacterium spp. However, other bacte‑
ria more typically inhabit the nasopharyngeal niche, 
most notably Dolosigranulum spp., Haemophilus spp. 
and Streptococcus spp.20–22,33. The oropharynx, which 
is lined with a non-keratinized stratified squamous 
epithelium, has more diverse bacterial communities 
than the nasopharynx41, which are characterized by 
streptococcal species, Neisseria spp., Rothia spp. and 
anaerobes, including Veillonella spp., Prevotella spp.  
and Leptotrichia spp.39,41,51,52.

In addition to bacterial inhabitants, PCR-based stud‑
ies suggest the extensive presence of viral pathogens in 
the URT. These studies have reported an overall detec‑
tion rate of 67% for respiratory viruses in healthy asymp‑
tomatic children, including human rhinovirus (HRV), 
human bocavirus, polyomaviruses, human adenovirus 
and human coronavirus31,53. However, recent advances 
in metagenomics have revealed that the entire respira‑
tory virome contains many other viruses. For example, 
the recently discovered Anelloviridae family was iden‑
tified as the most prevalent virus family in the virome 
of the URT54,55. Moreover, the healthy URT has a myc‑
obiota that includes Aspergillus spp., Penicillium spp., 
Candida spp. and Alternaria spp.56,57. Although the size 
of the respiratory mycobiome is unknown, the gut and 
skin mycobiomes are approximated to comprise 0.1% 
and 3.9%, respectively, of the total microbiome in their  
corresponding niches47,58.

Environmental pressures, as well as microorganism–
microorganism and host–microorganism interactions, 
influence the composition of the bacterial ecosystem 
in the human host and, as a consequence, its function. 
For various macroscale ecosystems, such as forests and 
coral reefs, it is well established that greater biodiversity 
increases the efficiency by which ecological communities 
are capable of using essential resources59. Similarly, the 
diversity of specific microscale ecosystems in the human 
host, such as the gut microbiota, has been associated 
with health outcomes. For example, increased diversity 
of intestinal bacteria has been linked to the absence of 
inflammatory bowel disease, obesity60 and resistance 
against acute infections by enteropathogens61. Conversely, 
at other body sites, such as the vagina, low bacterial 
diversity is considered ‘healthy’ as it is associated with 
decreased incidences of bacterial vaginosis62,63 and pre‑
mature birth64, which highlights the niche-specific effect 
of biodiversity on human health. In the respiratory tract, 
evidence indicates that acute URT infections, such as 
acute otitis media (AOM)29,65, and mucosal inflammation 
in chronic rhinosinusitis66 are associated with a decrease in 
the diversity of local bacterial communities. However, 
other studies report a less clear association between 
diversity and respiratory health, which suggests that 
the composition of bacterial communities, in a niche- 
specific ecological context, also affects respiratory 

health52. Moreover, certain members of the microbiota, 
known as ‘keystone species’, may have exceptionally large 
beneficial effects on ecosystem balance, function and 
health67. Potential keystone species in the URT micro
biota are Dolosigranulum spp. and Corynebacterium 
spp., as they have been strongly associated with respira‑
tory health and the exclusion of potential pathogens,  
most notably Streptococcus pneumoniae, in several  
epidemiological and mechanistic studies21,29,68,69.

A primary function of any microbial ecosystem is to 
elicit a state of symbiosis, providing ‘colonization resist‑
ance’ against pathogens4,70. The principal mechanism 
that underlies colonization resistance is that members of 
a diverse local microbiome probably use all of the nutri‑
ents that are available, thereby preventing pathogens 
from finding the necessary resources for colonization. 
Although cross-sectional surveys have demonstrated 
associations between decreased diversity and pathogen 
colonization, no direct evidence exists that demonstrates 
that increased microbial diversity in the respiratory tract 
can protect against the acquisition of pathogens. However, 
specific members of the microbiota have been identified 
that can actively exclude pathogens from the nasopharyn‑
geal niche. For example, Staphylococcus epidermidis was 
shown to exclude Staphylococcus aureus and destroy 
pre-existing biofilms through the secretion of serine pro‑
teases71. Furthermore, colonization resistance may be 
enhanced by interactions with the host immune system. 
For example, neutrophils seemed more able to kill S. pneu-
moniae following priming with Haemophilus influenzae72.

The URT is generally considered to be a major reser‑
voir for potential pathogens, including S. pneumoniae, 
to expand and subsequently spread towards the lungs, 
which could potentially lead to a symptomatic infection3. 
Thus, establishing and maintaining a balanced micro
biota in the URT that is resilient to pathogenic expansion 
and invasion could prove vital for respiratory health. The 
mechanisms that underlie a healthy respiratory micro
biota, as well as specific microbiota–host interactions 
that support this, are considered below.

Healthy lungs and their microbiota
The LRT comprises the conducting airways (the trachea, 
bronchi and bronchioles) and the alveoli, in which gas 
exchange takes place. The conducting airways are lined 
with a similar respiratory epithelium to that found in the 
URT, with the epithelial cells gradually shifting towards 
a cuboidal shape along the respiratory tree. The alveoli 
in the lungs are lined with functionally distinct alveolar 
epithelial cells. In contrast to the URT and other human 
mucosal sites, the LRT has traditionally been consid‑
ered as sterile; however, recent studies that used next- 
generation sequencing discovered a wide range of diverse 
microbial species in samples taken from the LRT. Potential 
contamination of low-density specimens remains a major 
concern when carrying out these types of study and  
caution is required when interpreting the results (BOX 1).

Source of the lung microbiota. In healthy individuals, 
bacteria enter the lungs by direct mucosal dispersion and 
micro-aspiration from the URT73. Culture-independent 
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Mutualism
An interaction between two 
species in which each species 
benefits (win-win).

Commensalism
An interaction between two 
species in which one species 
benefits and the other is 
unaffected (win-neutral).

Antagonism
An interaction between two 
species in which one species is 
inhibited or adversely affected 
by another species, 
comprising: amensalism 
(lose-neutral), predatism and 
parasitism (win-lose) or 
competition (lose-lose).

Quorum sensing
A communication system 
between bacterial cells that is 
capable of triggering microbial 
group behaviour (for example, 
the formations of biofilms) 
once a certain threshold of 
signalling molecules is reached.

microbiota studies have confirmed that the lung micro‑
biota largely resembles the URT microbiota when stud‑
ied in healthy individuals74–76. The oropharynx seems to 
be the main source of the lung microbiota in adults74, 
whereas in children the source is more likely to be both 
the nasopharynx and oropharynx76. This might be due 
to the difference in the anatomy of the URT and the 
frequent increased production of nasal secretions in 
children, which both probably enhance the dispersal of 
microorganisms to the lungs. Another potential source 
of bacteria in the LRT is the direct inhalation of ambi‑
ent air, albeit, to date, its direct influence on the lung 
microbiome is unknown. The contribution of the gas‑
tric microbiota to the microbial community in the LRT 
through gastric–oesophageal reflux has, until now, been 
suggested to be negligible74.

Composition of the lung microbiota. As LRT sampling is 
particularly challenging in young infants (BOX 1), current 
data on the composition and development of the neo
natal LRT microbiota is limited to samples from intu‑
bated prematurely born infants77–79. These studies showed 
that the LRT microbiota of premature infants is domi‑
nated by pathogenic Staphylococcus spp.78,79, Ureaplasma 
spp.79 or Acinetobacter spp.77, which highlights the lack of  
complexity in these developing bacterial communities.

In healthy children and adults, a unique microbial 
community in the lungs was found that contained 
many of the bacteria that are common to the URT. A 
study in young children reported that although the 
lung microbiota was distinct from the microbiota of the 
URT, it was dominated by species that are also present 
in the URT, including Moraxella spp., Haemophilus spp., 
Staphylococcus spp. and Streptococcus spp., but lacked 
other typical URT species, such as Corynebacterium spp. 
and Dolosigranulum spp.76. The adult lung microbiota 

seems to be dominated by genera in the phyla Firmicutes 
(including Streptococcus spp. and Veillonella spp.) 
and Bacteroidetes (including Prevotella spp.)42,75,80. 
Interestingly, Tropheryma whipplei seems enriched only 
in the LRT, which suggests that this might be one of  
the few bacterial species that is not derived through  
dispersal from the URT42,75,80.

Studies of the LRT virome have revealed a high 
prevalence of members of the Anelloviridae family, in 
addition to a high frequency of bacteriophages81–83. 
Furthermore, the healthy lung mycobiome was found 
to be predominantly composed of members of the 
Eremothecium, Systenostrema and Malassezia genera, 
and the Davidiellaceae family, with common fungi in 
the URT detected only in low abundance57,84,85.

Although there are subtle regional variations of 
physiological parameters in the lungs (for example,  
of oxygen tension, pH and temperature), which, in  
theory, could affect microbial selection and growth, spa‑
tial microbial diversity in the lungs of healthy individuals 
seems almost absent75,80,86. This supports the hypothesis 
that, in health, the lung microbiota is a community of 
transiently present microorganisms that are derived from 
the URT, rather than a thriving, resident community as 
is commonly found in chronic respiratory diseases80,87,88. 
Correspondingly, a recently proposed ecological model, 
the adapted island model, postulates that the composi‑
tion of a healthy lung microbiota is determined by the  
balance of microbial immigration and elimination80,88. 
Regardless, to date, the exact function that the lung 
microbiome has in establishing and maintaining respira‑
tory health is unclear, although it probably contributes  
substantially to mucosal immune homeostasis (BOX 2).

Interbacterial relationships
Next-generation sequencing studies have revealed valua‑
ble information on both positive and negative microbial 
associations. By comparing sequencing data with mech‑
anistic work, ecological interaction networks between 
microbial community members, or between the micro‑
biota and the host or environment, can be partially 
reconstructed.

Associations between members of the microbiota 
can signify direct mutualism or commensalism (positive 
interactions), or antagonism (negative interactions). 
Positive interactions have been described primarily for 
members of the oropharyngeal microbiota; as such, 
Veillonella spp. were shown to induce streptococcal 
biofilm growth in a species-specific manner, presum‑
ably owing to shared quorum sensing systems89. These 
communication systems also seem to affect positive 
interactions between commensal and pathogenic mem‑
bers of the Streptococcus clade90, and between the naso‑
pharyngeal community members Moraxella catarrhalis 
and H. influenzae91. Other mutualistic or commensal 
interactions in the nasopharyngeal microbiota exist, 
as illustrated by interactions between Corynebacterium 
spp. and Staphylococcus spp. The relationship between 
these species is complex and its directionality is probably 
species-specific or even strain-specific; Corynebacterium 
accolens and S. aureus mutually induce each other’s 

Box 1 | Technical challenges in respiratory microbiome research

Respiratory microbiome research faces general and niche-specific challenges. The 
absence of uniform laboratory practices (sample storage, DNA isolation and choice 
of 16S rRNA variable region) and bioinformatics and data analysis pipelines limits 
the potential to carry out accurate comparative or meta-analyses. Although 
different research questions require different approaches, more energy should be 
invested into the development of standardized operating procedures that are 
comparable to, for example, the Earth Microbiome project protocol152.

A specific challenge in microbiota surveys of the respiratory tract is the low density 
of bacterial communities that are found there, particularly in healthy individuals; 
densities as low as 102–103 bacteria ml–1 have been reported in bronchoalveolar 
lavages (BALs) of healthy individuals74,153. Such low quantities of DNA preclude 
whole-genome sequencing, which results in hindered taxonomic resolution and 
functional interpretation of microbiome data. Furthermore, sampling of the lower 
respiratory tract (LRT) is cumbersome and is typically based on BAL or the collection 
of expectorated sputum. Both sampling methods carry a high risk of cross-contami-
nation of the LRT samples with resident bacterial communities in the upper 
respiratory tract (URT). Distinguishing between authentic LRT communities and URT 
contamination is further complicated because of the anatomical link between both 
niches. Once bacterial DNA has been extracted, the quantity can be so low that 
contamination from environmental DNA invalidates the results154,155. The development 
of standard operating procedures, including the careful use of appropriate negative 
controls at different stages of the sampling and laboratory workflow, can help to 
identify and exclude sequences from contaminating sources20,156.
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Regulatory T cells
(Treg cells). A subpopulation of 
T cells that modulate the host 
immune system and are pivotal 
in the maintenance of 
tolerance.

Acute respiratory distress 
syndrome
(ARDS). A clinical phenotype 
that occurs in patients who are 
critically ill and is characterized 
by overt lung inflammation in 
response to various 
pathologies, including trauma, 
sepsis and pneumonia.

growth through an unknown molecular mechanism50, 
whereas there are mixed reports about the interactions 
between Corynebacterium pseudodiphtheriticum and 
S. aureus46,50,92. Furthermore, antagonistic relationships 
have been identified, such as those between S. aureus 
and S. pneumoniae32, that may, in part, be explained 
by the production of pneumococcal hydrogen perox‑
ide, which results in lethal bacteriophage induction in 
S. aureus93,94. Human experimental colonization with 
the commensal Neisseria lactamica reduces existing 
Neisseria meningitidis colonization and even protects 
against new meningococcal acquisition, although 
the exact mechanisms that underlie this antagonistic  
relationship are unknown95.

It could be postulated that, especially in early life, the 
human host may nourish and promote specific members 
of the microbiota, such as S. aureus, to benefit from the 
wide range of antimicrobial molecules that it produces; 
this could aid the human host in its defence against invad‑
ing pathogens96. The fact that S. aureus is present in almost 
all infants but only sporadically causes disease at this age 
could, in turn, be related to specific microbial interactions; 
for example, co‑occurrence with Corynebacterium stria-
tum was shown to increase the commensal behaviour of 

S. aureus and decrease its virulence in an in vivo infection 
model97. Furthermore, interactions between species in the 
Staphylococcus genus might help to prevent S. aureus from 
overgrowing as well; for example, its colonization is hin‑
dered by serine protease activity in S. epidermidis71 and by 
the production of lugdunin by Staphylococcus lugdunensis, 
which is a natural antibiotic that is also active against other 
potential pathogens98.

Members of the microbiota might also modulate 
each other’s growth in an indirect manner; for exam‑
ple, through outer membrane vesicle (OMV)-mediated 
immune evasion99, or by using specific properties of the 
local environment, as shown for C. accolens, which con‑
verts host triacylglycerols into free fatty acids (FFAs) that, 
in turn, limit pneumococcal growth68. A second exam‑
ple of these mechanisms is the frequent co‑occurrence 
of Corynebacterium spp. and Dolosigranulum spp. in the 
nasopharynx20,22,69, in which Dolosigranulum spp. might 
be responsible for the acidification of the local envi‑
ronment, which, in turn, may facilitate the expansion 
of Corynebacterium spp.; however, a direct interaction 
between these species cannot be ruled out. Given the low 
density and presumably transient microbiota in the LRT, 
it could be speculated that the diversity of this microbiota 
is shaped by interbacterial relationships to a lesser extent 
than bacterial communities in the URT, although little 
is known about the level of proximity and likelihood of 
interbacterial effects.

Bacterial associations that are detected in epidemio
logical surveys may also indicate the existence of joint 
host or environmental drivers and not the presence 
of direct or indirect microbial interactions per  se. 
For example, the co‑occurrence of C. accolens and 
Propionibacterium spp. on the lipid-rich mucosa of the 
anterior nares48 could be explained by solely their joint 
lipophilic nature. Furthermore, epidemiological data 
suggest positive associations between M. catarrhalis, 
H. influenzae and S. pneumoniae that could be mediated 
by biological interactions or be based on their shared 
association with crowding conditions (for example, the 
presence of young siblings and day-care attendance) 
and/or their frequent asymptomatic co‑presence with 
respiratory viruses53,100.

Effect of the virome and mycobiome
Bidirectional viral–bacterial interactions. Perhaps the 
best-known historical example of viral–bacterial inter‑
actions in the respiratory tract comes from the Spanish 
flu pandemic in 1918–1919, when millions of individ
uals died from secondary bacterial pneumonia after an 
initial infection with influenza A virus101. In addition, 
in the absence of disease, epidemiological studies have 
suggested the presence of viral–bacterial interactions 
(reviewed in REF. 102). The biological mechanisms that 
underlie these bidirectional interactions have been 
extensively studied, although mostly for viruses and 
bacteria that are known to cause respiratory diseases102.

One of the main modes of action by which res‑
piratory viruses are thought to predispose individuals 
to bacterial disease is through the disruption of the  
airway–epithelial barrier, which facilitates the adhesion 

Box 2 | Specific host–microbiota interactions that contribute to tolerance

The respiratory microbiota has been hypothesized to control mucosal immunity in early 
life and contribute to immune tolerance. For example, members of the Bacteroidetes 
phylum, such as Prevotella spp., decrease lung inflammation, neutrophil recruitment 
and the production of Toll-like receptor 2 (TLR2)‑mediated pro-inflammatory cytokines 
compared with Haemophilus influenzae in a mouse model157, which could be related to 
the number of acyl side chains on their respective lipopolysaccharide (LPS) 
molecules158–160. Furthermore, in vitro activation of epithelial TLRs and 
nucleotide-binding oligomerization domain (NOD)-like receptors induced the release 
of antimicrobial peptides, such as β-defensin 2 (REF. 138), which could potentially 
influence the composition of the upper respiratory tract (URT) microbiota161. The 
production of these antimicrobial peptides is stimulated by T helper 17 (TH17) cells162, 
which, in turn, were shown to be induced by specific microbial species163.

Intriguingly, immune signalling in the URT was shown to elicit responses in distally 
located mucosal tissues; intranasal inoculation of Staphylococcus aureus led to the 
TLR2‑induced recruitment of monocytes to the lungs, in which they differentiated into 
immunosuppressive alveolar macrophages and subsequently dampened influenza 
virus-induced inflammatory responses164. Intranasal administration of Lactobacillus 
plantarum led to TLR2 and NOD2 receptor-mediated protection against lethal 
pneumovirus infection in the lungs of mice165. In addition, gut microbiota-induced 
priming of innate immune cells at the intestinal mucosa was shown to affect respiratory 
health; for example, through NOD1 receptor-mediated activation of the neutrophils 
that are required for the clearance of Streptococcus pneumoniae in the URT72,166. 
Furthermore, in germ-free mice, inoculation with microorganisms was shown to be 
essential for the recruitment of dendritic cells to the lungs167, and the priming of CD8+ 
T cells168. Crosstalk between dendritic cells and T cells induces the release of 
immunoglobulin A (IgA) at the mucosal interface, which prevents pathogens from 
interacting with the epithelium and selects for a heterogeneous composition of the gut 
microbiota, facilitating the expansion of regulatory T cells (Treg cells)135 (FIG. 3).

The most convincing evidence that the lung microbiota reciprocally affects local 
immune responses came from a study in healthy adults. In this study, specific lung bacteria 
(including Prevotella spp. and Veillonella spp.) were associated with an increased number 
of lymphocytes in bronchoalveolar lavage (BAL) fluid, TH17 cell‑mediated lung 
inflammation and a diminished TLR4 response by alveolar macrophages126. 
Correspondingly, a positive correlation between the relative abundance of members of 
the phylum Proteobacteria and both alveolar and systemic inflammation was described 
for patients with acute respiratory distress syndrome (ARDS)169.
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Toll-like receptor
An evolutionary conserved 
transmembrane protein that 
has a crucial role in innate 
immune responses against 
invading pathogens.

T helper 17 cells
T helper cells that are 
characterized as preferential 
producers of interleukin‑17 
(IL‑17), mediate host defence 
mechanisms to various 
infections, and are involved in 
the pathogenesis of several 
autoimmune disorders.

Lipopolysaccharide
(LPS). The main constituent of 
the cell wall of Gram-negative 
bacteria and a potent Toll-like 
receptor 4 (TLR4) ligand.

of bacterial pathogens103–105. Furthermore, it was demon‑
strated that influenza virus infection enhances col‑
onization (especially by pneumococci) by liberating 
host-derived nutrients106 and by decreasing mucociliary 
clearance107. In addition, respiratory viruses can modu‑
late innate and adaptive immune responses in the host, 
thereby promoting bacterial colonization and infection; 
for example, by impairing monocyte activity108, the 
extended desensitization of alveolar macrophages for 
Toll-like receptor (TLR)-ligands109, suppressing phagocytic 
capacity of alveolar macrophages110, and by inhibiting 
the production of antimicrobial peptides that is induced 
by T helper 17 cells111.

Vice versa, respiratory bacteria can also promote 
viral infection through numerous pathways112–116. For 
example, the upregulation of adhesion receptors, such 
as intercellular adhesion molecule 1 (ICAM1), was 
shown to increase the binding of HRV and respiratory 
syncytial virus (RSV) to epithelial cells and amplify 
pro-inflammatory responses114–116. These findings were 
substantiated by a recent clinical study that showed that 
nasopharyngeal colonization by S. pneumoniae and 
H. influenzae in infants is associated with an amplified 
systemic RSV-induced host immune response, plausibly 
resulting in more severe RSV infection117.

Conversely, the presence of specific bacterial species 
in the respiratory microbiota may impede viral infec‑
tions. These interactions can be either direct118,119 or 
indirect through the host immune system. For example, 
infection by influenza virus was shown to be less efficient 
following immune priming by lipopolysaccharide (LPS)-
mediated TLR4 activation of innate immune cells120,121. 

In fact, some studies suggest that LPS signalling is nec‑
essary for appropriate immune crosstalk and immune 
‘readiness’ for future encounters with viruses122,123.

In general, the infection of bacteria by bacterio‑
phages seems to be omnipresent. This phenomenon 
has even resulted in the evolution of a diverse range 
of antiviral defence mechanisms in commensal  
bacteria124. Consequently, selective infection of  
specific bacterial strains may regulate the composi‑
tion of the bacterial community and may facilitate the 
adaptation of the bacterial community to novel envi‑
ronments by preserving its diversity125. A recent study 
also reported a broad overlap between species-specific 
bacteriophages and the bacterial community diversity 
in the lungs, which suggests that substantial interactions 
between the microbiota and bacteriophages exist in the 
healthy respiratory tract as well126.

Fungal–bacterial interactions. Mechanistic insight into 
the interactions between fungi, bacteria and the host dur‑
ing health is scarce. However, it has been demonstrated 
in vitro and in vivo that the formation of biofilms by 
S. aureus, Streptococcus spp. and P. aeruginosa damages 
respiratory epithelia, which enables fungal biofilms to 
develop127–129. Furthermore, P. aeruginosa stimulates the 
growth of Aspergillus fumigatus through sensing volatile 
metabolites at a distance130. Conversely, Candida albicans 
was shown to increase the prevalence of P. aeruginosa 
in mice by impeding the production of reactive oxygen 
species (ROS) by alveolar macrophages131. To date, the 
exact role and breadth of the mechanisms by which fungi 
contribute to a healthy equilibrium in the respiratory 
tract have unfortunately remained unstudied.

Although studies suggest the importance of both 
the respiratory virome and mycobiome in respiratory 
health, there is a considerable knowledge gap in their 
exact contributions to health compared with the role 
of the bacterial microbiome. However, current evi‑
dence provides an important basis for further in-depth  
analyses of the interactions that exist between bacte‑
ria, viruses and fungi, as well as the effect of host and  
environmental factors on these interactions.

Host–bacterial interactions
As there are a vast number of commensals and poten‑
tial pathogens that inhabit the mucosa of the respira‑
tory tract, a delicate equilibrium has to be maintained 
between immune sensing and tolerance of non- 
pathogenic commensals, and the containment of resi‑
dent pathogens and new invaders. This fine balance is 
of specific importance to the LRT, as gaseous exchange 
is absolutely essential for human life and the lungs are 
exceptionally susceptible to damage from inflamma‑
tory responses. Below, we will provide an overview of 
the immune components that have a role in immune 
homeostasis in the URT and lungs. A detailed discussion 
of host–bacterial interactions and their role in immune 
homeostasis, organogenesis and immune education is 
provided in BOXES 2,3, respectively. In addition to bacte‑
ria, viruses may also promote host immune homeostasis 
(discussed in BOX 4).

Box 3 | An early window of opportunity

There is increasing evidence that early environmental and microbiota-derived cues 
are of paramount importance for the development of lymphoid tissue in neonates 
and ultimately shape the host immune system in the long term. For example,  
nasopharyngeal-associated lymphoid tissue (NALT) organogenesis is only initiated in 
the first week of life and is stimulated by cholera toxin, which suggests that NALT 
organogenesis may require microbiota-derived signals13. Similarly, the exposure of 
neonatal mice to lipopolysaccharide (LPS) led to the formation of bronchus-associ-
ated lymphoid tissue (BALT), which was not observed when mice were only exposed 
later in life170. Furthermore, it was demonstrated that neonatal, but not adult, 
bacterial colonization attracts activated regulatory T cells (Treg cells) to the skin and is 
necessary for the induction of immune tolerance to skin commensals171. Similarly, the 
lung microbiota promotes the transient expression of programmed death ligand 1 
(PDL1) in dendritic cells during the first two weeks of life, which is necessary for the 
Treg cell-mediated attenuation of allergic airway responses7. Furthermore, 
hypermethylation of the CXC-motif chemokine ligand 16 (Cxcl16) gene in the lungs 
of germ-free mice increases the expression of CXCL16 and the accumulation of 
invariant natural killer T cells (NKT cells), which are known for their role in 
inflammation and asthma6. Transplantation of the microbiotas from normal mice at 
neonatal, but not adult age, prevented the accumulation of NKT cells, which 
abrogated disease in these mice (FIG. 3).

Altogether, these data suggest that the presence of a respiratory microbiota within a 
specific developmental period is crucial for shaping the adaptive immune response to 
commensals in adult life and coordinating the delicate balance between host, 
microbiota and the environment towards a long-term equilibrium. Although this early 
period of development can be regarded as a susceptible window for aberrant microbial 
colonization that could lead to the induction of immune disorders, importantly, this 
same phase of development may also provide a window of opportunity to intervene.
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Inhabitation
The presence or occupancy of 
organisms. 

Mucus
A viscous secretion that is 
produced by goblet cells and is 
composed of a diverse range of 
mucin proteins.

Mucin
A class of gel-forming 
glycoproteins that give mucus 
its viscosity.

Alveolar surfactant
A mixture of proteins and lipids 
that reduce surface tension 
and prevent alveolar collapse, 
and, additionally, have 
antimicrobial and 
anti-inflammatory properties.

Lamina propria
A layer of loose connective 
tissue that is located directly 
underneath the epithelium.

β-Defensin 2
An antimicrobial peptide that 
is produced by epithelial cells 
in the respiratory tract 
following microbial stimulation.

Nucleotide-binding 
oligomerization domain-like 
receptors
(NOD-like receptors). 
Intracellular, innate pattern 
recognition receptors that 
recognize molecular fragments 
in peptidoglycan (a constituent 
of the bacterial cell wall).

The respiratory tract is exposed to large quantities 
of airborne particles from the environment. The first 
line of defence is the mucus layer of the nasopharynx 
and conducting airways. The mucus traps these par‑
ticles, including microbial pathogens, which are then 
cleared through ciliary action towards the oral cavity. In 
addition, the glycoproteins in the mucus accommodate 
resident microorganisms and prevent infection132, as evi‑
denced by the decrease in antibacterial cytokines and 
the presence of phagocytosis-impaired macrophages in  
the lungs of mucin-deficient mice133.

The mucus layer contains immunoglobulin A (IgA) 
produced by activated B cells134 and can preclude path‑
ogens from inhabiting the mucosal surface and inter‑
acting with epithelial surface receptors. IgA is also 
hypothesized to be involved in the regulation and selec‑
tion of commensal microorganisms and establishing 
mutualistic host–microbial interactions135,136. Similarly, 
alveolar surfactant has an important role in lung innate 
immunity, as a deficiency in surfactant protein A has 
been associated with decreased bacterial phagocytosis 
and killing by alveolar macrophages137.

The next line of defence is the epithelial cell layer, 
which is essential for the spatial segregation of the 
microbiota and the underlying lamina propria. The 
respiratory tract epithelium produces various antimi‑
crobial substances that contribute to barrier function, 
including human β-defensin 2 (REF. 138). Pharyngeal and 
lung epithelial cells, as well as macrophages and den‑
dritic cells, have various receptors to sense the micro‑
biota, including innate pattern recognition receptors 
(PRRs), such as TLRs and nucleotide-binding oligomer-
ization domain-like receptors (NOD-like receptors)138, 
which are central to balancing the activation of down‑
stream inflammatory signalling and the maintenance of 
immune tolerance. The epithelium in the URT is sup‑
ported by mucosa-associated lymphoid tissue (MALT), 
which is populated with microfold cells that transport 
microorganisms from the epithelium to the lamina pro‑
pria, where they can activate dendritic cells139. In the 
lungs, dendritic cells are located within and directly 
below the alveolar epithelium, where they continuously 
sample the alveolar space140. They subsequently present 

processed antigens to different subsets of T cells in the 
lung-draining lymph node, which initiates adaptive 
immune responses.

Anti-inflammatory alveolar macrophages are vital 
in lung immune homeostasis and for regulating the 
crosstalk between epithelial cells, dendritic cells and 
T cells (reviewed in REFS 141,142). These cells dampen 
TLR-induced inflammatory signals in epithelial cells143, 
suppress inflammation by inhibiting dendritic cell‑ 
mediated activation of T cells144,145 and induce regulatory 
cells146 (FIG. 3).

In conclusion, host–microbiota interactions influ‑
ence different aspects of immune system development 
and contribute to immune maturation, immune tolerance 
and resistance to bacterial infection.

Conclusions and perspectives
The development of massive parallel sequencing147 has 
provided us with extensive insights into the microbial 
ecology of human body habitats, including the respira‑
tory tract. Studies have shown that different ecological 
niches in the respiratory tract are occupied by diverse 
microbial communities that could act as gatekeepers to 
respiratory health. Further studies will be required to 
understand the pressures that shape these communi‑
ties, their precise functions and contributions to human 
health. Efforts should focus on reductionist approaches 
to understand the underlying mechanisms involved 
in environment–microorganism, microorganism– 
microorganism and microorganism–host interactions 
in their authentic ecological context. The use of in vitro 
models that enable the manipulation of specific bacte‑
rial, host or environmental factors could substantially 
advance our understanding of the respiratory microbiota. 
In addition, in vivo optical imaging techniques will help 
to visualize host–microbiota or intra-microbiota inter‑
actions in their spatial context in health and disease148. 
Data derived from these approaches could be used in 
mathematical models to reconstruct bacterial inter‑
actions and study host and environmental forces that  
govern microbial behaviour149.

In addition to the in-depth studies of highly complex 
and context-dependent interspecies and host–microbiota 
interaction networks, holistic approaches remain impor‑
tant. Although studies on the composition of the respira‑
tory tract microbiota did not show substantial differences 
between different developed countries, the question as 
to whether comparable host and environmental factors 
regulate the respiratory microbiota of individuals living 
in low/middle-income countries remains an impor‑
tant open question. The high burden of infectious and 
inflammation-related diseases in developing areas of the 
world might at least, in part, be related to compositional 
changes in the respiratory microbiota and vice versa150. 
Most progress can be expected from large cohort stud‑
ies, in which the microbiota of healthy individuals and 
individuals who have an increased risk of infectious 
respiratory diseases is longitudinally characterized. In 
parallel, multi-omic (for example, transcriptomic and 
metabolomic) and clinical data should be integrated to 
study the crosstalk between host and microorganism, 

Box 4 | Viral–host interactions

Persistent viral infections naturally occur in humans and may regulate innate and 
adaptive immunity. In serum, there is an estimated daily turnover of more than 109 
anellovirus particles, which is thought to induce continuous immune surveillance and 
influence inhabitation by other microorganisms172. Similarly, chronic infection with 
herpesviruses, which have co‑evolved with mammals for millions of years173 and can be 
detected in more than 90% of humans172, protects against bacterial infections by 
increasing the basal expression of interferon-γ (IFNγ) and facilitating the activation of 
macrophages174. Likewise, acute infection with common respiratory viruses activates 
innate immune pathways that remain active after the virus has been cleared. For 
example, infection with Sendai virus in mice is associated with the interleukin‑13 
(IL‑13)‑dependent activation of natural killer T cells (NKT cells) and lung macrophages 
and subsequent airway hyper-reactivity175. Similarly, early infection with respiratory 
syncytial virus (RSV) leads to impaired regulatory T cell (Treg cell) function in mice, which 
increases the risk of allergic airway disease169. These findings are further supported by 
data from a human infant cohort study, in which persisting immune dysregulation was 
still detected one month after acute RSV infection176.
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Host factors
• Birth mode
• Feeding type
• Antibiotics
• Crowding conditions
• Genetics and epigenetics 
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microbiota function, and the effect of environmental fac‑
tors on the composition of the microbiota. Consequently, 
advances in bioinformatics will be required to appropri‑
ately combine and analyse multiple high-dimensional 
datasets. Methods to analyse complex combinatorial 
data sets are sparse, but the field is rapidly progressing by 
applying machine-learning algorithms and time-resolved 
data modelling. A multidisciplinary approach to extract 
patterns and associations from these studies could cul‑
minate in individualized risk assessment and preventive 

personalized medicine, as illustrated by a study in which 
dietary interventions that were made based on the gut 
microbiota led to the improved control of post-meal glu‑
cose levels151. Microbiota-based interventions are likely 
to be most beneficial in young children, as a window of 
opportunity within which the local microbiota primes 
specific features of the immune system seems to exist. 
Interventions during this impressionable period could 
redirect an aberrant developmental route, potentially 
influencing long-term respiratory health.

Figure 3 | Host–microbiota interactions in the respiratory tract. Host–microbiota interactions in the respiratory tract 
occur mostly at the mucosal surface. Resident microorganisms prime immune cells either locally or systemically; these 
include epithelial cells, neutrophils and dendritic cells, which all contribute to the clearance of pathogens. Moreover, 
microbial signalling is necessary for the recruitment and activation of regulatory cells, such as anti-inflammatory alveolar 
macrophages (AMs) and regulatory T cells (Treg cells). Locally, the host will respond to microbial colonization through the 
release of antimicrobial peptides (AMPs) and secretory immunoglobulin A (sIgA). Sensing of the microbiota involves 
microfold (M) cells that activate tolerogenic dendritic cells. In addition, alveolar dendritic cells can directly sample 
luminal microorganisms. Together, these pathways lead to the regulation of inflammation and the induction of tolerance, 
which, in turn, shape resident bacterial communities. It is also plausible that early bacterial colonization is key to 
long-term immune regulation, which is illustrated by the microbiota-induced decrease in hypermethylation of the 
CXC-motif chemokine ligand 16 (Cxcl16) gene, which prevents the accumulation of inducible natural killer T cells  
(iNKT cells), and by the programmed death ligand 1 (PDL1)-mediated induction of tolerogenic dendritic cells (BOX 3). 
This tolerant milieu, in turn, contributes to the normal development and maintenance of resident bacterial  
communities, which are also influenced by host and environmental factors (FIG. 1). AEC, alveolar epithelial cell;  
LPS: lipopolysaccharide; PRR: pattern recognition receptor; URT, upper respiratory tract.
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