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Abstract: At present, people spend most of their time in passive rather than active mode. Sitting with
computers for a long time may lead to unhealthy conditions like shoulder pain, numbness, headache,
etc. To overcome this problem, human posture should be changed for particular intervals of time.
This paper deals with using an inertial sensor built in the smartphone and can be used to overcome
the unhealthy human sitting behaviors (HSBs) of the office worker. To monitor, six volunteers
are considered within the age band of 26 ± 3 years, out of which four were male and two were
female. Here, the inertial sensor is attached to the rear upper trunk of the body, and a dataset is
generated for five different activities performed by the subjects while sitting in the chair in the
office. Correlation-based feature selection (CFS) technique and particle swarm optimization (PSO)
methods are jointly used to select feature vectors. The optimized features are fed to machine learning
supervised classifiers such as naive Bayes, SVM, and KNN for recognition. Finally, the SVM classifier
achieved 99.90% overall accuracy for different human sitting behaviors using an accelerometer,
gyroscope, and magnetometer sensors.

Keywords: accelerometer; classifiers; CFS; an inertial sensor; gyroscope; human sitting behaviors;
magnetometer; PSO; smartphone

1. Introduction

People spend their lives in three modes from childhood to old age: active, sedentary,
and non-active. In childhood, they spend much time in active mode while playing outdoor
games, dancing, running, jumping, etc. In middle age, people spend a lot of time passively,
such as sitting on the chair at the office and home on a sofa or bed while watching television
for long periods. In old age, people spend maximum time only in non-active mode due to
lower physical energy levels. Today, people spend little time in active mode and maximum
time in sleeping and sedentary mode. In a sedentary lifestyle, people spend much time
sitting and sleeping because of the short life schedule, and people do not care about sitting
postures. Sitting is not an issue, but sitting in wrong postures for a long duration in a daily
routine may lead to major health issues.

Nowadays, sitting has become a kind of smoke that can lead to many health issues
such as back pain [1], sciatica [2], and cervical spondylosis [3]. A traditional technique
to analyze patient sitting postures is to let a patient sit on the chair of the hospital in
front of the observer such as doctor or therapist, or nurse and complete question answers
regarding sitting postures that has been replaced by a smart cushion system [4]. Generally,
the diagnostic process takes approximately an hour, which is too short for the complete
observation of the patient’s health status. If major issues are found on the spine of the
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patient, doctors prefer an X-ray to check the curvature of the spine and can detect the spine
and the damaged part in the spine of the human body. However, X-ray, computerized
tomography (CT) scan, and magnetic resonance imaging cannot be used regularly.

In [4–8], a smart chair-based approach is applied to improve the sitting postures. The
cushion-based smart chair combines pressure sensors and IMU to monitor the sitting be-
havior at the workplace, in the car, and wheelchair. A generated dataset of sitting behavior
has been featured in approximate entropy and standard deviation to monitor and recog-
nize the activities and activity levels [5]. In [6], a smart cushion system was implemented
to monitor the sitting activities containing calibrated e-Textile sensors and developed a
dynamic time warping-based algorithm to recognize the human sitting behaviors. Sitting
posture monitoring systems (SPMSs) are used to help assess the real-time postures of the
person and improve the sitting behaviors [7,8]. Roh et al. [6] proposed a system to monitor
six sitting behaviors by mounting only four low-cost load cells onto the chair’s seat plate
and one on the backrest. A crucial role is played by ergonomic information for the seated
person to improve the sitting behaviors and the attitude of the seated person [9–12].

The basic descriptions of machine learning classifiers used in this work are given as
follows: the KNN is the non-parametric algorithm that is most popular for its simplicity
and effectiveness [13]. In the KNN classifier, it does not require a learning process [14]. The
KNN method classifies a given object based on the closest training object(s) [15]. The KNN
classifier has two open issues to be addressed [16]; the first is to measure the similarity
between two points, and the other is to choose an ideal value for K [17]. The authors in [18]
presented an embedded system designed to perform a KNN classifier to achieve 75%
accuracy by applying condensed nearest neighborhood as a prototype selection technique,
data balance with Kennard stone, and PCA to reduce the dimension.

The support vector machine (SVM) [19] is a supervised learning approach that ana-
lyzes the dataset and recognizes patterns, mainly used for classification and regression
analysis [20]. The mathematical expression of the SVM algorithm is covered in [21,22].
The SVM classifier aims to find the optimal separating hyper-plane between two classes
for some labeled training datasets [23]. The SVM classifier can also be used for different
gesture recognition, for example SVM classifier used in [24] for hand gesture recognition
and referred publicly available dataset. It is also one of the supervised classifier techniques,
which is popular for its easy implementation and simplicity. In the naive Bayes classi-
fier, the input feature needs to be independent. In contrast, the conditional likelihood
function of each sitting behavior can be expressed as the product of probability density
functions [25].

To improve analyzing sitting postures, we need to replace the traditional techniques
and think of advanced techniques [26]. As we are living in the 21st century and people are
using a smartphone for their convenience. First, we need to define different sitting postures
as discussed in previous literature, such as forward position, middle position, or backward
position, forward sitting posture, reclined sitting posture, slumped sitting posture, laterally
tilted left or right sitting posture, arm back leaning, right over left, twist left, poking chin,
arm learning, crossed legs right over left or left over right sitting posture and postures
in school children [18,27–33]. The proposed study covered five different sitting postures,
which are illustrated in Figure 1. These sitting postures have been considered major sitting
activities by employees in the office chairs from previous studies.
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be easily tracked. The IMU sensor is attached to the upper rear trunk to track the exact 
movement of the spine, which will help recognize the postures of the body [28]. Sitting 
postures have been categorized into two categories: the first is correct posture and the 
second incorrect posture. This paper considers one correct, straight movement and four 
incorrect postures: left, right, front, and back movements.  

Some important related papers are discussed based on used sensors, classifiers, and 
their accuracy in Table 1. Some of the methods listed in Table 1 have limitations like no. 
of subjects, no. of postures, complexity, convergence time, cost, and less accuracy. This 
paper implements a smartphone to detect the time spent on correct and incorrect sitting 
postures during office working hours. The novel contributions of the paper are as follows: 

Sitting behaviors dataset is self-generated in the current paper. 
• The inertial sensor in a smartphone is helpful in monitoring the sitting behaviors of 
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The rest of the paper is organized as follows: Section 2 discusses the framework of 
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results of the experimental setup and discussion of the results. Section 4 concludes the 
paper and compares the outcomes. 

  

Figure 1. A framework of the proposed system.

The inertial sensors are inbuilt with a smartphone which consists of an accelerometer,
gyroscope, and magnetometer. By using the IMU sensor, the movement of the body can
be easily tracked. The IMU sensor is attached to the upper rear trunk to track the exact
movement of the spine, which will help recognize the postures of the body [28]. Sitting
postures have been categorized into two categories: the first is correct posture and the
second incorrect posture. This paper considers one correct, straight movement and four
incorrect postures: left, right, front, and back movements.

Some important related papers are discussed based on used sensors, classifiers, and
their accuracy in Table 1. Some of the methods listed in Table 1 have limitations like no. of
subjects, no. of postures, complexity, convergence time, cost, and less accuracy. This paper
implements a smartphone to detect the time spent on correct and incorrect sitting postures
during office working hours. The novel contributions of the paper are as follows:

Sitting behaviors dataset is self-generated in the current paper.

• The inertial sensor in a smartphone is helpful in monitoring the sitting behaviors of
office workers continuously.

• Determining the time spent on different sitting behaviors, whether correct or incorrect.
• The user can detect the correct and incorrect sitting behaviors.

The rest of the paper is organized as follows: Section 2 discusses the framework of
the current paper, which is illustrated in Figure 1. Data collection, pre-processing, feature
extraction, feature selection, and classifiers are briefly discussed. Section 3 represents the
results of the experimental setup and discussion of the results. Section 4 concludes the
paper and compares the outcomes.
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Table 1. Literature review on the basis of previous papers.

S. No Authors Type of Sensors Classifiers Accuracy (%) Limitations

1 Xu, Wenyao et al. [4]
Textile sensor array
in a smart cushion

chair

Naïve Bayes
network 85.90 The recognition rate is less.

2 Roh, Jongryun et al. [6] Low-cost load cells
(P0236-I42)

SVM using RBF
kernel 97.20

No. of subjects used is less,
and power consumption is

more.

3 Taieb-Maimon, Meirav
et al. [12]

Webcam, Rapid
Upper Limb
Assessment
(RULA) tool.

Sliced inverse
regression 86.0

Analyzed only three symptom
scales as back symptoms, arm

symptoms, and neck pain
severity.

4 Arif, Muhammad et al.
[33]

Colibri wireless
IMU kNN 97.90

Dataset tested is small, and
the optimal set of sensors
need to be placed at the

appropriate locations on the
body.

5 Zdemir et al. [34]

The MTw sensor
unit, MTw
software

development kit

Random forest 90.90 Cost is high, and the
convergence time is more.

6 Rosero-Montalvo et al.
[18]

Ultrasonic sensor,
pressure sensor,
Arduinonano,
LiPobattery

kNN 75.0 Accuracy reported is much
less.

7 Benocci et al. [35]
FSR, digital

magnetometer,
accelerometer

kNN 92.70 The number of subjects used
in the experiment is less.

8 Shumei Zhang et al. [36] HTC smartphone
(HD8282) kNN 92.70 A posture-aware reminder

system can be attached.

2. Framework of Smartphone-Based Sitting Detection

Many different ways have been discussed in previous studies to monitor the multiple
sitting postures in the chair. In the proposed approach, the inertial sensor of the smartphone
is used as a sitting behaviors detector. The smartphone is one of the best approaches to
monitor daily sitting activities at the home or office. In this study, cost, data access,
compatibility, unobtrusive use, and system deployment were prioritized.

Our system can collect a dataset for the five different static movements of the body
while sitting in the chair, as illustrated in Figure 1. The smartphone is attached to the
rear upper trunk at second thoracic vertebrae T2 to gather the measurable dataset, as
illustrated in Figure 2. The anatomical landmark of the sensor on the human body is
shown in Figure 2. All the datasets collected from the inertial measurement unit (IMU),
inbuilt in the smartphone, are classified after feature extraction and feature subset selection
process. The system can identify the postures when the subject moves from the correct
sitting posture to incorrect sitting postures. All collected raw datasets cannot directly be
fed to the classifiers. To recognize the sitting postures properly, five steps are required to be
followed: the first is raw data collection for different sitting behaviors, the second is data
pre-processing, the third is feature extraction, the fourth is feature selection and the fifth
step is classification, as shown in Figure 1 and are discussed further in the current paper.
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Figure 2. Wearable sensor location in the human body.

2.1. Data Collection and Preprocessing

In this work, a new dataset was generated for detecting human sitting behavior while
sitting on a chair. Six subjects (four males and two females) participated in generating the
dataset by inertial sensors. The age band of 26 ± 3 years was considered for the study. The
IMU sensor was attached to the rear upper trunk of the subject. The IMU of the smartphone
was used because it is more user friendly. All of the dataset was generated at a 50 Hz
sample rate by the sensors data collector one android application.

A total of five general movements were considered while sitting on the chair in the
office as follows:

• Left movement;
• Right movement;
• Front movement;
• Back movement;
• Straight movement.

All different sitting activities were performed by the subjects for different time inter-
vals. A sample sequence of all different activities performed at the chair is as follows: left
movement for 712 s, the right movement for 756 s, the front movement for 665 s, the back
movement for 590 s, and straight movement for 549 s. Each activity was performed by
the subjects in the presence of an instructor to generate the dataset efficiently. The total
number of instances for each activity is reported in Table 2 and analyzed with a pie chart
in Figure 3.

Table 2. Number of instances per activity.

S. No Physical Activities No. of Instances Time (in Seconds)

1 A1: Left movement 35,565 712
2 A2: Right movement 37,757 756
3 A3: Front movement 33,268 665
4 A4: Back movement 29,460 590
5 A5: Straight movement 27,451 549

Total 163,501 3272
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Hardware Platform

The One Plus 6 smartphone was used as a hardware platform for dataset gather-
ing [37]. It consists of the accelerometer, gyroscope, and magnetometer sensors required
to recognize physical activities. They run the Oxygen OS 10.3.4 android operating sys-
tem. The small, low-power Bosch-BMI160 is a low noise 16-bit IMU designed by Bosch
used as an accelerometer and gyroscope at 0.002m/s2 and 0.030/rad. The AKM-AK09915
magnetometer is used in One Plus 6 smartphones at 0.6µT resolution. The smartphone is
155.70 mm high, 75.40 mm wide, 7.80 mm deep, and weighs 177 g.

Data pre-processing is a crucial step after data collection before feature extraction.
First, we removed the present noise of all collected data and then normalized within the
range of −1 to +1 to convert them in the same scale, which will be helpful for better feature
extraction from the dataset of different sitting behaviors in the office chair.

2.2. Feature Extraction

To calculate feature vectors from the collected dataset, the window of ωt seconds
(N = (ωt × fs) Samples) was considered [13]. Here fs is a sampling frequency of 50 Hz
of the dataset and N samples. The total acceleration of the accelerometer, gyroscope, and
magnetometer can be calculated by [14]:

AT =

√(
(Ax)

2 + (Ay)
2 + (Az)

2
)

(1)

Ax, Ay, and Az are the acceleration along the x, y, and z axes of the accelerometer,
gyroscope, and magnetometer. For better understanding, features are divided into two
different categories, the first is morphological features, and the second is entropy-based
features. Where, morphological features include mean of absolute values [33], harmonic
mean [33], variance [37,38], standard deviation [38,39], root mean square and simple
squared integral [40], and entropy-based features are wavelet entropy and log energy
entropy.

2.2.1. Morphological Features

The morphological features include the study of the morphological features such as
structure and shape from the dataset of sitting behaviors which are formulated below:

Mean Absolute Value (MAV) =
1
N

N

∑
i=0
|xi| (2)
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S tan dard Deviation (σ) =

√√√√ 1
N

N

∑
i=0

(xi − µ)2 (3)

Variance (VAR) =
1
N

N

∑
i=0

(x− µ)

2

(4)

Skewness =
1
N

N
∑

i=1
(xi − µ)3

σ
(5)

Root Mean Square (RMS) =

√√√√ 1
N

N

∑
i=0

(xi)
2 (6)

Simple Squared Integral (SSI) =
N

∑
i=1

(xi)
2 (7)

where, µ is mean of dataset, σ is the standard deviation and xi is collected samples. A
simple squared integral can help to calculate the energy of the signal [33].

2.2.2. Entropy-Based Features

Two kinds of entropy-based features were introduced: wavelet entropy is the measure
of relative energies in the different signals and is used to determine the degree of the
disorder [1].

Wavelet Entropy (WE) = −
N

∑
i=1

(xi ln(xi)) (8)

Log energy entropy (LEE): For a time series x(n) of finite length m, LEE is calculated
as [11]

Log Energy Entropy =
N

∑
i=1

(
log2(xi)

2
)

(9)

2.3. Feature Subset Selection

The dimension of the features is also the dependent parameter of the performance of
the classifiers. One of the best ways to reduce the dimension of the extracted features is
by applying a feature selection algorithm [40,41]. In this work, a filter method known as
correlation-based feature selection (CFS) is applied as a feature selection algorithm [42–44].
CFS quickly identifies relevant features and discards redundant, noisy, and irrelevant
features based on appropriate correlation measures. This entire approach enhances the
performance of classifiers while also reducing their computing time. Table 3 shows the
subset of features depending on their contributions. The CFS technique can anticipate each
feature as well as feature redundancy at the same time. Hence, a high correlation of the
features of the classes is desirable.

Many different search methods are available to select the feature subset in the CFS
technique. In [33], a scatter search technique is used and uses a diversification generation
technique for a diverse subset. In the current paper, particle swarm optimization (PSO)
search technique was applied among other search techniques. PSO technique was proposed
by Eberhart and Kennedy in [45]. PSO-based calibration technique was developed to
obtain optimized error parameters such as scale factor, bias, and misalignment errors. The
all-required mathematical expression and fitness function are explained in [45–47]. By
combining the CFS technique and PSO search technique, a total of 27 features were selected
out of 85 calculated features shown in Table 3.
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Table 3. Selected features with contribution ratings.

S. No Selected Features S. No Selected Features

1 Total-acceleration 15 Z-magnetometer-SD
2 Total-magnetometer 16 Z-accelerometer-skewness
3 Y-accelerometer-MAV 17 X-gyroscope-skewness
4 X-gyroscope-MAV 18 Y-gyroscope-skewness
5 Y-gyroscope-MAV 19 Z-gyroscope-skewness
6 Y-magnetometer-MAV 20 Y-magnetometer-skewness
7 X-accelerometer-HM 21 Y-accelerometer-LEE
8 X-gyroscope-HM 22 Y-magnetometer-LEE
9 Y-accelerometer-Var 23 X-gyroscope-SSI
10 Z-accelerometer-Var 24 X-accelerometer-WE
11 Z-magnetometer-Var 25 X-gyroscope-WE
12 X-gyroscope-SD 26 X-magnetometer-WE
13 Y-gyroscope-SD 27 Y-magnetometer-WE
14 X-magnetometer-SD

2.4. Sitting Behavior Recognition Techniques

In this paper, three classifier techniques were applied and compared, the most popular
among other recognition techniques such as support vector machine (SVM), K-nearest
neighbor (KNN), and naive Bayes after feature selection algorithm to recognize the sitting
behaviors. The accuracy of all applied recognition techniques estimation is based on the
confusion matrix [47]. True and false predicted values help calculate the accuracy of the
sitting behaviors recognition techniques, as shown in Equation (10). In the following
paragraph, these all-recognition techniques will be discussed briefly

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

3. Results and Discussion

In this section, the whole experimental setup and results are discussed. Here, MATLAB
R2021a was used to perform all calculations and analyses of the dataset of human sitting
behaviors of office workers in the office environment. CFS and PSO are jointly utilized
for feature selection among various extracted features to provide the highest performance
of the applied classifiers. The inertial sensor unit of the smartphone, which includes an
accelerometer, gyroscope and magnetometer sensors, was employed to collect the raw
dataset defining the five sitting behaviors of the office workers. The recognition results of
each sitting behavior were using 10-fold cross-validation for training. Here we split the
dataset in the ratio of 3:1 that is 75% of this dataset is the training cross-validation (around
123,545 instances) dataset and 25% of the dataset is the test set (around 39,956 instances).
The feature vectors are the representation of the static sitting movements in x, y, and z
directions.

3.1. Performance Analysis of Classifiers with Feature Selection of Accelerometer, Gyroscope,
and Magnetometer

The performance evaluation of the KNN, naive Bayes, and SVM classifiers for feature
selection using an accelerometer, gyroscope, and magnetometer is presented in Table 4.
The evaluation is based on the sitting activities with 27 feature subsets extracted using the
combination of the accelerometer, gyroscope, and magnetometer sensors. All the classifiers
were trained properly with similar training conditions. A multiclass SVM (OAA) with a
medium Gaussian (RBF) kernel classifies the test data. In the case of K-NN, the hamming
distance metric is chosen to find distance along with the nearest neighbor search method.
The comparative analysis of the different K values 3, 5, 7, and 11 of KNN are also illustrated
in Table 4. The overall accuracy of KNN (K = 3), KNN (K = 5), KNN (K = 7), KNN
(K = 11), SVM and naive Bayes are 99.73%, 99.82%, 99.50%, 99.40%, 99.89%, 97.46%,
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respectively. From the results, it can be inferred that the KNN at the values of K at 3 and 5
and the SVM classifier outperformed among the other classifiers. The performance of each
classifier was evaluated for all the five sitting behaviors, and a comparison of experimental
results is shown in Table 4.

Table 4. Classifier results with feature selection of accelerometer, gyroscope, and magnetometer.

S. No Activities KNN
(K = 3)

KNN
(K = 5)

KNN
(K = 7)

KNN
(K = 11) SVM Naive

Bayes

1 A1: Left movement 99.20 99.91 99.91 99.92 99.99 98.51
2 A2: Right movement 99.97 99.97 99.97 99.95 99.98 99.06
3 A3: Front movement 99.96 99.96 99.96 99.94 99.98 99.15
4 A4: Back movement 99.67 99.72 99.70 99.68 99.76 91.89
5 A5: Straight movement 99.89 99.58 98.31 97.68 99.77 98.71

The confusion matrix of all five sitting behaviors by the SVM classifier is shown in
Table 5. The confusion matrix in Table 5 is formed for the instances of four different sitting
behaviors confused with each other and straight movement. In the confusion matrix, each
row represents instances in true class, and the column represents instances in predicted
class.

Table 5. Confusion matrix of SVM classifier of selected features of accelerometer, gyroscope, and
magnetometer.

S. No Activity A1 A2 A3 A4 A5

Tr
ue

C
la

ss

1 A1 10,669 0 0 0 1
2 A2 1 11,476 0 0 0
3 A3 1 0 10,055 1 0
4 A4 0 0 0 8762 21
5 A5 0 0 2 16 8044

Predicted Class

3.2. Performance Analysis of the Classifiers with Feature Selection of Accelerometer and Gyroscope

Table 6 illustrates the results of classifiers for feature selection using accelerometer
and gyroscope sensors. The classifier results were obtained for the classifier techniques
that are KNN (K = 3, K = 5, K = 7, K = 11), SVM, and naive Bayes. The naive Bayes classifier
performs poorly among the other classifiers with 91.60% overall accuracy. The KNN for
K = 5 and 11 performed poorly with 98.00% overall accuracy compared to the KNN with K
values as 3 and 7. The KNN with K = 3 has better accuracy of 98.60% among all the other
K values of KNN. The SVM classifier achieves the overall best performance by the SVM
classifier of 98.80%, and the overall comparison of classifier results with all input postures
is shown in Figure 4.

Table 6. Classifiers result with feature selection of accelerometer and gyroscope.

S. No Activities KNN
(K = 3)

KNN
(K = 5)

KNN
(K = 7)

KNN
(K = 11) SVM Naive

Bayes

1 A1: Left Movement 98.24 97.88 97.56 96.95 97.10 84.55
2 A2: Right Movement 99.78 99.76 99.73 99.69 99.88 99.37
3 A3: Front Movement 99.55 99.53 99.52 99.51 99.66 92.43
4 A4: Back Movement 98.95 99.08 99.17 99.26 98.78 85.66
5 A5: Straight Movement 95.87 95.12 94.57 93.51 98.31 95.31
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From Figure 4, it can be inferred that for the right movement, the classifiers KNN
(K = 3, K = 5, and K = 7), SVM, and naive Bayes classifiers have the maximum accuracy
with 99.78%, 99.76%, 99.73%, 99.88%, and 99.37%. The KNN with K = 11 performed best
for left movement with 96.95% accuracy.

The confusion matrix for all considered sitting behaviors of office workers by using
accelerometer and gyroscope with the SVM classifier is shown in Table 7. The confusion
matrix in Table 7 is formed for five different sitting behaviors confused with each other.

Table 7. Confusion matrix of SVM classifier of selected features of accelerometer and gyroscope.

S. No Activity A1 A2 A3 A4 A5

Tr
ue

C
la

ss

1 A1 10,341 7 108 8 185
2 A2 3 11,460 3 2 5
3 A3 130 2 10,038 1 2
4 A4 1 1 0 8746 106
5 A5 69 4 1 59 7868

Predicted Class

3.3. Performance Analysis of the Classifiers with Feature Selection of Accelerometer

The result of all the applied classifiers only by using the accelerometer sensor is shown
in Table 8. From Table 8, it can be illustrated that the naive Bayes classifier performed
with 91.90% least overall accuracy compared to the other classifier techniques. The KNN
(K = 3), KNN (K = 5) and KNN (K = 7) performed comparably with 99.70% accuracy. The
KNN with K = 11 performed as the best classifier with 99.60% accuracy compared to all
the other techniques. The overall accuracy of SVM is 99.5%. The right movement feature
achieved attention by naive Bayes and all KNN classifiers. Whereas, left movement is most
accurately classified by SVM classifier with 98.94% accuracy. The confusion matrix for
all the considered sitting behaviors of office workers using an accelerometer with KNN
(K = 3) classifier is shown in Table 8. The confusion matrix in Table 9 is formed for five
different sitting behaviors confused with each other.
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Table 8. Classifier results with feature selection of accelerometer.

S. No Activities KNN
(K = 3)

KNN
(K = 5)

KNN
(K = 7)

KNN
(K = 11) SVM Naive

Bayes

1 A1: Left movement 99.63 99.57 99.50 99.46 98.94 82.18
2 A2: Right movement 99.95 99.93 99.92 99.91 99.89 99.80
3 A3: Front movement 99.90 99.88 99.87 99.87 99.84 90.62
4 A4: Back movement 99.68 99.72 99.70 99.75 99.60 91.06
5 A5: Straight movement 99.31 99.20 99.15 98.88 99.30 96.28

Table 9. Confusion matrix of KNN (K = 3) classifier of selected features of accelerometer.

S. No Activity A1 A2 A3 A4 A5

Tr
ue

C
la

ss

1 A1 10,634 6 18 1 14
2 A2 3 11,467 1 0 1
3 A3 9 0 10,049 0 1
4 A4 1 0 0 8769 127
5 A5 15 1 0 39 7994

Predicted Class

3.4. Analysis of Results

In this work, we employed smartphone technology as the sensor for analysis of
the sitting behavior of the test subjects. This work made an effort to analyze the static
sitting behavior for left movement, right movement, front movement, back movement,
and straight movement. It was observed that the SVM classifier outperformed the other
classifiers with feature selection from accelerometer, gyroscope, and magnetometer. The
performance of each classifier was evaluated for all five sitting behaviors. Even for the
feature selection using accelerometer and gyroscope sensors, the SVM classifier achieved
the best performance. All the applied classifiers with only the accelerometer, the naive
Bayes, and all KNN classifiers achieved the best performance for the right movement.
Whereas, the SVM classifier most accurately classified the left movement. After analyzing
the overall results, the SVM classifier performed better accuracy with considerable (stable)
performance for detecting all three postures from three sensors. Still, while considering
other classifiers, the performance is not that much accurate by considering all the postures.

4. Conclusions

In this paper, five general sitting behaviors such as left movement, right movement,
front movement, back movement, and straight movement of office workers were recognized
by using the inertial sensor inbuilt in the smartphone with the help of machine learning
classification techniques. An efficient smartphone-based framework was developed with
the following stages of pre-processing, feature extraction, feature selection, and machine
learning classification. Popular activity recognition techniques like naive Bayes, SVM,
and KNN were performed with experimentation to classify the different sitting behaviors.
In this paper, the comparative analysis among the above-discussed activity recognition
techniques was performed for five sitting behaviors of the office worker. The performance
of the KNN classifier at different values of K such as 3, 5, 7, and 11 were also observed by
the impact of the sitting behaviors on the office chair. Finally, 99.90% accuracy was achieved
in the current work for all sitting behaviors on the office chair by the SVM classifier. From
the experimental results, we hope that it is possible to distinguish between the considered
five different sitting behaviors only by using a smartphone with the inertial sensor.
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DT Decision tree
FDA Flexible discriminant analysis
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