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Abstract

Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together
previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive
alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying
threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater
across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to
a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal
fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback
lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying
traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and
marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two
fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population,
consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local
adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating
our results with previous studies, we propose that these fusions created regions of low recombination that enabled the
formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between
marine and freshwater threespine sticklebacks.

Key words: adaptation, chromosomal fusion, natural selection, genome assembly, threespine stickleback, fourspine
stickleback, Gasterosteidae.

Introduction
Understanding what facilitates rapid adaptation to new envi-
ronments is of fundamental interest in evolutionary biology.
A key question is whether adaptive loci are linked together in
particular regions of the genome (Yeaman 2013; Schwander
et al. 2014; Thompson and Jiggins 2014). Theoretical work has
predicted that tight physical linkage between adaptive alleles
would facilitate adaptation to divergent environments, par-
ticularly when there is gene flow, by preventing the produc-
tion of unfit combinations of phenotypes through
recombination (Charlesworth and Charlesworth 1979;
Lenormand and Otto 2000; Hoffmann and Rieseberg 2008).
In support of these theoretical predictions, empirical work
from many systems shows that the distribution of adaptive
loci across the genome is not random. For example, popula-
tion genomic studies in many systems that show divergence

despite the presence of gene flow have found that adaptive
loci tend to be clustered in the genome, forming highly dif-
ferentiated regions called “genomic islands” (Turner et al.
2005; Nadeau et al. 2012; Duranton et al. 2018; Irwin et al.
2018). Similarly, genetic linkage mapping studies have
revealed evidence for the clustering of quantitative trait loci
(QTL) underlying putatively adaptive phenotypes (Protas
et al. 2008; Friedman et al. 2015; Peichel and Marques 2017).

Although these empirical findings support the theoretical
predictions, it is still unclear how such QTL clusters and/or
genomic islands form. Genomic clusters could evolve because
of the higher probability of an adaptive mutation to fix near
another locally adapted mutation since such architectures are
seldom disrupted by recombination (the divergence hitchhik-
ing hypothesis) (Feder et al. 2012; Via 2012). Genomic clusters
could also be formed by genomic rearrangements that bring
adaptive loci together (the genomic architecture change
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hypothesis) (Yeaman and Whitlock 2011). A study incorpo-
rating both analytical models and individual-based simula-
tions suggested that genomic clusters are more likely to
form through genomic rearrangements that bring together
adaptive loci than through the establishment of an adaptive
mutation near another locally adapted mutation (Yeaman
2013). Consistent with this finding, empirical studies have
often found that such genomic clusters are often associated
with chromosomal rearrangements, such as inversions
(Kirkpatrick and Barton 2006; Schwander et al. 2014;
Thompson and Jiggins 2014; Wellenreuther and Bernatchez
2018). However, there are not many studies focusing on other
kinds of chromosomal rearrangements, such as chromosomal
fusions.

Unlike chromosome inversions, which can only create
clusters by reducing recombination between loci that are
already physically linked, chromosomal fusions have been
predicted to facilitate adaption both by bringing together
previously unlinked loci and by changing the recombination
landscape to create a new region of reduced recombination
(Guerrero and Kirkpatrick 2014). Chromosomal fusions (and
fissions) are common, as evidenced by the dramatic differ-
ences in chromosome number among species. Across multi-
cellular eukaryotes, diploid chromosome number ranges
from 2 to 1,260 (Sinha et al. 1979; Crosland and Crozier
1986). Chromosome numbers can even vary between closely
related species (Wang and Lan 2000; Lysak et al. 2006; Ross
et al. 2009; Urton et al. 2011; Valenzuela and Adams 2011) or
be polymorphic within species (Dobigny et al. 2017;
Wellband et al. 2019). Robertsonian fusions (i.e., fusions be-
tween two acrocentric chromosomes at their centromeres)
are the most common type of chromosomal rearrangement
in plants and animals (Robinson and King 1995). These
Robertsonian fusions can have profound impacts on the re-
combination landscape across the entire genome (Vara et al.
2021). These effects are most obvious on the Robertsonian
chromosomes, where recombination is restricted to the dis-
tal ends of the chromosome in fusion heterozygotes as well
as in fusion homozygotes (Bidau et al. 2001; Castiglia and
Capanna 2002; David and Janice 2002; Franchini et al. 2016,
2020; Vara et al. 2021). More generally, chromosomal fusions
create larger chromosomes, which have a lower average re-
combination rate (Roesti et al. 2013; Haenel et al. 2018;
Cicconardi et al. 2021). Despite this clear impact of chromo-
somal fusions on recombination, there is little empirical ev-
idence supporting the hypothesis that chromosomal fusions
play a role in adaptation (but see Kitano et al. 2009; Bidau
et al. 2012; Wellband et al. 2019).

In this study, we used stickleback fish species in the family
Gasterosteidae to examine whether chromosomal fusions
have contributed to the formation of adaptive genomic clus-
ters. This system provides an excellent opportunity to address
the role of chromosome fusion in adaptation as closely related
stickleback species differ in chromosome number (fig. 1). In
particular, we focused on the fourspine stickleback (Apeltes
quadracus), which has 23 pairs of chromosomes (2n¼ 46)
and is primarily found in marine and brackish habitats, and
the threespine stickleback (Gasterosteus aculeatus), which has

only 21 pairs of chromosomes (2n¼ 42) and can live in fresh-
water as well as marine and brackish habitats (Chen and
Reisman 1970; Wootton 1976; Ross and Peichel 2008; Ross
et al. 2009; fig. 1). Previous studies have shown that the dif-
ference in chromosome numbers between A. quadracus and
G. aculeatus involves the large metacentric chromosomes 4
and 7 in G. aculeatus, which each represent two pairs of ac-
rocentric chromosomes in A. quadracus (Urton et al. 2011).
However, without data from a closely related outgroup spe-
cies, it was impossible to determine whether there had been
chromosomal fissions in A. quadracus or chromosomal
fusions in G. aculeatus. However, it was intriguing to note
that both chromosomes 4 and 7 have frequently been asso-
ciated with QTL and genomic islands of divergence between
marine and freshwater G. aculeatus (Hohenlohe et al. 2010;
Jones et al. 2012; Roesti et al. 2014; Peichel and Marques 2017;
Nelson and Cresko 2018; Fang et al. 2020; Magalhaes et al.
2021; Roberts Kingman et al. 2021), suggesting the possibility
that chromosomal fusions might have facilitated adaptation
to divergent habitats in this species. However, previous pop-
ulation genomic studies had not directly tested whether these
chromosomes were specifically enriched for genomic clusters
of adaptive loci.

Here, we generated a high-quality de novo assembly for
A. quadracus, and then integrated comparative genomics and
population genomics to address the following questions: 1) Is
the difference in chromosome number between threespine
stickleback (G. aculeatus) and fourspine stickleback
(A. quadracus) due to chromosomal fusion in G. aculeatus
or chromosomal fission in A. quadracus? 2) Is there an en-
richment of QTL contributing to adaptive divergence in traits
on chromosomes 4 and 7 in G. aculeatus? 3) Is there an en-
richment of molecular signatures of divergent adaptation on
chromosomes 4 and 7 in G. aculeatus? 4) How did chromo-
somal fusions facilitate adaptation to divergent habitats in
G. aculeatus?

Results and Discussion

Phylogenetic Relationship and Chromosome
Numbers of Stickleback Species
We generated phylogenetic trees for seven species of the
Gasterosteidae family plus the outgroup species (Aulorhynchus
flavidus) using 1,734 single-copy, orthologous coding gene
sequences obtained from whole-genome sequencing data
(G. aculeatus, Pungitius pungitius, A. quadracus, Aul. flavidus)
and RNA-seq data (G. nipponicus, G. wheatlandi, Culaea incon-
stans, Spinachia spinachia) (supplementary table S1,
Supplementary Material online). The phylogeny generated by
concatenated sequences is highly supported with all bootstrap
values equal to 100 (fig. 1A). It is consistent with a previous
phylogeny generated from 11 nuclear genes and mitochondrial
genomes (Kawahara et al. 2009). To account for incomplete
lineage sorting, we also built a species tree. First, gene trees
were reconstructed for each ortholog. Then, these trees were
combined to find a topology that agrees with the largest number
of quartet trees. The species tree is the same as the concatenated
tree with high support values (fig. 1B).
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Based on this phylogeny, it is likely that the ancestor of the
Gasterosteidae family inhabited marine and brackish water.
The brook stickleback (C. inconstans) is the only species that
lives primarily in freshwater, whereas the threespine stickle-
back (G. aculeatus) and the ninespine stickleback
(P. pungitius) are able to inhabit both marine and freshwater
habitats, with the opportunity for gene flow between the
marine and freshwater populations. Interestingly, these two
species also have a diploid chromosome number of 42
(2n¼ 42), which is reduced relative to the diploid chromo-
some number (2n¼ 46) in the fourspine stickleback
(A. quadracus), the brook stickleback (C. inconstans), and
the outgroup Aul. flavidus (Li Q, Lindtke D, Rodr�ıguez-
Ram�ırez C, Kakioka R, Takahashi H, Toyoda A, Kitano J,
Ehrlich RL, Mell JC, Yeaman S, personal communication).
We also found that the fifteenspine stickleback
(S. spinachia) has a lower diploid chromosome number
(2n¼ 40) by counting metaphase chromosomes from three
independent males (41 metaphases counted, mode 2n¼ 40,
range 2n¼ 38–42) and three independent females (nine
metaphases counted, mode 2n¼ 40, range 2n¼ 38–41; sup-
plementary fig. S1, Supplementary Material online). Given
that most teleosts have a diploid chromosome number of
48 or 50 (Naruse et al. 2004; Amores et al. 2014), it is likely that
lower chromosome number in species within the stickleback
family results from chromosomal fusions. However, it is also
possible that the fusions were ancestral and that the greater
number of chromosomes in some species results from chro-
mosomal fission. To distinguish between these possibilities,
we used the newly available whole-genome assemblies of the
outgroup Aul. flavidus (Li Q, Lindtke D, Rodr�ıguez-Ram�ırez C,
Kakioka R, Takahashi H, Toyoda A, Kitano J, Ehrlich RL, Mell
JC, Yeaman S, personal communication), P. pungitius
(Varadharajan et al. 2019), and G. aculeatus (Nath et al.
2021), as well as the high-quality assembly of A. quadracus

generated in this study. We then focused on the whole-
chromosome rearrangements that have occurred in
G. aculeatus to determine whether these rearrangements
are associated with genetic loci that underlie adaptation to
divergent marine and freshwater habitats in this species.

De Novo Assembly and Annotation of the
A. quadracus Genome
To generate a high-quality assembly of the A. quadracus ge-
nome, we used high-coverage PacBio long-read sequencing to
assemble the genome of a female fish derived from a labora-
tory cross between two populations from Nova Scotia,
Canada. Raw read coverage was 91.58� (39.2 Gb in total).
10� Genomics linked reads and HiC reads from the same
individual were used for scaffolding the assembly separately.
The final assembly is 428.91 Mb, and it contains 890 scaffolds,
including 21 chromosome-level scaffolds. The N50 length is
18.10 Mb, and the assembly quality assessed by BUSCO was
relatively high with 96.9% completeness. Apeltes quadracus
has a smaller genome than the other existing stickleback ge-
nome assemblies (�449 Mb for G. aculeatus; Nath et al.
[2021] and �521 Mb for P. pungitius; Varadharajan et al.
[2019]). We constructed a repeat library for A. quadracus
using de novo and homology-based approaches (see
Materials and Methods). After masking the repetitive regions,
the rest of the genome was annotated with the evidence from
RNA-seq data, homologous protein databases, and ab initio
annotation. We filtered out annotated genes with poor qual-
ity (typically annotation edit distance [AED]>0.5), leading to
21,955 genes in the final version of the annotation. The ac-
cession numbers for the A. quadracus assembly and annota-
tion are available in supplementary table S1, Supplementary
Material online.

FIG. 1. Phylogeny of stickleback species and the Aulorhynchus flavidus outgroup. (A) Phylogenetic relationship among species was reconstructed in
RaxML using a concatenated supermatrix of 1,734 single-copy, orthologous genes. Numbers near nodes are bootstrap values. (B) Species tree was
reconstructed in ASTRAL-III based on individual gene trees. Numbers near nodes are support values from ASTRAL-III. Data on diploid chromo-
some number are from Chen and Reisman (1970), Ocalewicz et al. (2008), Ross and Peichel (2008), Kitano et al. (2009), Ross et al. (2009), and
Ocalewicz et al. (2011) and this study for Spinachia spinachia, and data on habitats are from Wootton (1976) and Guo et al. (2019).
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Independent Fusions of the Same Chromosomes in
G. aculeatus and P. pungitius
The difference in chromosome number between G. aculeatus
(2n¼ 42) and A. quadracus (2n¼ 46) found in previous cy-
togenetic studies could either result from fission events in
A. quadracus or fusion events in G. aculeatus (Ross et al.
2009; Urton et al. 2011). By comparing the genome assemblies
of G. aculeatus and A. quadracus, as well as P. pungitius, to the
outgroup species (Aul. flavidus), we conclude that two fusions
occurred in G. aculeatus (fig. 2). The synteny map reveals that
chromosomes 4 and 7 in G. aculeatus are likely the result of
end-to-end fusions between chromosomes 4 and 22, and 7
and 23, respectively in A. quadracus (supplementary figs. S2–
S4, Supplementary Material online). These four chromosomes
are also unfused in the outgroup Aul. flavidus, which also has
23 chromosome pairs. Zooming into the detailed synteny
map, we also find evidence for inversion and gene transposi-
tion between A. quadracus and G. aculeatus (supplementary
figs. S2–S4, Supplementary Material online). On G. aculeatus
chromosome 4, two large inversions have occurred near the
fusion point. In contrast, the inversions on G. aculeatus chro-
mosome 7 have occurred toward the chromosome ends.
However, based on the order of the genes in the outgroup,
these inversions have likely occurred in A. quadracus, not
G. aculeatus.

Interestingly, chromosome 4 in P. pungitius is also the result
of a fusion between A. quadracus chromosomes 4 and 22.
However, taking the phylogeny (fig. 1) as well as a closer anal-
ysis of the fusion breakpoints into account (supplementary fig.
S3, Supplementary Material online), the fusion events involv-
ing A. quadracus chromosomes 4 and 22 in both G. aculeatus
and P. pungitius are likely to have occurred independently.
Further, chromosome 12 in P. pungitius, which is the sex chro-
mosome (Shapiro et al. 2009; Rastas et al. 2015; Natri et al.
2019) is the result of a fusion between A. quadracus chromo-
somes 7 and 12 (fig. 2). Although A. quadracus chromosome 7
is involved in fusion events in both G. aculeatus and
P. pungitius, it has fused to different chromosomes in these
species (fig. 2 and supplementary fig. S4, Supplementary
Material online), again suggesting independent fusions have
occurred in the two lineages. Together, these data demon-
strate that chromosomal fusions have occurred in the two
stickleback lineages that include species (G. aculeatus and
P. pungitius) able to inhabit both marine and freshwater hab-
itats, raising the possibility that such fusions have contributed
to the ability of these species to adapt to divergent habitats in
the face of gene flow.

Enrichment of Marine-Freshwater QTL on
Chromosomes 4 and 7 in G. aculeatus
If fusions facilitate adaptation by linking adaptive alleles, we
would predict that an increased number of QTL underlying
adaptive traits would map to the fused chromosomes, and
that these QTL would have congruent effects in the expected
direction (i.e., a marine allele confers a marine phenotype and
vice versa) on multiple traits. Thus, we tested whether there
was an enrichment of QTL with effects in the expected

direction on G. aculeatus chromosomes 4 and 7 using a data-
base of QTL identified in crosses between marine and fresh-
water populations (Peichel and Marques 2017). Indeed, we
found that chromosomes 4 and 7, as well as chromosomes 16,
20, and 21, have significantly more QTL with effects in the
expected direction than other chromosomes, accounting for
variation in either the length of chromosomes or the number
of genes on the chromosomes (fig. 3 and supplementary table
S2, Supplementary Material online). Chromosome 21 has an
inversion that is polymorphic within G. aculeatus, which is
one of the strongest signals of divergence between worldwide
marine and freshwater populations (Jones et al. 2012; Roesti
et al. 2015; Fang et al. 2020; Magalhaes et al. 2021; Roberts
Kingman et al. 2021). Although there are no apparent large-
scale chromosomal rearrangements between marine and
freshwater populations associated with chromosomes 16 or
20, the adaptive clusters on chromosomes 4, 7, and 21 are
associated with chromosomal rearrangements that might fa-
cilitate linkage of adaptive traits.

No Enrichment of Gene Transpositions or Gene
Duplications on Chromosomes 4 and 7
It has also been proposed that such adaptive clusters could
form via small-scale genomic rearrangements, such as trans-
position of single genes and/or gene duplications (Yeaman
2013). We therefore examined the distribution of gene dupli-
cation and gene transposition events in G. aculeatus relative
to P. pungitius, A. quadracus, and Aul. flavidus. There were too
few gene transposition events to determine whether the dis-
tribution of these genes varied among chromosomes. There
are more gene duplications than expected on chromosomes
10, 11, 16, and 21, given either the length of the chromosome
or the number of genes on the chromosome (supplementary
table S3, Supplementary Material online). A comparison of
the G. aculeatus and Aul. flavidus genomes also revealed no
evidence for an enrichment of microrearrangements, lineage-
specific genes, or gene duplications on G. aculeatus chromo-
somes 4 or 7, although gene duplications are enriched specif-
ically within one region on chromosome 4 (Li Q, Lindtke D,
Rodr�ıguez-Ram�ırez C, Kakioka R, Takahashi H, Toyoda A,
Kitano J, Ehrlich RL, Mell JC, Yeaman S, personal communi-
cation). It is therefore possible that gene duplication might
also play a role in the formation of the QTL clusters on
chromosomes 16 and 21, but not on the fusion chromosomes
4 and 7.

Enrichment of Genomic Signatures of Selection on
Chromosomes 4 and 7 in G. aculeatus
The clustering of adaptive QTL on chromosomes 4 and 7
suggests that these chromosome fusions link adaptive loci
together. However, from the QTL analysis, we can only ob-
serve this at the phenotypic level. To further explore whether
chromosome fusions show signatures of selection at the se-
quence level, we examined different signatures of selection
using whole-genome sequencing data. Using hidden Markov
models (HMM), we identified genomic islands of differentia-
tion between a marine (Puget Sound) and freshwater (Lake
Washington) population of G. aculeatus. The distribution of
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genomic islands is uneven across the genome, and chromo-
somes 4, 7, 9, 11, and 20 have a significantly higher number of
windows with outlier SNPs in genomic islands than expected,
given either the length of the chromosome or the number of
genes on the chromosome (for details of all enrichment anal-
yses in this section, see Materials and Methods, supplemen-
tary fig. S5 and table S4, Supplementary Material online).
Next, we used a window-based method to calculate FST across
the genome. FST within genomic islands is elevated, and peaks
are enriched on chromosomes 4 and 7 (fig. 4 and supplemen-
tary fig. S5, Supplementary Material online). For these two
chromosomes, regions with elevated FST are found in the
middle of the chromosomes. A similar pattern is also revealed
by a topology weighting analysis (supplementary fig. S6,
Supplementary Material online), in which regions in the mid-
dle of chromosomes 4 and 7 show a higher proportion of
topology 1, indicating adaptation of freshwater populations.

We also calculated window-based nucleotide diversity (Pi)
across the genome to trace the signature that selection left
within each population. Overall, the nucleotide diversity of
the Lake Washington freshwater population is higher than in
the Puget Sound marine population, with delta Pi (PiLake

Washington�PiPuget Sound) always greater than 0. The greatest

differences in nucleotide diversity between the populations
are found on chromosomes 1, 4, 7, 20, and 21, with more
diversity in the freshwater Lake Washington population (fig. 4
and supplementary fig. S5, Supplementary Material online).
Within Lake Washington, there are more top 5% outlier win-
dows for Pi than expected on chromosomes 4 and 7 (as well
as on chromosomes 8, 20, and 21), particularly in the middle
of the chromosomes (fig. 4 and supplementary fig. S5 and
table S4, Supplementary Material online). Interestingly, ge-
netic diversity in the regions under selection is lower in the
Puget Sound marine population and elevated in the Lake
Washington freshwater population (fig. 4 and supplementary
fig. S5, Supplementary Material online).

The nucleotide diversity results are surprising. Most
current-day freshwater populations of G. aculeatus, such as
the Washington Lake population, were founded by marine
stickleback after the end of the last ice age, approximately
12,000 years ago (Bell and Foster 1994). Thus, selection toward
a novel environment is mainly thought to occur in the fresh-
water environment, leading to a reduction in genetic diversity
near selected sites. Furthermore, freshwater populations are
expected to have a smaller population size, where genetic
drift would have a more powerful influence, leading to a faster

FIG. 2. Synteny map of the Aulorhynchus flavidus, Apeltes quadracus, Gasterosteus aculeatus, and Pungitius pungitius genomes. The comparison is
based on homologous coding region sequences. Colored rectangles are chromosomes and numbers indicate the corresponding chromosomes.
Colored lines represent the fusion events in G. aculeatus and P. pungitius.
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FIG. 3. (A) Counts of QTL underlying traits that differ between marine and freshwater populations with QTL conferring an effect in the expected
direction in red, and QTL conferring an effect in the reversed direction in purple. (B) Density of QTL confidence intervals mapped to the
Gasterosteus aculeatus genome in 50-kb windows. QTL data are collected from previous studies (supplementary table S2, Supplementary
Material online). Chromosomes with asterisks have significantly more QTL with effects in the expected direction than expected given either
the number of genes on the chromosome or the chromosome length (supplementary table S2, Supplementary Material online).

FIG. 4. Signatures of selection in the Lake Washington freshwater and Puget Sound marine populations of Gasterosteus aculeatus. Statistics are
shown here for chromosomes 4 (A) and 7 (B), with all chromosomes shown in supplementary figure S5, Supplementary Material online. All
statistics were calculated in 20-kb sliding windows with a step size of 10 kb. Dark gray bars indicate the genomic islands and the purple triangle
indicates the fusion points. From top to bottom: FST across the whole chromosome, with solid dots highlighting SNPs in the top 5% of genome-
wide FST; nucleotide diversity (Pi) of Lake Washington (red) and Puget Sound (blue) populations, with solid dots highlighting SNPs with the top 5%
highest values of Pi in each population; differences of nucleotide diversity between the two populations. (Delta Pi¼PiLake Washington�PiPuget Sound);
haplotype-based selection statistic iHS, with solid dots indicating the top 5% genome-wide outliers for Lake Washington (red) and Puget Sound
(blue); and haplotype-based selection statistic XPEHH, with top 5% genome-wide outliers labeled in solid yellow dots.
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loss of genetic diversity in the freshwater population.
However, a recent simulation study has pointed out that
gene flow can not only homogenize the genome but also
increase diversity near regions under selection (Jasper and
Yeaman 2020). To determine whether gene flow can explain
the distribution of nucleotide diversity in our data, we built
several demographic models (supplementary fig. S7,
Supplementary Material online) to explore the most plausible
evolutionary history of the Puget Sound marine and Lake
Washington freshwater populations. Based on DAIC values,
the best model has a bottleneck event in the ancestral pop-
ulation, followed by two reciprocal migration regimes (fig. 5
and supplementary table S5, Supplementary Material online).
The effective population size in Puget Sound is 33,111, which
is larger than the effective population size of 3,775 in Lake
Washington, consistent with the expectation that the marine
population has a larger population size. The inferred bottle-
neck is consistent with a previous pairwise sequentially
Markovian coalescent inference of the demographic histories
of these two populations (Shanfelter et al. 2019). Two migra-
tion regimes are inferred with an increase in migration at
111 years ago, which is roughly consistent with when the
Lake Washington Ship Canal, which connects Lake
Washington and Puget Sound, was built in 1917
(Edmondson 1991). During both periods of migration, the
actual number of migrants from Puget Sound to Lake
Washington is lower than the reverse, suggesting that more
fish migrate from the freshwater environment to the marine
environment. Overall, our demographic model suggests that
migration between marine and freshwater populations is
common, especially after the build-up of the Lake
Washington Ship Canal. This is consistent with a scenario
of gene flow increasing diversity near regions under selection
(Jasper and Yeaman 2020) and our result that regions with
high genetic diversity are associated with regions under selec-
tion. Similar results have been observed in Alaskan popula-
tions of G. aculeatus, with low genetic diversity in marine
populations and high genetic diversity in freshwater popula-
tions in regions of the genome under divergent selection
(Nelson et al. 2019). Their simulations suggest that this pat-
tern results from asymmetries in population structure be-
tween the habitats, especially near locally adapted sites, and
that this effect on diversity is strongest in regions of low
recombination, such as we find on chromosomes 4 and 7.

Lastly, we used two haplotype-based methods to detect
footprints of recent or ongoing selection. iHS is a statistic for
detecting incomplete selective sweeps across the genome
within a population (Voight et al. 2006), whereas XPEHH is
a statistic for detecting (nearly) complete selective sweeps in
one of two populations (Sabeti et al. 2007). We calculated the
proportion of extreme values (w-iHS and w-XPEHH) in 20 kb
windows with a step size of 10 kb. Signatures of recent selec-
tion exist across the whole genome in both populations, with
more windows containing signatures of divergent selection
(XPEHH) than expected between the populations on chro-
mosomes 5, 9, and 17 (fig. 4 and supplementary fig. S5 and
table S4, Supplementary Material online). Chromosomes
8 and 10 exhibit more windows of elevated iHS in Lake

Washington, and chromosomes 4, 17, 18, and 21 exhibit
more windows of elevated iHS in Puget Sound (supplemen-
tary fig. S5 and table S4, Supplementary Material online).
Thus, these patterns of recent selection differ from the pat-
terns nucleotide diversity and FST, particularly on chromo-
somes 4 and 7 (fig. 4 and supplementary fig. S5,
Supplementary Material online), consistent with previous
results suggesting that most regions of strong divergence be-
tween marine and freshwater ecotypes are on the order of
millions of years old (Nelson and Cresko 2018; Roberts
Kingman et al. 2021).

How Might Chromosomal Fusions Facilitate the
Formation of Adaptive Clusters?
Overall, we find that signatures of divergent selection be-
tween marine and freshwater are distributed across the
G. aculeatus genome, but that some regions of the genome
show evidence for clustering of adaptive loci. The patterns we
find in our population genomic analyses using whole-genome
sequencing of a single marine-freshwater pair from the
Eastern Pacific are consistent with the results of many popu-
lation genomic studies, mostly using RAD-seq, in global
marine-freshwater pairs (Hohenlohe et al. 2010; Jones et al.
2012; Roesti et al. 2014; Peichel and Marques 2017; Haenel
et al. 2018; Nelson and Cresko 2018; Fang et al. 2020;
Magalhaes et al. 2021; Roberts Kingman et al. 2021). In con-
trast to previous studies, we explicitly tested whether partic-
ular chromosomes are enriched for different signatures of
selection. We found that chromosomes 4 and 7 have signif-
icantly more QTL associated with traits that diverge between
marine and freshwater populations, more outlier SNPs in ge-
nomic islands of divergence, and higher levels of diversity in
freshwater. By contrast these chromosomes do not have an
excess of gene transposition or duplication events, or signa-
tures of recent selection. These strong signals on chromo-
somes 4 and 7 have been previously observed, and they
have been attributed to the fact that these are regions of
low recombination (Roesti et al. 2014; Nelson et al. 2019;
Roberts Kingman et al. 2021). Indeed, using genetic diversity
as a proxy for recombination rate (Cicconardi et al. 2021), we
find that chromosomes 4 and 7 have lower recombination
rates than the unfused chromosomes in the G. aculeatus ge-
nome and that recombination rates on these chromosomes
are lower than on their unfused homologs in A. quadracus
(supplementary fig. S8, Supplementary Material online).
Interestingly, there is an overall reduction in recombination
on these two chromosomes relative to chromosome 1, which
is also a large metacentric chromosome with similar patterns
of reduced recombination across the middle of the chromo-
some (Roesti et al. 2013; Glazer et al. 2015; Shanfelter et al.
2019). This suggests that the reduction of recombination ob-
served on chromosomes 4 and 7 is greater than we would
predict for metacentric chromosomes of similar size.
Furthermore, chromosome 1 does not show chromosome-
wide enrichment for any signatures of selection or for QTL
(supplementary fig. S5 and tables S2 and S4, Supplementary
Material online). Thus, we hypothesize that the clustering of
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adaptive loci on chromosomes 4 and 7 is associated with the
reduced recombination created by the chromosomal fusions.

There are two nonmutually exclusive hypotheses for how
chromosomal fusions might facilitate adaptation (Guerrero
and Kirkpatrick 2014). The first is that the fusion brings to-
gether pre-existing locally adapted alleles. The second is that
the fusion creates a region of low recombination, which then
enables the formation of adaptive clusters, as has been seen in
the case of a chromosomal inversion in Mimulus guttatus
(Coughlan and Willis 2019). In the case of the fusions found
in G. aculeatus, it is difficult to determine whether one of
these explanations may be most important, or whether
both are playing a role. This is because the two sister species
of G. aculeatus (G. wheatlandi and G. nipponicus) also have 21
pairs of chromosomes (fig. 1), and our preliminary assembly
of a G. wheatlandi genome suggests that chromosomes 4 and
7 show the same arrangement as in G. aculeatus. Thus, the
fusions were likely present in the common ancestor of the
three Gasterosteus species. However, both G. wheatlandi and
G. nipponicus can only live in marine or brackish habitats
(fig. 1). Thus, the presence of the fusion itself was not enough
to enable adaptation to freshwater. Previous work has sug-
gested that duplications of the Fads2 gene occurred in
G. aculeatus, but not in G. wheatlandi or G. nipponicus, and
that these duplications enabled G. aculeatus to take advan-
tage of nutritionally depauperate freshwater habitats
(Ishikawa et al. 2019). Interestingly, there is also a duplication
of Fads2 in P. pungitius, which can also live in freshwater. We
speculate that once G. aculeatus (and perhaps P. pungitius)
was able to invade freshwater, the region of low

recombination created by the fusions provided a genomic
region that could allow the buildup of adaptive alleles that
were resistant to gene flow between marine and freshwater
populations. Nonetheless, it is possible that the fusions we
find in these species were fixed due to selection for linkage
between alleles that provided an advantage in the ancestral
habitat. A role for selection is suggested by convergent in-
volvement of the same chromosomes in fusions in
Gasterosteus and Pungitius. However, with our current data,
we are unable to determine whether selection, drift, and/or
another force like meiotic drive was responsible for the fixa-
tion of chromosomal fusions in sticklebacks (Dobigny et al.
2017).

Regardless of the mechanism of initial fixation, once fixed,
we hypothesize that these fusions provided a unique genomic
substrate for the formation of adaptive clusters in G. aculeatus
as it was moving between marine and freshwater habitats
during repeated bouts of glaciation and deglaciation during
its evolutionary history over the past several million years. It
does not appear that new genes were moving into these
regions (Li Q, Lindtke D, Rodr�ıguez-Ram�ırez C, Kakioka R,
Takahashi H, Toyoda A, Kitano J, Ehrlich RL, Mell JC,
Yeaman S, personal communication), and therefore they
must have been built by what has been called “allele-only
clustering,” which is when selection builds clusters of locally
adapted alleles at loci already colocalized in the genome
(Roesti 2018). The patterns of divergence we see indeed sug-
gest that multiple adaptive clusters are embedded in the
larger regions of particularly low recombination across chro-
mosomes 4 and 7 (fig. 4 and supplementary fig. S8,

FIG. 5. Demographic model of Lake Washington and Puget Sound populations. (A) Best demographic model inferred by fastsimcoal2. Dashed lines
represent the time of the events. (B) Comparison of the observed minor allle count (MAC) spectrum (gray bars) and the simulated MAC spectrum
(red bars).
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Supplementary Material online). As many of these adaptive
clusters in G. aculeatus (including those on chromosomes 4
and 7) are at least a million years old (Nelson and Cresko
2018; Roberts Kingman et al. 2021), there has been much time
for the buildup of these adaptive alleles. Interestingly, older
adaptive regions seem to be larger, suggesting that adaptive
alleles are accumulating in these regions over time (Roberts
Kingman et al. 2021). The accumulation of many adaptive
alleles within these adaptive clusters is also consistent with a
detailed study of the Eda region on chromosome 4, which
showed evidence that multiple mutations within a 16-kb re-
gion of high divergence between marine and freshwater pop-
ulations contribute to lateral plate and sensory lateral line
phenotypes, and that linked mutations outside the Eda re-
gion are responsible for the QTL cluster observed on chro-
mosome 4 (Archambeault et al. 2020). Taken together, these
data are more consistent with the divergence hitchhiking
hypothesis (Feder et al. 2012; Via 2012) than the genomic
architecture change hypothesis (Yeaman 2013). Thus, our
data suggest that even if the fusions themselves were not
initially selected to link adaptive alleles, they have provided
a genomic substrate that facilitates the process of divergence
hitchhiking.

Conclusion
Although the role of chromosomal rearrangements, such as
inversions, in adaptation has been well-studied, the contribu-
tion of chromosomal fusions to adaptation is still unclear. By
comparing genome assemblies, we found that two chromo-
somal fusions have occurred in G. aculeatus, and further dem-
onstrate that these fused chromosomes are enriched in
adaptive QTL and signatures of selection between marine
and freshwater populations. We propose that these chromo-
somal fusions facilitated adaptation by altering the recombi-
nation landscape to create regions of low recombination that
enabled the formation of adaptive clusters that can persist in
the face of gene flow.

Materials and Methods

Ethics Statement
All experiments involving animals were approved by the
Veterinary Service of the Department of Agriculture and
Nature of the Canton of Bern (VTHa# BE4/16, BE17/17, and
BE127/17).

Sample Collections
In 2017, A. quadracus were collected from Rainbow Haven
Beach (44.654857, �63.42113) and Canal Lake (44.498298,
�63.90205) in Nova Scotia, Canada by Anne Dalziel. In
2018, G. wheatlandi were collected from Rainbow Haven
Beach (44.654857, �63.42113) in Nova Scotia, Canada by
Anne Dalziel. In 2017, C. inconstans were collected from the
Sass River (60.073328, �113.312240) in the Northwest
Territories, Canada by Julia Wucherpfennig; brains were dis-
sected by Ian Heller and placed into RNAlater (Life
Technologies, Carlsbad, CA). In 2018, S. spinachia were

collected from the Baltic Sea (54.387423, 10.494736) near
Hohenfelde, Germany by Arne Nolte.

DNA and RNA Extraction and Sequencing
For assembly of the A. quadracus genome, DNA from a single
laboratory-reared female resulting from a cross between a
Rainbow Haven Beach female and a Canal Lake male (both
from Nova Scotia, Canada) was used. High molecular weight
DNA was extracted from the blood following (Peichel et al.
2020) and used to prepare a SMRTbell Express library for
PacBio sequencing and a 10� Genomics library for Linked-
Reads sequencing. The liver of the same individual was used
to prepare a Hi-C sequencing library using the Phase
Genomics Proximo Hi-C animal kit (Phase Genomics,
Seattle, WA). Four SMRT cells were sequenced on a PacBio
Sequel Platform, and the 10� Genomics and Hi-C libraries
were sequenced for 300 cycles on an Illumina NovaSeq SP
flow cell. To polish the PacBio reads, DNA from wild-caught
individuals from Canal Lake (four females, four males) was
extracted using phenol–chloroform and used to prepare
Illumina DNA TruSeq libraries, which were sequenced for
300 cycles on an Illumina NovaSeq SP flow cell. All library
preparation and sequencing were performed by the
University of Bern Next Generation Sequencing Platform.

Total RNA was extracted from whole brains of wild-caught
adult G. wheatlandi (four females, four males), C. inconstans
(five females, five males), A. quadracus from Canal Lake (four
females, four males), and S. spinachia (four females and four
males) using Trizol (Life Technologies, Carlsbad, CA) following
the manufacturer’s instructions. Illumina mRNA TruSeq li-
braries were prepared and either subject to 150-bp paired-
end sequencing on an Illumina HiSeq3000 (G. wheatlandi,
C. inconstans, A. quadracus) or 150-bp paired-end sequencing
on an Illumina NovaSeq SP flow cell (S. spinachia) at the
University of Bern Next Generation Sequencing Platform.

For this study, we also used the available genome assem-
blies for G. aculeatus (Nath et al. 2021), P. pungitius
(Varadharajan et al. 2019), and the outgroup Aul. flavidus
(Li Q, Lindtke D, Rodr�ıguez-Ram�ırez C, Kakioka R,
Takahashi H, Toyoda A, Kitano J, Ehrlich RL, Mell JC,
Yeaman S, personal communication). We also used available
RNA-seq data from G. nipponicus (Ishikawa et al. 2019).
Supplementary table S1, Supplementary Material online,
summarizes all samples and sequencing data used for this
study and provides all relevant accession numbers.

Reconstruction of the Stickleback Phylogeny
To determine if the phylogenetic relationships among the spe-
cies in the Gasterosteidae family are consistent with previous
studies using 11 nuclear genes and mitochondrial genomes
(Kawahara et al. 2009), we built a phylogenetic tree using seven
species in the family (A. quadracus, C. inconstans, G. aculeatus,
G. nipponicus, G. wheatlandi, P. pungitius, S. spinachia) and an
outgroup Aul. flavidus. For species with a reference genome
(A. quadracus, G. aculeatus, P. pungitius, and Aul. flavidus), nu-
cleotide and amino acid sequences of the coding regions were
extracted. For species without a reference genome, we used
RNA-seq data to build transcriptome assemblies.
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RNA-seq reads were trimmed using Trimmomatic (v 0.36),
and the reads were de novo assembled by the Trinity assem-
bler (v 2.10.0). The open reading frames were predicted by
Transdecoder (accessed on October 2, 2020) (Haas et al.
2013). Redundancy at the amino acid level was removed by
cd-hit (v 4.8.1) (Li and Godzik 2006) with a threshold of 95%
identity. Next, amino acid sequences of the eight species were
compared with search for orthologs by OrthoFinder (v 2.3.12)
(Emms and Kelly 2019), and only single-copy orthologs were
kept for the downstream analysis. Then, we aligned amino
acid sequences using muscle (v 3.8.1511) to guide the align-
ment of the corresponding nucleotides sequences. Sites with
gaps or missing data were removed entirely, resulting in 1,734
alignments of single-copy orthologs. Phylogenies were built in
two ways: 1) we concatenated alignments of 1,734 orthologs
to build a supermatrix and reconstructed a phylogeny using
RaxML (v8) (Stamatakis 2006); and 2) for each alignment, we
first built gene trees in RaxML (v8) and then estimated the
species tree using ASTRAL-III (V 5.7.4) (Zhang et al. 2018).

Identification of Chromosome Number in S. spinachia
For the phylogenies shown in figure 1, we also added infor-
mation on the known habitats of each species (Wootton
1976; Guo et al. 2019) and the diploid chromosome number
(Chen and Reisman 1970; Ocalewicz et al. 2008, 2011; Ross
and Peichel 2008; Kitano et al. 2009; Ross et al. 2009).
However, there was no prior information on the diploid chro-
mosome number for S. spinachia. We therefore used the
protocol of Ross and Peichel (2008) to generate metaphase
spreads from three of the S. spinachia females and three of the
S. spinachia males used for the RNA-sequencing data (sup-
plementary table S1, Supplementary Material online). Sex was
determined by inspection of the gonads. The fish were eu-
thanized in 0.2% tricaine methanesulfonate (MS-222), and
the spleen was used for the metaphase spreads. Metaphase
spreads from each individual were stained with DAPI and
photographed on a Nikon Eclipse 80i microscope using a
Photometrics CoolSNAP ES2 camera (Photometrics) and
NIS-Elements BR 3.22.15 imaging software (Nikon, Japan).
Chromosomes were counted from photos of individual meta-
phase spreads.

Apeltes quadracus De Novo Genome Assembly
The PacBio assembly was generated using Flye 2.6 with default
parameters (Kolmogorov et al. 2019), followed by the polish-
ing step using Arrow (v 3.0) and Pilon (Walker et al. 2014)
separately with default parameters in both cases. For polish-
ing, whole-genome resequencing data described above from
eight A. quadracus individuals (four males, four females) from
Canal Lake, Nova Scotia, Canada (supplementary table S1,
Supplementary Material online) were used. Raw reads were
trimmed by Trimmomatic (v 0.36) (Bolger et al. 2014) with a
sliding window of 4 bp. The first 13 bp of reads were dropped,
and windows of the remaining reads were also dropped with
an average quality score below 15. Genome size estimation
was run by GenomeScope 2.0 (Ranallo-Benavidez et al. 2020)
with trimmed data.

Contig scaffolding was conducted using the 10�
Genomics linked reads and Hi-C proximity guided assembly
separately. Contigs were linked by linked reads using ARCS (v
1.1.1) and LINKS (Warren et al. 2015; Yeo et al. 2018). Raw Hi-
C reads were first processed with HiCUP (Wingett et al. 2015)
and then assembled by Juicer (v. 1.5) (Durand et al. 2016) and
3D-DNA (v. 180922) (Dudchenko et al. 2017). After the first
round of Hi-C scaffolding, the assembly was revised manually
based on the contact map and then scaffolded again. The
final step, gap-closing, was run by LR_Gapcloser (Xu et al.
2019). Assembly quality was evaluated by BUSCO v3
(Sim~ao et al. 2015; Waterhouse et al. 2018).

Apeltes quadracus Genome Annotation
The genome assembly was annotated in a two-step pipeline.
The first step was the annotation of repeat elements.
Miniature inverted-repeat transposable elements (MITE)-
Tracker (Crescente et al. 2018) was used to detect MITE.
Full-length long-terminal repeat (LTR) sequences were iden-
tified using LTR_finder (Xu and Wang 2007) and LTRharvest
(Ellinghaus et al. 2008), and were further combined by
LTR_retriever (Ou and Jiang 2018). Subsequently,
RepeatMolder (v. 2.0) (Flynn et al. 2020) was used to identify
novel repeat sequences. Libraries from MITE, LTR, and
RepeatMolder were merged into a nonredundant library
and passed to the final annotation of repetitive sequences
with RepeatMasker (v. 4.0.9) (Smit et al. 2013).

The RNA-sequencing data generated from eight
A. quadracus individuals (four males, four females) from
Canal Lake, Nova Scotia, Canada (supplementary table S1,
Supplementary Material online) and described above were
used to aid in genome annotation. The raw reads were
trimmed by Trimmomatic (v. 0.36) and then used as the
input for Trinity assembler with default parameters (v.
2.10.0) (Grabherr et al. 2011).

The prediction and annotation of genes were conducted
on the repeat-masked genome assembly with the Maker2 (v.
2.31.10) pipeline (Holt and Yandell 2011), including four
rounds of annotation. In the first round, the transcriptome
assembly generated by Trinity and protein data from Danio
rerio, G. aculeatus, P. pungitius, Takifugu flavidus, and the
Uniprot database (UniProt Consortium 2015) were used as
evidence for the program. The second round of annotation
included two training and prediction steps by AUGUSTUS (v.
3.2.3) (Stanke et al. 2008) and SNAP (Korf 2004). The results
were then passed to MAKER2. For the third round annota-
tion, GeneMARK-ES (Ter-Hovhannisyan et al. 2008) was com-
bined with MAKER2. Finally, the second-round annotation
was repeated with the resulting files from the third round.
The final annotation was checked based on AED, and only
annotations with AED score 0.5 or less were retained for
downstream analysis. Functional annotation was conducted
by eggnog-mapper (v2) (Huerta-Cepas et al. 2017).

Genomic Synteny Analyses and Detection of
Rearrangements between Species
Synteny analyses were conducted in two ways. First,
Mummer4 and nucmer (Marçais et al. 2018) were used to
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compare the order of genes between G. aculeatus and
A. quadracus on G. aculeatus chromosomes 4 and 7.
Alignments shorter than 2,000 bp with an identity less than
85% were removed. Second, nonredundant coding sequence
sets from four species (G. aculeatus, A. quadracus, P. pungitius,
and Aul. flavidus) were used for cross synteny analysis. We
used MCScan (Tang et al. 2008) in JCVI package to compare
synteny on the chromosome level as well as the gene level.
Aul. flavidus was chosen as the outgroup based on the phy-
logeny to examine whether the reduction of chromosome
number in G. aculeatus and P. pungitius relative to
A. quadracus is due to fission or fusion.

Identification of Gene Transposition and Duplication
Events
To detect gene duplication and transposition events, we first
extracted single-copy orthologs from four species
(G. aculeatus, P. pungitius, A. quadracus, Aul. flavidus) using
OrthoFinder (v 2.3.12) (Emms and Kelly 2019). For gene du-
plication events, we used the duplication summary from
OrthoFinder and focused on genes only duplicated in
G. aculeatus; we included both intra- and interchromosomal
duplications in the analyses. For gene transposition events, we
focused on interchromosomal gene transpositions, in which a
gene had moved to the focal chromosome in G. aculeatus
from another chromosome in the other species. The homol-
ogy of chromosomes from different species is based on our
synteny map (fig. 2). If a gene is only present on a focal
chromosome in G. aculeatus but is not present on the ho-
mologous chromosomes in other species, we considered it as
a valid transposition event. The sex chromosome was ex-
cluded from these analyses.

To test whether any chromosomes had an excess of du-
plicated genes, the expected distribution of duplicated genes
on each chromosome was calculated based on both the chro-
mosome length in base pairs and the number of genes on the
chromosome. The expected and observed distributions were
compared in R through a goodness-of-fit test (chisq.test).
Chromosomes with significantly higher values than expected
were identified by standardized residuals with a value larger
than 3 in both comparisons (supplementary table S3,
Supplementary Material online). There were too few gene
transposition events to analyze.

Genomic Distribution of Marine-Freshwater QTL in
G. aculeatus
To test if the fusion events in G. aculeatus are associated with
clustering of adaptive traits, we used a modified version of a
QTL database (Peichel and Marques 2017). The QTL data
were filtered to remove redundant QTL following Rennison
and Peichel (2022), and only the 655 QTL found in crosses
between marine and freshwater populations were retained
for the downstream analysis (supplementary table S2,
Supplementary Material online). We first mapped all the
retained QTL with confidence intervals to the G. aculeatus
v.5 genome (Nath et al. 2021) in 50-kb windows, following
Peichel and Marques (2017). Next, we used the data from the
original QTL papers to determine whether the marine allele at

these QTL confers a marine phenotype and vice versa, which
would suggest that these QTL contribute to adaptation to
the divergent marine and freshwater habitats. A chi-square
test following (Peichel and Marques 2017) was used to test if
the number of QTL with effects in the expected direction on a
given chromosome is significantly different from the expected
number of QTL with effects in the expected direction on that
chromosome, given either the length of the chromosome or
the number of genes on the chromosome. To identify signif-
icant deviations from the expectation on a particular chro-
mosome, the standardized residuals for each chromosome
were examined, with a value of 3 indicating the observed
data is significantly larger than expected and a value of �3
indicated the observed data is significantly lower than
expected (supplementary table S2, Supplementary Material
online).

Identifying Genomic Islands of Differentiation
Previous population genomic studies of marine-freshwater
divergence were either based on very low coverage (2–5�)
whole-genome sequence or RAD-seq data (Hohenlohe et al.
2010; Jones et al. 2012; Roesti et al. 2014; Nelson and Cresko
2018; Fang et al. 2020; Magalhaes et al. 2021; Roberts Kingman
et al. 2021). To identify genomic islands of differentiation and
signatures of selection between G. aculeatus marine and fresh-
water fish, we therefore used the only high-coverage (17–
22�), whole-genome sequencing data available at the time
of our analyses, which was from 25 freshwater individuals
from Lake Washington and 24 marine individuals from
Puget Sound (supplementary table S1, Supplementary
Material online; Shanfelter et al. 2019). Trimmed reads (meth-
ods described as above) were mapped to the G. aculeatus v.5
genome assembly (Nath et al. 2021) by BWA (v 0.7.11) (Li
2013). Bam files were sorted with duplicates marked by
Samtools (v 1.9) (Li et al. 2009) and MarkDuplicates in
GATK4 (van der Auwera and O’Connor 2020) separately.
Variants were called using HaplotypeCaller, and joint geno-
typing was conducted by combining all individuals for the
population with GATK4 (van der Auwera and O’Connor
2020). For SNP filtration, we used Vcftools (0.1.16) and kept
sites with minimum genotype qualities greater than 30, fewer
than 20% missing genotypes, and a minor allele frequency
greater than 0.05. To prevent bias caused by too high or too
low sequencing depth, we also filtered out sites if the popu-
lation mean depth coverages were less than half or greater
than twice the average value for each population. Finally, sites
that were not in Hardy–Weinburg equilibrium in each pop-
ulation were removed.

Using this data set, we followed the approach of (Hofer
et al. 2012; Marques et al. 2016) to identify genomic islands of
differentiation between the Puget Sound marine and Lake
Washington freshwater populations of G. aculeatus. An
HMM was used to find regions with exceptionally low and
high divergence compared with the background divergence
(assumed to be neutral). Only SNPs with minor allele frequen-
cies >0.25 were used for this analysis because low-frequency
allele SNPs tend to disrupt the detection of high differentia-
tion regions which will never reach a high level of
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differentiation (Roesti et al. 2012). Locus level FST was esti-
mated in Arlequin (v 3.5.2.2) (Excoffier and Lischer 2010), and
outliers were identified assuming an infinite island model. An
HMM method was run to model every chromosome sepa-
rately based on the probability of an SNP being an outlier
from the FST analysis. Scripts can be found at https://github.
com/marqueda/HMM-detection-of-genomic-islands (last
accessed July 17, 2020; Marques et al. 2016). Only regions
passing the multiple-testing correction with a false discovery
rate of 0.001 were recognized as “genomic islands.” We ex-
cluded chromosome 19, which is the G. aculeatus sex chro-
mosome (Peichel et al. 2004) from the analysis.

Detecting Signatures of Selection across the Genome
Scans for signatures of selection were performed between the
Puget Sound marine and Lake Washington freshwater pop-
ulations in various ways using the data set described above. A
window-based FST distribution and nucleotide diversity were
calculated with Vcftools (v 0.1.16) with a window size of 20 kb
and a window step of 10 kb. To further identify selected
regions, we also adopted haplotype-based statistics. We first
extracted mapped reads with mapping quality larger than 20
and inferred haplotypes using WhatsHap (v1.0) (Martin et al.
2016) and shapeit4 (v 4.1.3) (Delaneau et al. 2019) with de-
fault parameters. Then, the output file was imported into the
R package rehh (Gautier et al. 2017) to detect soft and in-
complete sweeps within populations (iHS) and to detect
complete sweeps that occurred in one population and not
the other (XPEHH). We followed (Voight et al. 2006) to cal-
culate the proportion of extreme iHS and XPEHH values (w-
iHS and w-XPEHH, the proportion of jiHSj and jXPEHHj >2)
in the same 20-kb overlapping windows. The sex chromo-
some, chromosome 19, was also excluded from this analysis.

To examine whether particular chromosomes were
enriched for these signatures of selection, we compared the
observed number of: 1) SNPs within genomic islands, 2) top
5% Pi outliers within each population, 3) top 5% jiHSj regions
of outliers within each population, and 4) top 5% XPEHH
regions of outliers on each chromosome to the expected
numbers, given either the length of the chromosome or the
number of genes on the chromosome in R through a
goodness-of-fit test (chisq.test). Chromosomes with signifi-
cantly higher values than expected were identified by stan-
dardized residuals with a value larger than 3 in both
comparisons (supplementary table S4, Supplementary
Material online).

Topology Weighting Analyses
To explore the evolutionary histories of marine and freshwa-
ter alleles on the fusion chromosomes, we used a topology
weighting approach. We built phylogenetic trees with the
SNP data set for the genome scan in nonoverlapping win-
dows for every 50 SNPs by RaxML (v8) (Stamatakis 2006) and
conducted tree weighting in Twisst (Martin and Van
Belleghem 2017). The analysis was performed on the two
fused chromosomes, chromosomes 4 and 7, separately. For
comparison, we performed the analysis on chromosome 1

because it is a large submetacentric chromosome with a sim-
ilar length and recombination patterns as on chromosomes 4
and 7 (Urton et al. 2011; Roesti et al. 2013; Glazer et al. 2015;
Shanfelter et al. 2019). However, it has not experienced inter-
chromosomal fusion between the G. aculeatus and
A. quadracus lineages.

Inferring Demographic History
The SNP data set used for demographic simulations was the
same as the one for detecting genomic islands with two
differences. First, all rare alleles (i.e., a minor allele frequency
<0.05) were kept. Second, we removed sites located in the
genomic islands of differentiation. To account for linkage dis-
equilibrium (LD), we used PLINK (v 1.9) to calculate and
prune the SNP matrix to those with LD <0.1. To prevent
bias from SNPs in repeated regions, we checked the distance
between consecutive SNPs and discarded those where the
distance was less than 5 bp.

To explore the evolutionary history of these two
G. aculeatus populations and explain the patterns of genomic
diversity, we reconstructed their demographic history with
fastsimcoal2 (v 2.6) (Excoffier et al. 2013). The 1D folded ob-
served site frequency spectrum (SFS) was calculated with
easySFS (https://github.com/isaacovercast/easySFS, last
accessed December 20, 2020) for each population. To maxi-
mize the number of segregating sites, 22 and 18 individuals of
Lake Washington and Puget Sound were kept for down-
stream analyses respectively. We fixed the split time of fresh-
water and marine population to 12,000 years ago, assuming a
generation time of 1 year (Bell and Foster 1994). Thirteen
models were built to identify the best scenario (supplemen-
tary fig. S7, Supplementary Material online): 1) constant pop-
ulation size, 2) two bottlenecks while splitting, 3) two
bottlenecks after splitting, 4) one bottleneck before splitting,
5) one bottleneck and splitting, 6) one bottleneck and split-
ting followed by a constant and reciprocal migration, 7) one
bottleneck and splitting followed by an early reciprocal mi-
gration, 8) one bottleneck and splitting followed by a recent
reciprocal migration, 9) one bottleneck and splitting followed
by two reciprocal migration regimes, 10) one bottleneck and
splitting followed by introgression from Lake Washington to
Puget Sound, 11) one bottleneck and splitting followed by
introgression from Puget Sound to Lake Washington, 12) one
bottleneck and splitting followed by introgression from Lake
Washington to Puget Sound and two reciprocal migration
regimes, and 13) one bottleneck and splitting followed by
introgression from Puget Sound to Lake Washington and
two reciprocal migration regimes. To maximize the likelihood
of each model, we randomly started from 100 parameter
combinations in 50 expectation-conditional maximization
cycles with a total of 200,000 coalescent simulations. A mu-
tation rate of 7.9� 10�9 was used, following Guo et al. (2013).
For each model, we obtained the best likelihood values and
estimated parameters from 100 optimizations. The best
model was selected based on the smallest DAIC (supplemen-
tary table S5, Supplementary Material online).
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Genetic Diversity Analysis of Each Chromosome in
Fused and Unfused Taxa
To explore whether fused chromosomes have a lower recom-
bination rate, we compared genetic diversity of each chro-
mosome in G. aculeatus and A. quadracus. Genetic diversity
can be used as a proxy for recombination rate because a
decrease in recombination rate should lead to an increase
in levels of background selection and therefore decrease in
genetic diversity. Such a relationship between genetic diver-
sity and recombination rate has been observed in Heliconius
butterflies (Cicconardi et al. 2021). To obtain diversity data in
A. quadracus, the whole-genome resequencing data de-
scribed above from eight individuals from Canal Lake, Nova
Scotia, Canada (supplementary table S1, Supplementary
Material online) were mapped by BWA (v 0.7.11) (Li 2013)
to the A. quadracus reference genome generated in this study.
Bam files were sorted with duplicates marked by Samtools
(v 1.9) (Li et al. 2009) and MarkDuplicates in GATK4 (van der
Auwera and O’Connor 2020) separately. Variants were called
using HaplotypeCaller, and joint genotyping was conducted
by combining all individuals with GATK4 (van der Auwera
and O’Connor 2020). For SNP filtration, we used Vcftools
(0.1.16) and kept sites with minimum genotype qualities
greater than 30, fewer than 20% missing genotypes, and a
minor allele count (MAC) greater than 2. For G. aculeatus, the
same SNP data set for identifying genomic islands was used,
except that we only used data from the marine population
(Puget Sound) to prevent potential bias due to linkage to
adaptive sites in the freshwater population. For both species,
we extracted 4-fold degenerate sites with the script
codingSiteTypes.py available at (https://github.com/simonh-
martin/genomics_general, last accessed November 20, 2021).
Genetic diversity was calculated in windows of 50 SNPs with
the script popgenWindows.py (https://github.com/simonh-
martin/genomics_general, last accessed November 20,
2021). The average value of each chromosome was calculated
by hand, and genetic diversity on each chromosome was
normalized relative to the average diversity of unfused chro-
mosomes within a species.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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