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A B S T R A C T   

The COVID-19 has a worldwide spread, which has prompted concerted efforts to find successful drug treatments. 
Drug design focused on finding antiviral therapeutic agents from plant-derived compounds which may disrupt 
the attachment of SARS-CoV-2 to host cells is with a pivotal need and role in the last year. Herein, we provide an 
approach based on drug design methods combined with machine learning approaches to classify and discover 
inhibitors for COVID-19 from natural products. The spike receptor-binding domain (RBD) was docked with 
database of 125 ligands. The docking protocol based on several steps was performed within Autodock Vina to 
identify the high-affinity binding mode and to reveal more insights into interaction between the phytochemicals 
and the RBD domain. A protein-ligand interaction analyzer has been developed. The drug-likeness properties of 
explored inhibitors are analyzed in the frame of exploratory data analyses. The developed computational pro
tocol yielded a comprehensive pipeline for predicting the inhibitors to prevent the entry RBD region.   

1. Introduction 

The first anniversary of the novel coronavirus SARS-CoV2 pandemic 
called for urgent action to develop therapeutically agents and battle 
against the growth of the pandemic. The development of genuinely 
effective antiviral products or dependable vaccines is yet the main
stream of drug development researches. Clarification of the viral 
mechanisms and unknown pathways could help researchers better un
derstand the pathobiology of SARS-CoV2. The previous works on the 
general SARS coronavirus and the initial reports on SARS-CoV2 revealed 
close interactions between the S-protein of coronavirus and specific 
ACE2 human host receptors (angiotensin-converting enzyme). The 
molecules that can weaken this interaction could prevent or decrease the 
affinity of S-protein and ACE2 receptors (Pushpakom et al., 2019). 

To control and overcome the COVID-19 pandemic from natural 
compounds, structure-based computer-aided drug design (CADD) 
methodologies and molecular docking studies have become essential 
steps in recognizing effective compounds (Barazorda-Ccahuana et al., 
2021; Ghosh et al., 2021). In recent years, artificial intelligence (AI) and 
machine learning-based models have significantly impacted drug 

discovery (Gupta et al., 2021). These models have introduced reason
able and efficient approaches to discover functionally effective antiviral 
compounds (Keshavarzi Arshadi et al., 2020). Machine learning leads to 
creating models that can learn hidden patterns within the available data. 
If the model is trained well with enough data, it can predict the affinity 
or activity of the candidate molecules according to a target receptor in a 
structural-based manner. Several ligand-based CADD approaches have 
been reported for the discovery of inhibitors against SARS-CoV-2 (Amin 
et al., 2021; Ghoran et al., 2021; Nedyalkova and Simeonov, 2021). 

For a long time in human history, herbal medicines have been 
serving patients. These herbs contain many different phytochemicals, 
such as alkaloids, flavonoids, glucosides, and polyphenolic compounds, 
which offer a wide range of sanative properties and novel scaffolds to 
design new drugs (Aanouz et al., 2020; Gupta et al., 2020; Liskova et al., 
2021; Mouffouk et al., 2021). Hence, an efficient way to find effective 
drugs is to test the affinity of antiviral phytochemicals against 
SARS-CoV-2 with machine learning (Ding, 2019). The community’s 
attention stressed the plausible application of the ML tools in the covid 
battle. Advances of ML have bypassed the problem and then told us what 
we do not know or how to resolve the complex issues. The significant 
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pillars for widening ML application in the drug design and not only, are 
the following. First is the open data philosophy as a more pervasive 
science society. The algorithms are massively dependent on the deeding 
with extensive data. The codes are massively parallel and proper for the 
new hardware architecture due to the ML packages’ open-source 
availability. 

Drug discovery and developments in the last 50 years’ discovery 
developed a remarkable tail of achievement. From the idea to the drug’s 
approval, the path was long and with limited tools for the best with the 
proper and quicker predictions. Machine learning methods could assist 
as a spot based on already approved drugs that could help and fight 
COVID-19. A recent article in Nature Communications (Belyaeva et al., 
2021) applied AI and machine learning methods for boosting the drug 
repurposing process (Karki et al., 2021). The research team of Karki 
et al. developed a deep neural network-based drug screening method 
with an extensively screening of 750,000 compounds. The outcomes 
from the study are labeling the already available drugs with the po
tential for repurposed and de novo strategy of ACE2 inhibitors. In the 
recent study of Gangadevi (Gangadevi et al., 2021) in silico drug design 
strategy was conducted for the set of natural compounds. The outcome 
results proposes that Kobophenol A may inhibit the interaction between 
ACE2 and the spike protein of SARS-CoV-2. 

In other published methods as an integrative, network-based deep- 
learning methodology for the drugs repurposing for COVID-19 (CoV- 
KGE) (Zeng et al., 2020), the authors pointed out 41 repurposed drugs 
(including dexamethasone, indomethacin, niclosamide, and tor
emifene). A broad overview for the use of deep learning in the battle 
with the COVID-19 pandemic as a survey (Shorten et al., 2021) gives an 
overview of the capability of the prediction power of Deep Learning and 
the problems that we can solve by using such tools. In a review paper, 
Zhou et al. (Zhou et al., 2020) discussed the advantages of AI for drug 
repurposing as a time-saving method. The time frame is a major factor 
for drug discovery in a situation as in the moment, and the eventually 
accelerated method for speeding up the process is welcome. 

Herein, we present a general approach that can screen natural 
compounds in the frame of docking and exploratory data analysis. We 
developed this approach to investigate the relation of different molec
ular descriptors obtained from a database of natural remedial molecules 
and the binding affinity with the RBD of the S-protein of coronavirus. 
Our dual approach shows the contributions from ligand docking scores, 
the identity of the binding positions in the receptor pocket, and data 
relations with the molecular descriptors. The method is not implying 
biases only for docking scores, but one step forward for more deeply 
understood by the tools of chemometric and distinguished the protein- 
ligand interactions on two levels of proposed classification. 

We show that the combination of a sequential approach based on the 
molecular descriptors with the docking-based ligand-protein interaction 
outcomes can define a model for binding mode prediction. A model for 
binding mode prediction based on docking scores as input in combina
tion with docking structure. Furthermore, the open tool - Protein-Ligand 
Interaction Analyzer SAMSON Extension, (https://www.samson-con
nect.net/element/98bd1552–4642–9e86–6a78–83c9e96a63ee.html) 
for post docking analyses was developed. We believe that the Protein- 
Ligand tool will be a reliable instrument for the research community 
for exploring the protein-ligands interaction in an easier and user- 
friendly environment. 

2. Material and Methods 

2.1. Molecular docking calculations 

Molecular docking of the dataset was conducted by AutoDock Vina 
within the SAMSON platform. SAMSON is a platform for molecular 
design with an open architecture and applicability for drug design, 
materials science, physics, chemistry, biology, nanoscience, and edu
cation. It was originally developed at Inria, the French computer science 

institute (“Inria, National Institute for Research in Digital Science and 
Technology,” n.d.), and is now being developed and distributed by 
OneAngstrom (“OneAngstrom,” n.d.). 

The all structures of the ligand have been generated with the mol
view software (Smith et. all., 1995). 

The open architecture of SAMSON, and its accompanying Software 
Development Kit (SDK), makes it possible to develop apps and services 
for molecular design, as well as integrate computational methods into a 
unified environment that facilitates user workflows. Various SDK ca
pabilities ease and accelerate development (managed memory, signals, 
and slots for adaptive calculations, introspection, compile-time dimen
sional analysis, predicate logic, source code generators, etc.). Over fifty 
extensions are available on SAMSON Connect (“SAMSON molecular 
design platform,” n.d.). Among them, SAMSON’s AutoDock Vina 
Extended (“AutoDock Vina Extended SAMSON Extension,” n.d.) in
tegrates the popular AutoDock Vina method (Trott and Olson, 2010) and 
adds facilities to graphically configure calculations and analyze results. 

AutoDock Vina Extended module implemented in SAMSON was used 
for the receptors and ligands, specify the search domain and flexible side 
chains in the receptor-binding domain, and set calculation parameters. 
We then exported AutoDock Vina input files to perform calculations in 
the Cloud to accelerate the process, and we imported the results back 
into SAMSON for further visualization and analysis. 

The analysis of the protein-ligand interaction was performed using 
the new Protein-Ligand Interaction Analyzer Extension in SAMSON 
(“Protein-Ligand Interaction Analyzer SAMSON Extension,” n.d.). The 
extension was developed using the SAMSON SDK. It was used to 
compute sphericity, the radius of gyration, hydrogen bonds, ligand- 
surrounding residues, the solvent-accessible surface area (SASA), and 
the contact area between the receptor and the ligand. 

To find hydrogen bonds between the receptor and the ligand, the 
following parameters were used: a cut-off threshold for the donor- 
acceptor distance is equal to 0.35 nm, a minimum threshold for the 
donor-hydrogen-acceptor angle is set to 120◦, and the following 
hydrogen bonds were considered (Donor− Hydrogen⋅⋅⋅:Acceptor): 
O− H⋅⋅⋅:N, O− H⋅⋅⋅:O, O− H⋅⋅⋅:S, N − H⋅⋅⋅:N, N − H⋅⋅⋅:O, N − H⋅⋅⋅:S, 
C− H⋅⋅⋅:O, F− H⋅⋅⋅:F, S− H⋅⋅⋅:S. The SASA was computed as follows: 

SASA =
∑Natoms

i=1
4π

(
ri + rprobe

)2NSASi

NS  

where Natoms is the number of atoms in the system, ri is the Van Der 
Waals radius of the ith atom, rprobe is the probe’s radius, N is the number 
of points on a sphere with the center on the ith atom’s center and the 
radius equal to ri +rprobe that are accessible for solvent, NS is the total 
number of points on the sphere. The probe’s radius, rprobe for SASA was 
set to 0.14 nm. The points on a sphere are generated using the golden 
section spiral algorithm to ensure their even distribution on a sphere. 
The number of points on the sphere was set to 1200 which proved to be 
sufficient from the convergence point of view. To efficiently compute 
the SASA, spatial hashing was used to determine pairs of neighboring 
atoms. 

The receptor-ligand contact area (RLCA) is computed as follows: 

RLCA =
Sreceptor + Sligand − Ssystem

2  

where Sreceptor is the receptor’s SASA, Sligand is the ligand’s SASA, and 
Ssystem is the SASA of the receptor-ligand complex. The division by 2 is 
because the receptor and the ligand share a contact surface when they 
are docked (the SASA of the receptor separately). 

2.2. Exploratory data analysis methods 

Due to a large number of molecular descriptors compared to the 
number of interests, most QSAR studies can be affected by irrelevant and 
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redundant information and collinearity among the descriptors. Principal 
component analysis (PCA) as a powerful statistical technique can be 
used to reduce the dimensionality of the feature space by defining new 
orthogonal latent variables. These new variables are called principal 
components, PCs, which are obtained by a linear combination of original 
variables and sorted in descending order retaining most of the variance 
content from the original data (Höskuldsson, 1995). In this way, PCA 
can be used to investigate the similarity of the observations (molecules) 
and the variables (descriptors) and reveal the hidden structure of data 
and provide insight into a lower-dimensional space without losing much 
information (Abdi and Williams, 2010). 

The original data matrix X (m molecules × n descriptors) is centered 
and decomposed into two matrices, T and P, using PCA as X = TPT , 
in which the matrix T is known as the score matrix and the matrix P 
known as the loading matrix. Each column of T represents the new co
ordinate of samples (molecules) in correspond to PC directions. Each 
column of P represents the contribution of original variables (de
scriptors) to define the corresponding PC direction (Ferketich and 
Muller, 1990). Considering a lower number of PCs, the dimensionality of 
the latent space is reduced, and it could be easy to apply any further 
analysis. By considering the new coordinate defined by PCs, a score-plot 
can be obtained by plotting T columns against each other. Hence, each 
molecule represents by a point or vector in the lower dimensional latent 
space, and similar molecules can be clustered together. Moreover, col
umns of the loading matrix P can similarly be used to get the loading plot 
and investigate descriptors’ similarity. 

Multiple linear regression (MLR) is a popular statistical method that 
models a linear relationship between independent (explanatory) vari
ables and a dependent variable (response, y). In other words, the MLR 
model tries to predict the response variable by a linear combination of 
independent variables (G Damale et al., 2014). The coefficients vector b 
for this linear combination can be obtained using the least-square so
lution as follow: 

b = (XTX)
− 1XTy 

Due to the sensitivity of the MLR model to the collinearity between 
variables, finding the best subset of variables to build the model is a 
solution. This can be achieved by widely used subset selection proced
ures like forward-selection (Consonni et al., 2002). 

To compare similarities between samples (molecules) and find some 
patterns in data, clustering methods can be considered as an important 
data mining strategy to put a set of samples into classes or categories or, 
in another word, the partitioning of data. samples into subsets based on 
their features (descriptors) and a similarity/dissimilarity measure. that 
could be molecular descriptors. K-means clustering method is one of the 
most widely non-hierarchical clustering algorithms (de Ridder et al., 
2013). This method uses a straightforward way to classify a given 
sample through a certain number of fixed clusters (k). This method is 
used in this study to investigate possible clusters between molecule
s/descriptors after reducing the dimensionality of the data using PCA to 
obtain a more robust clustering result. 

2.3. DFT calculations 

All molecules are optimized with the B3LYP functional and 
6–31 G* basis set. The solvent effects were taken into account implicitly 
by using the IEPCM of water (ε0 = 80.4). The optimized structures were 
subject to frequency analysis to verify that they represent minima on the 
potential energy surface. All calculations were performed with Gaussian 
09. The MOs are visualized by using GaussView and an isosurface value 
of 0.02. 

3. Results and discussion 

3.1. Docking results for interaction between the phytochemicals on the 
RDB of SARS-CoV2 (the spike protein) 

A small dataset of 125 natural compounds (Supporting Information 
Table 1) was screened based on their structural and physicochemical 
properties as selection criteria. The generated input was based on de
scriptors like (i.e., drug-like indices, pharmacophore descriptors, and 
molecular properties, which were calculated by the AlvaDesc (Milano, 
Italy) (https://www.alvascience.com/alvadesc/, access on 15 October 
2020) (Mauri, 2020). The target of our study was only the 
receptor-binding domain extracted from PBD: 6m0j and the crystal 
structure determined and published by Lan et al. (Lan et al., 2020). 

Molecular docking calculations with 125 ligands and one receptor 
were conducted with AutoDock Vina within the SAMSON platform. 
Hydrogens were conserved to both receptors and ligands. Both the 
number of flexible side chains was set to 25, and the number of modes 
was set to 100 with an energy range = 3 kcal/mol (default value). 

The energy range is a maximum energy difference between the best 
binding mode and the unfavorable one displayed (kcal/mol). The energy 
(affinity) that differs more than 3 kcal/mol from the best mode is not 
saved among the results. In the configuration file, the parameter called 
“exhaustiveness” was set to 8. The grid was the following for the center 
− 29.2, 16.6, 21.9 and the size of the grid box was 44.4, 21.3, 55.3. The 
active pocked was based on additional calculations for receptor-binding 
domain. The predicted binding sites sed in the docking study with the all 
ligands are the following: PHE 338, GLY 339, PHE 342, ALA 344, THR 
345, VAL 367, SER 373, PHE 374, TRP 436, LEU 441, ARG 509. 

The active pocket amino acid residues were used based on degen
erated data from a web server pocket detection. The broad table with the 
post docking analyses was deployed (In Supporting Information Table 2. 
Properties for the Ligand – RBD based on the best scores). The binding 
energy (kcal/mol) data and properties listed above allowed us to 
determine the flexibility and solvent accessible surface area (SASA) of 
ligand, receptors, and between the ligand-receptor. As shown in Table 2 
in Supporting Information, the Smilagenin is the compound with the 
best docking score (Fig. 1). The information for the H-bonding was also 
presented in Table 2 in Supporting Information. Fig. 2. 

In the next section, we will continue with a machine learning 
approach based on the obtained docking binding affinity for the ligands. 
The binding locations for explored ligands are crucial, the compounds 
contact key elements involved in S2 recognition and for the fusion of the 
viral and host cell membranes (S2 subunit), and could impact ACE2-S1 
interactions as well (Fig. 3). 

3.2. Results of principal component analysis (PCA) 

To investigate the properties of the compounds and any hidden 
patterns and relations between the molecules and the molecular de
scriptors (Supporting Information Table 1. List of natural products used 

Table 1 
The eigenvalues, percent of explained variances, and the cumulative explained 
variances by the first 10 PCs for the studied dataset.  

PC No. Eigenvalue Explained Variance Cumulative Explained Variance 

1  1.006  37.898  37.898 
2  0.494  18.608  56.506 
3  0.284  10.708  67.214 
4  0.136  5.1543  72.368 
5  0.122  4.6207  76.989 
6  0.090  3.4027  80.391 
7  0.070  2.6388  83.030 
8  0.052  1.9705  85.001 
9  0.043  1.6229  86.623 
10  0.040  1.5367  88.160  
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in this study and related affinities predicted inhibition constant and 
compound classes.), a data matrix including 125 rows (molecules) and 
45 columns (descriptors) was prepared. 

According to the difference between descriptors in units and scales, 
the range scaling was applied to equalize the effect of descriptors on the 
PCA analysis results. Hence, the range of each variable (columns) is 
mapped to the range of 0 and 1 according to the minimum and 
maximum values in that column. The scaled data matrix was then 
introduced to the PCA for further analysis. The amount of the explained 
variance by each PC was then investigated and the results are reported in 
Table 1. 

Table 1 indicates that the first three principal components explain up 
to 67.21% of the variability implying that the original feature space 
defined by molecular descriptors can be abstracted by the first three 
latent variables with a few losses of information. A screen-plot of ei
genvalues also shows the contribution of each PC to model the data 
variation. According to the consecutive change of the eigenvalue, we can 
say that the first three PCs for the studied dataset can be retained. 

The 2D score plot depicted in Fig. 4a shows some distinct clusters of 
molecules in data space. From a qualitative point of view, A dense and 
crowded group (red) is placed on the left part of the plot, and there are 
also small clusters that can be distinguished at the top (green), down 
(yellow), and right (blue) part of the plot. According to the 2D score plot 
of PC1 vs. PC2 (Fig. 4a), all four clusters can be well discriminated along 
the PC1 direction. The blue cluster on the left is spread along the PC2 
path, and the yellow group can be discerned from the other three clus
ters along the PC2 direction. 

The effect of PC3 on the pattern of similarity between molecules can 
be shown by the 2D score plot of PC2 versus PC3 (Fig. 4b). As we expect, 
less variability was investigated along the PC3 direction, and there is just 
one cluster discriminated from the other molecules in the PC3 order. 
Considering all the first three PCs can show a better insight about the 
reduced latent space by PCA (Fig. 4c). Further cluster analysis results are 
presented in the next section. 

To inspect the contribution of variables (molecular descriptors) for 
these patterns of similarity and get an insight into the importance of the 
molecular descriptors to discriminate clusters, loading values related to 
each PC can be considered. Fig. 5 shows the contribution of the de
scriptors to define the first three PC directions. A higher absolute loading 
value means more essential to explain that PC direction. Hence, we can 
conclude that drug-like indices significantly contribute to defining PC1, 

which contains most of the variability between molecules and has an 
essential role in discriminating major clusters of molecules. Here the 
Ro5, cRo5, and DLS-01 are the top three significant contributors. 

Moreover, the Ui descriptor along with the CATS family descriptors 
have the most significant contribution to PC2 and can be considered be 
discriminative descriptors for the yellow cluster. The third loading 
values reveal that TPSA(NO), TPSA(Tot), Ui, and DLS-05 descriptors 
have a significant contribution to defining PC3 and discrimination of 
clusters along that direction. Based on this bar plot, SHED-LL, Uc, Hy, 
LOGPcons, PDI, and SAscores are the least significant descriptors in this 
analysis. 

Fig. 6 shows the loading plots in 2D and 3D which can summarize the 
variable space information. Descriptors with similar contributions in 
PCA-defined space have similar coordinates and forms clusters as we 
expected. 

AutoDock Vina approach was conducted to find the relation between 
structural features of the molecules and the binding affinities of phyto
chemicals as inhibitors for the SARS-CoV2 spike protein. The binding 
affinities were obtained for the whole set of natural compounds. The 
binding affinity and predicted inhibition constant of all molecules are 
shown in Table S2 in Supporting Information. K-means clustering was 
then performed on the reduced space to evaluate binding affinities 
within each cluster. 

The optimal number of clusters was determined using the Calinski- 
Harabasz criterion (Caliński and Harabasz, 1974). Testing the 
Calinski-Harabasz criterion values for each number of clusters (Fig. 7) 
shows that the optimal number of clusters is ten. 

Fig. 8a and Table 2 summarized the clustering result and members of 
each cluster along with the mean value of binding affinities of cluster 
members. The distribution of the molecules in PC space is also repre
sented with binding affinity information in Fig. 8b. 

Accordingly, clusters 3 and 9 have the highest mean value for 
binding affinity which can be separated from other clusters along PC1 
and PC2 respectively. 

According to Fig. 8, it is apparent that PC1 has a significant role to 
discriminate between molecules with relatively high and low affinity. 
PC2 has lower discriminatory information compared to PC1. Two clus
ters with a low binding affinity (specified by blue small bubbles at the 
left part of the plot) are somehow separated from other molecules in the 
PC3 direction. 

To have a better insight into the relation of molecular descriptors and 

Table 2 
K-means clustering result (K=10).  

Cluster 
id 

Number of 
members 

Members Mean Docking 
Score 

1  13 ’1,8-Cineole’, ’4-Terpinyl acetate’, ’Anethole’, ’Artemisia ketone’, ’Beta-Thujone’,’Camphor’,’Cis-anethole’,’Citronellyl 
acetate’, ’Isopinocamphone’, ’L-Thujone’, ’Pinocarvone’,’Piperitone’,’Trans-anethole’  

-4.8923 

2  23 ’7-Methoxycryptopleurine’, ’Alpha-Bisabolol’, ’Blancoxanthone’, ’Broussochalcone b′ , ’Camazulene’, ’Curcumin’, 
’Demethoxycurcumin’, ’Dihydrotanshinone’, ’Dihydrotanshinone’, ’Guaiol’, ’Isobavachalcone’, ’Methyl tanshinonate’, 
’Monodemethylcurcumin’, ’Neobavaisoflavone’, ’Psoralidin’, ’Pyranojacareubin’, ’Spathulenol’, ’Tanshinone i′, ’Tanshinone 
iia’, ’Tanshinone IIb’, ’Tau-Cadinol’, ’Tetrahydrocurcumin’, ’Viridiflorol’  

-7.1783 

3  12 ’6-Oxoisoiguesterin’, ’Beta-Sitosterol’, ’Betulinic acid’, ’Celastrol’, ’Epitaraxerol’, ’Friedelin’, ’Iguesterin’, ’Pristimerin’, 
’Quadrangularic acid f′, ’Sanggenol E′, ’Schimperinone’, ’Smilagenin’  

-8.1083 

4  7 ’Amentoflavone’, ’Artocommunol e′, ’Jubanine G′, ’Jubanine H′, ’Nummularine B′, ’Ouabain’, ’Silvestrol’  -7.4857 
5  1 ’Dehydroabieta-7-one’  -7.3000 
6  19 ’(E)-caryophyllene’, ’6,7-dehydroroyleanone’, ’10’’-hydroxyusambarensine’, ’Allo-Aromadendrene’, ’Alpha-Cubebene’, ’Alpha- 

selinene’, ’Bicyclogermacrene’, ’Cryptojaponol’, ’Ferruginol’, ’Gamma-Gurjunene’, ’Germacrene b′, ’Isoledene’, ’Kazinol F′, 
’Ledene’, ’Longifolen’, ’Muurolene’, ’Papyriflavonol A′, ’Withanone’, ’Xanthoangelol’  

-6.7789 

7  16 ’(+)-artemisinic alcohol’, ’1-Cyclopentyl-2-propen-1-ol’, ’Alpha-pinene’, ’Artemisia alcohol’, ’Ascaridole’, ’Beta-pinene’, 
’Camphene’,’Carvacrol’, ’Caryophyllene oxide’, ’Eugenol’, ’Limonene’, ’Linalool’, ’Myrcene’, ’Sabinene’, ’Terpinen-4-ol’, 
’Thujene’  

-5.0875 

8  8 ’Epigallocatechin gallate’, ’Gallocatechin gallate’, ’Myricetin 3-(4’’-Galloylrhamnoside)’, ’Myricetin 3-Neohesperidoside’, 
’Myricetin 3-Sambubioside’, ’Myricetin 3’’-Rhamnoside’, ’Pectolinarin’, ’Rhoifolin’  

-7.9000 

9  5 ’Akebia saponin c′, ’Ardisia Saponin’, ’Glycyrrhizin’, ’Ursane’, ’Saikosaponin B2’  -8.4600 
10  21 ’3-Friedelanol’, ’Ampelopsin’, ’APA’, ’Apigenin’, ’Baicalein’, ’Biochanin a′ , ’Chrysin’, ’Emodin’, ’Fisetin’, ’Formononetin’, 

’Gallic acid’, ’Genistein’, ’Hesperetin’, ’Isoliquiritigenin’, ’Kaempferol’, ’Luteolin’, ’Quercetin’, ’Rhein’, ’Sappanchalcone’, 
’Scutellarein’, ’Taxifolin’  

-7.0190  
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binding affinity, a forward selection strategy was used to find the best 
subset of the descriptors and build a proper multiple linear regression 
(MLR) model (Consonni et al., 2021). 10-fold cross-validation (CV) 

strategy was used to evaluate subsets and find the optimal one by 
considering the root-mean-square error (RMSE), and correlation coef
ficient (R2). 

Hence, the best subset of the molecular descriptors was obtained and 
included 16 descriptors as follows: CATS2D_00_LL, CATS2D_01_LL, 
CATS2D_05_LL, CATS2D_06_LL, SHED_DL, SHED_AL, Uc, Ui, MLOGP, 
VvdwZAZ, PDI, SAscore, DLS_03, DLS_05, DLS_06, and QEDu. 

Fig. 9 and 10 shows the regression coefficient of these 16 descriptors 
and the scatter plot of the calculated binding score by MLR versus 
binding score from AutoDoc Vina respectively. The RMSE and R2 of the 
cross-validated model were 0.6973 and 0.751 respectively. 

Table 3 in the SI summarizes the quantum chemical descriptors for 
the top five ranked by the docking ligands: energy of HOMO and LUMO, 
HOMO-LUMO gap, ionization potential, electron affinity, electronega
tivity, global hardness, global softness, global electrophilicity, dipole 
moments, and isotropic polarizability. The results indicate that among 
all ligands Smilagenin stands out as a structure with unique electronic 
properties. Namely, in the whole series, it has the highest HOMO and 
LUMO, very high HOMO-LUMO gap (8.81 eV), and respectfully highest 
global hardness, lowest softness, and lowest global electrophilicity. 
Based on the quantum chemical descriptors Smilagenin can be classified 
as the best electron donor among all ligands. It is also characterized by 
the smallest values of the dipole moment and polarizability. The unique 

Fig. 1. The RBD with the top 3 ligands: Smilagenin, 10’-hydroxyusambarensine, and Celastrol.  

Fig. 2. Hydrophobic pocket for the RBD pointed with the cycle for the receptor. 
Represented with Gaussian hydrophobic surface. The red-blue color scheme, 
red – hydrophobic, blue–hydrophilic. 

Fig. 3. (a) the 3D structure of Smilagenin (b) RBD with Smilagenin as a ligand in the active binding site pocket view represented in Gaussian hydrophobic surface. 
The red-blue color scheme, red – hydrophobic, blue – hydrophilic(c) the 3D structure of 10’-hydroxyusambarensine (d) RBD with 10’-hydroxyusambarensine as a 
ligand in the active binding site pocket (e) the 3D structure of Celastrol (f) RBD with Celastrol as a ligand in the active binding site. 
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Fig. 4. Score plots resulted from PCA analysis labeled with row numbers (molecules) (a) PC1 vs. PC2 (b) PC2 vs. PC1 (c) three-dimensional score plot (PC1 vs. PC2 
vs. PC3. 

Fig. 5. Loading values of the descriptors for the first three PCs.  

Fig. 6. (a) 2D Loading plot (PC1 vs. PC2) reveals the contribution of descriptors to define PCs directions. (b) 3D loading plot (PC1 vs. PC2 vs PC3).  
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electronic properties of Smilagenin are consistent with its saturated 
structure containing mainly sp3 hybridized carbon atoms and the 
smallest number of heteroatoms among all ligands. The small number of 
heteroatoms is also related to the capacity of Smilagenin to realize 
hydrogen bonds interactions within the RDB area. This ligand contains 
only one hydroxyl O-atom, which is a hydrogen donor atom, and two 
heterocyclic O-atoms, which are hydrogen acceptors. Based on the 
quantum chemical calculations it can be concluded that the distin
guished hydrophobic nature of Smilagenin makes it suitable for inter
calation in the hydrophobic pocket of the virus and therefore possible 
inhibitor of its activity Thermochemistry results for the ligands, the 
shape of their HOMO, and LUMO, as well as the Mulliken atomic 
charges, can be found in Table SI 4 and Figure SI 1 and 2 in the sup
porting information section. 

4. Conclusions 

Compiling the methods as docking and machine learning are 
perceived for the protein-ligand complexes scoring interaction. The 
work’s focus has been to establish a sequential multilevel workflow 

based on descriptors selection for the explored ligand, similarity space 
search and combination with docking and binding data to accurately, 
costly and faster recognition of the RBD protein targets sides. The 
multilevel model takes the output scoring function as an input matrix for 
building a sequential learning model and classification and assessing the 
impact of the molecular descriptors for the explored dataset. The present 
results model the relative affinity of the RBD part of the spike protein 
with a drug that have the potential to be used as a potential drug for a 
next design effort to minimize the adverse conditions. This developed 
protocol was accomplished with developing a post-docking results tool. 

Author contributions 
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All authors have approved the final version of the manuscript. 

Data Availability 

The applied freely available code for the docking analysis applied for 
this study was described in the Methods Section. The Protein-ligand 
analyzer tool is freely available at https://www.samson-connect. 
net/element/98bd1552–4642–9e86–6a78–83c9e96a63ee.html.The in- 
home-made code for PCA plotting is freely available at GitHub 
(https://github.com/mici345/PCA-MATLAB-R2019-Statistics- 
and-Machine-Learning-Toolbox-) with the data matrix represents Fig. 7. Calinski-Harabasz criterion values for different number of clusters (k).  

Fig. 8. (a) The result of K-means clustering is shown with the 3D score plot (PC1 vs. PC2 vs PC3). Molecular clusters are specified by color and numbers. (b) 3D Score 
plot including docking score information coded with color and size of the marker. Small blue-colored points are the compounds with lower binding affinity and the 
red ones (bigger marker size) are the molecules with the highest obtained binding affinity. 

Fig. 9. MLR coefficients for the selected molecular descriptors.  
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the information of 125 compounds using 45 descriptors and is prepared 
in a readable format for MATLAB. 
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