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Type 2 diabetes mellitus (T2DM) has been associated with an increased risk

of cancer, including colon cancer (CC). However, we recently reported no

influence of T2DM on CC prognosis, suggesting that any effect might be at

the early stages of tumor development. We hypothesized that T2DM may

create an environment in the healthy tissue, which acts as a carcinogenesis

driver in agreement with the field of cancerization concept. Here, we focused

on early carcinogenesis by analyzing paired tumor and normal colonic

mucosa samples from the same patients. The proteome of CC and paired

mucosa was quantitatively analyzed in 28 individuals (12 diabetics and 16

nondiabetics) by mass spectrometry with isobaric labeling. Out of 3076 iden-

tified proteins, 425 were differentially expressed at the tumor in diabetics

compared with nondiabetics. In the adjacent mucosa, 143 proteins were dif-

ferentially expressed in diabetics and nondiabetics. An enrichment analysis

of this signature pointed to mitochondria, ribosome, and translation. Only

six proteins were upregulated by diabetes both in tumor and mucosa, of

which five were mitochondrial proteins. Differential expression in diabetic

versus nondiabetic mucosa was confirmed for MRPL53, MRPL18, and

TIMM8B. Higher levels of MRPL18, TIMM8B, and EIF1A were also found

in normal colon epithelial cells exposed to high-glucose conditions. We con-

clude that T2DM is associated with specific molecular changes in the normal

mucosa of CC patients, consistent with field of cancerization in a diabetic

environment. The mitochondrial protein signature identifies a potential ther-

apeutic target that could underlie the higher risk of CC in diabetics.

Abbreviations

ADA, American diabetic association; CC, colon cancer; FC, field cancerization; FDR, false discovery rate; LC-MS/MS, liquid chromatography

with mass spectrometry in tandem; N, normal mucosa (nondiabetic); ND, normal mucosa diabetic; PSMs, peptide spectra matched; T,

tumor (nondiabetic); T2DM, type 2 diabetes mellitus; TD, tumor diabetic.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a known risk fac-

tor for a wide spectrum of pathological disorders such

as hypertension and cardiovascular diseases. Epidemio-

logic evidence suggests an association between T2DM

and increased risk of many forms of cancer (Johnson

et al., 2012; Renehan et al., 2012; Suh and Kim, 2011)

including colon cancer (CC) (Harding et al., 2015; de

Kort et al., 2016). In a recent publication, we reported

no differences in CC prognosis once the tumor is pre-

sent (Prieto et al., 2017). Thus, the challenge is to

focus on the role of T2DM during early carcinogene-

sis, an stage which has obvious limitations in humans

from the point of view of research approaches. In the

omics era, an unexplored hypothesis like this requires

the production of extensive repositories of molecular

data that allows an unbiased exploration of molecular

markers.

The existence of a differential proteome between

tumor tissue and noncancer tissue has been widely

reported (Cardoso et al., 2007; Jimenez et al., 2010;

Nambiar et al., 2010). Changes in the proteome of the

normal mucosa adjacent to the tumor have also been

shown, in agreement with the ‘field cancerization’ (FC)

concept (Curtius et al., 2018; Slaughter et al., 1953).

The concept of FC conforms a theoretical framework

for carcinogenesis. This theory defines premalignant

epithelial areas with normal histology, but with specific

molecular features that could promote cancer develop-

ment. Specifically, in colorectal cancer, several authors

have reported evidences regarding a ‘field effect’ in the

normal mucosa surrounding the tumor characterized

by changes in methylation pattern, chromosomal insta-

bility, copy number alterations, or even in Warburg

metabolism. Among the potential mechanisms respon-

sible for this effect, T2DM has been proposed as a fac-

tor for FC in in vitro approaches (Del Puerto-Nevado

et al., 2019; Rubin, 2013; Slaughter et al., 1953). Gene

and protein deregulation has been reported in such

‘normal’ tissue (Guo et al., 2017; Sanz-Pamplona

et al., 2014), and gradual signatures were correlated

with distance to the tumor. At the protein level, 1808

proteins showed significant variation between normal

and colorectal cancer tissue, constituting a much larger

fraction than that reported at the transcriptome level

(Wi�sniewski et al., 2012). An extensive proteomics

analysis comparing normal tissue, adenoma, and CC

tissue found more than 2000 proteins altered, and

main changes related to fatty acid metabolism and

plasma membrane transport (Wi�sniewski et al., 2015).

Supporting the FC hypothesis, shotgun proteomics

previously disclosed that colorectal precancerous

lesions (adenomas) and a paired sample of normal

colon mucosa displayed protein differences that had

been reported only in advanced cancer stages (Uzozie

et al., 2014).

In agreement with these evidences, we recently

showed how T2DM could promote a precancer state by

means of signaling pathways exclusively activated in

diabetic normal mucosa (Del Puerto-Nevado et al.,

2019). Molecular changes specifically occurring in the

normal colon mucosa of diabetic patients would thus

explain their higher risk of CC development. In this

study, we present a quantitative differential proteomics

analysis of tumor tissue and adjacent normal mucosa

from CC cancer patients with and without T2DM. We

focused on molecular changes in patient-matched nor-

mal mucosa from diabetics and nondiabetics to identify

potential proteins changes promoted by diabetes that

may drive CC development. Alterations in this ‘healthy’

area would mimic an earlier stage in cancer progression

compared with the tumor, revealing novel pathogenetic

mechanisms and potential targets for drug design.

2. Methods

2.1. Patient selection

Patients were recruited from January 2009 to Decem-

ber 2013 at the University Hospital Fundaci�on

Jim�enez D�ıaz (Madrid, Spain), a cohort used in a pre-

vious epidemiological study (Prieto et al., 2017). The

inclusion parameters were as follows: patients with

resection of primary CC, colon adenocarcinoma histo-

logical type, colon location (rectal cancer patients were

excluded as they were receiving chemo/radiotherapy),

time from surgery up to 6 months, no neoadjuvant

treatment, no other concurrent neoplasia or immuno-

suppressive treatment, and diabetes diagnosed as a

documented registry of diabetes, history of antidiabetic

medication, or meeting the American Diabetic Associ-

ation (ADA) criteria for diabetes at the time of review-

ing the data. The ADA criteria for diabetes diagnosis

were hemoglobin A1c values ≥ 6.5%, or fasting blood

glucose levels ≥ 125 mg�dL�1 with high fasting values

recorded at least twice, or random blood glucose levels

≥ 200 mg�dL�1 with high random values recorded at

least twice. In parallel, this observational study also

included 79 nondiabetic patients with primary diagno-

sis of CC, who underwent resection during the same

period, using equal inclusion criteria except the pres-

ence of diabetes, aiming to obtain a well-balanced ser-

ies. A total of 28 patients (12 diabetics and 16 non-

diabetics) that met the inclusion criteria described

above were selected based on sample availability and
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homogeneity criteria to compare a well-balanced sub-

set of patients, in terms of: gender, grade [low grade:

G1–G2 and high grade: G3, following the 2010 WHO

classification (http://www.pathologyoutlines.com/to

pic/colontumorwhoclassification.html)], tumor site

(right: cecum, hepatic flexure, ascending, and trans-

verse colon; and left: splenic flexure and descending

colon), stage (low stage: 0, I, any II; or high stage: any

III, IV; https://cancerstaging.org/Pages/default.aspx),

recurrence, death, or alive status at final follow-up and

metformin intake. The study was approved by the

Institutional Scientific and Ethical Committee at IIS-

Fundaci�on Jim�enez D�ıaz (Madrid, Spain; CEIC-FJD,

approval code 08/13; on October 1, 2013) in accor-

dance with the ethical principles stated in the Declara-

tion of Helsinki. Informed consent is included in the

clinical history of each participant and recorded by the

standard requirements of data protection rules.

2.2. Tissue sampling

Surgical resection specimens from CC tumors were

obtained from Fundacion Jimenez Diaz Biobank.

Paired formalin-fixed paraffin-embedded (FFPE) sam-

ples from tumor and nontumor adjacent normal colo-

nic mucosa from each individual were selected. Cancer

tissue was obtained from the resected tumor edge, and

the percentage of tumor content in FFPE samples was

more than the 70%. Normal colonic mucosa samples

were selected from a > 5-cm distance from the tumor.

Pathologists confirmed the absence of morphological

lesions in the normal colonic tissue.

2.3. Proliferation, microsatellite instability

phenotype, and RAS and BRAF mutational

analysis

Mutational analysis for BRAF, KRAS, and NRAS genes

was performed on FFPE CC samples by pyrosequenc-

ing and PCR-based assay. DNA was isolated from 20-

µm FFPE sections of representative tumor tissue. KRAS

and NRAS were studied by pyrosequencing using the

therascreen KRAS and RAS Extension Pyro Kits (Qia-

gen, Venlo, the Netherlands), following the manufac-

turer’s recommendations. BRAF was assayed by the

PCR-based Cobas 4800 BRAF V600 Mutation Test

(Roche, Basel, Switzerland). The microsatellite instabil-

ity (MSI) phenotype was studied by testing the expres-

sion of the four mismatch repair (MMR) proteins

(MLH1, MSH2, MSH6, PMS2) by immunohistochem-

istry on an Omnis platform (Dako, Glostrup, Den-

mark), using conventional 3-µm tissue sections from the

same specimens. Interpretation of staining was

performed by qualified pathologists. Finally, prolifera-

tion was estimated as percentage Ki67-labeled tumor

cells by immunohistochemistry on an Omnis platform.

2.4. Differential protein analysis by isobaric

labeling and LC-MS/MS

Ten slices 5 µm thick were collected from each FFPE

sample. Tissue was deparaffinated and proteins

extracted as previously described (G�amez-Pozo et al.,

2012). Total protein was quantified by the BCA Protein

Assay Kit (Thermo Scientific, Waltham, MA, USA).

Two biological replicates were analyzed per condition,

diabetic and nondiabetic tumor tissue (TD and T,

respectively), and their adjacent diabetic and nondia-

betic normal mucosa (ND and N, respectively;

Fig. S1). Each biological replicate was a pool com-

posed by eight individual samples (in the case of nondi-

abetics, T or N) or six individual samples (in the case

of diabetics, TD or ND). Pools were designed to mini-

mize any bias which could interfere with the identifica-

tion of differences uniquely attributed to diabetes; that

is, every pool contained 50% of samples from patients

taking insulin and 50% of patients taking metformin

and every pool contained samples from patients with

both right and left side tumors. Digestion was per-

formed using the filter-aided sample preparation

method (Wi�sniewski et al., 2009). A total of 75 µg of

each tryptic digest was labeled according to the manu-

facturer’s instructions (AB Sciex, Redwood City, CA,

USA) with one 8-plex isobaric amine-reactive tag per

cell line iTRAQ� Reagent 8-plex kit (AB Sciex, Red-

wood City, CA, USA). Labeled samples were com-

bined, cleaned up using a Sep-Pak C18 cartridge for

SPE (Waters Corp., Milford, MA, USA), and fraction-

ated using high pH reverse phase technique (Wang

et al., 2011). All samples were analyzed by liquid chro-

matography with mass spectrometry in tandem (LC-

MS/MS) on The LTQ Orbitrap Velos mass spectrome-

ter (Thermo Scientific) coupled to an Eksigent nano

LC system (Eksigent, Redwood City, CA, USA)

through a nanoelectrospray ion source (Proxeon

Biosystems, Odense, Denmark). Separation took place

in a binary gradient of 4% ACN in 0.1% FA (buffer

A) and 100% ACN in 0.1% FA (buffer B), with a flow

rate of 250 nL�min�1, as follows: 0 � 2 min 6% B,

2 � 133 min 30% B, and 133 � 143 min 98% B. The

LTQ Orbitrap Velos was operated in positive ioniza-

tion mode. The resolution was set to 30 000 FWHM at

m/z 400. HCD was used for fragmentation; up to the

15 most abundant isotope patterns with charge ≥ 2

from the survey scan were selected for fragmentation in

the HCD collision cell. Data files were analyzed using
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PROTEOME DISCOVERER 1.4 (Thermo Scientific) with

Sequest HT as the search engine against a concatenated

Uniprot database of Homo sapiens (20 187 sequences)

supplemented with frequently observed contaminants

(397 sequences). Reagent impurities were corrected as

indicated by the manufacturer. Peptide spectral

matches (PSMs) were filtered using Percolator with a

false discovery rate (FDR) of 1%. Quantification

results at the PSM level were exported for further anal-

ysis. Quantification and statistical analysis were per-

formed using Isobar in R. We used a noise model that

accounts for the technical variation due to the instru-

ment. A null protein distribution was used to model

sample variability (created by comparing biological

replicates). Protein ratios were further calculated for all

the possible combinations, and only, proteins having

both ‘P-value sample’ and ‘P-value ratio’ under 5%

were considered significant.

2.5. Enzyme-linked immunosorbent assays

For ELISA analysis of proteins MRPL18 (SEP261Hu;

Cloud Clone Corp, Houston, TX, USA), MRPL53

(SEP070Hu; Cloud Clone Corp), and TIMM8B (CSB-

EL023558HU; Cusabio, Houston, TX, USA) manufac-

tures’ protocols were followed.

2.6. Cell culture

The epithelial cell line NCM356 derived from normal

colon mucosa (acquired under a MTA from InCell

Corp., San Antonio, TX, USA) was selected to

arrange an in vitro validation.

To mimic the diabetic and nondiabetic environment

of normal mucosa used for proteomics, cells were

exposed to three experimental conditions: normo-

glycemia (cells were cultured in serum-free M3BaseTM

medium (Incell Corp.) supplemented with 10% FBS and

1% penicillin–streptomycin), high-glucose condition (by

adding 24.5 mM D-glucose to M3BaseTM), and an osmo-

tic control (by adding 24.5 nM L-glucose to M3BaseTM)

for five days. Then, cells were trypsinized at a 75–80%
confluence and pellets were used for protein extraction.

2.7. Immunoblotting

Proteins were quantified using a BCA kit (Thermo

Fisher), and 15 µg of protein from each condition was

loaded into 10% polyacrylamide gels. After elec-

trophoresis, proteins were transferred onto nitrocellu-

lose membranes at 100 V for 2 h. Membranes were

blocked and then incubated with primary antibodies

against MRLP18 (1 : 100, SAB1400513; Sigma-

Aldrich, Darmstadt, Germany), TIMM8B (1 : 1000,

H00026521-M15; Novus Biological, Centennial, CO,

USA), and EIF1A (1 : 1000, ab172623; abCAM, Cam-

bridge, UK) overnight at 4 °C. After rinsing with Tris-

buffered saline with Tween (TBST), the corresponding

secondary antibody was added and incubated for 1 h.

An Amersham Imager 600 chemiluminescence imager

was used for high-resolution digital imaging of pro-

teins, and the gray values of the target bands were

analyzed with IMAGEJ software (NIH ImageJ, Washing-

ton D.C, USA). These experiments were carried out in

triplicate. b-actin (Sigma-Aldrich) was used as loading

control. Values obtained were normalized with b-actin
expression, and the expression of hyperglycemic and

osmotic control proteins was referred to normo-

glycemic conditions. Differences among groups were

studied by Mann–Whitney U-test, and statistical signif-

icance was considered when P < 0.05.

2.8. Functional enrichment analyses

The functional enrichment analyses were performed

using the Panther suite (Mi et al., 2013). In all compar-

isons performed, the proteins with FDR < 0.05 and fold

change > 1.2 were selected and submitted to the statisti-

cal overrepresentation test with all the proteins detected

by the proteomics experiments as the reference set. In all

analyses, we used the Fisher’s exact test for the statistics

and FDR for the multiple testing P-value correction.

Gene Ontology terms and Reactome pathways over-rep-

resented with FDR < 0.05 were reported.

3. Results

3.1. Patient characteristics

From a Spanish cohort of 160 CC patients, we selected

28 patients (16 nondiabetics matched to 12 diabetics,

Table 1). Paired FFPE samples of tumor and normal

colonic mucosa were used for proteomic analysis with-

out differences between diabetics and nondiabetics. To

confirm an equal distribution among study groups and

reduce potential bias which could limit data interpreta-

tion, we included the evaluation of pathological vari-

ables such KRAS, NRAS, and BRAF mutational

status (these genes are commonly mutated in colorectal

cancer, showing a strong association with therapy

resistance and patient outcome), MMR genes expres-

sion: MLH1, MSH2, MSH6, and PSM2 (their loss of

expression is related to MSI), and tumor proliferation

status based on Ki-67 expression.

There were no statistical differences between diabet-

ics and nondiabetics in the pathological variables dis-

tribution (Table S1).
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3.2. Protein extraction from FFPE samples and

differential quantitation by iTRAQ-LC-MS/MS

Proteins were extracted from FFPE. As expected, sig-

nificantly higher protein concentrations were obtained

from tumor tissue than from normal mucosa, both for

diabetics and nondiabetics. No significant differences

in protein extraction were observed when comparing

diabetics and nondiabetics, either in tumor tissue or in

mucosa (Fig. S2).

Eight-plex quantitative proteomic analyses included

two biological replicates per condition: diabetic and

nondiabetic tumor tissue (TD and T, respectively), and

their adjacent diabetic and nondiabetic normal mucosa

(ND and N, respectively). Each biological replicate was

labeled as shown in Fig. S1. No bias was introduced

among labeled samples in terms of tumor site (right or

left) or treatment in case of T2DM. To increase pro-

teome coverage, sensitivity, and high-throughput capac-

ity, we performed a shotgun proteomics analysis and the

peptide mixture of labeled samples was fractionated in

15 fractions prior to LC-MS/MS. Table S2 shows the

Table 1. Clinical characteristics of CC patients included in the

study.

Nondiabetic (n = 16) Diabetic (n = 12)

Age (years) 69 � 8 74 � 6

Male gender 7 9

BMI (kg�m�2) 24 � 4 26 � 2

CC gradea

Low grade 4 2

High grade 12 10

CC stageb

G1–G2 13 7

G3 3 5

Tumor site

Right 7 6

Left 9 6

Recurrence 2 3

Alive at last follow-up 15 10

Metformin 0 6

aLow grade was defined as G1-G2 and high grade as G3, following

the 2010 WHO classification (http://www.pathologyoutlines.com/to

pic/colontumorwhoclassification.html).
bLow stage: 0-II; high stage: III, IV (https://cancerstaging.org/Pages/

default.aspx).

Fig. 1. Statistical analyses of identified proteins resulted in subsets of proteins differentially expressed between compared conditions (T,

N, TD, and ND) represented as red dots. (A) Nine hundred eighty-one proteins upregulated in T versus N. (B) One thousand eighty proteins

upregulated in TD versus ND. (C) Three hundred nine proteins upregulated in TD versus T. (D) Eighty-two proteins upregulated in ND

versus N.
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number of acquired MS/MS spectra, the total number of

identified PSMs for a protein, and the number of pep-

tides and proteins identified per fraction.

3.3. Identification of protein signatures

associated with diabetes in tumor and normal

colon

From a total of 3076 identified proteins (Table S3),

1342 proteins were significantly altered in nondiabetic

tumor tissue (T) compared with normal adjacent

mucosa (N): 981 upregulated (790 with a fold change

> 1.2) and 361 downregulated (314 with a fold change

> 1.2; Fig. 1A). In diabetics, 1412 showed altered

levels: 1080 upregulated (991 with a fold change > 1.2)

and 332 downregulated (302 fold change > 1.2) in

tumor (TD) compared with mucosa (ND; Fig. 1B).

When evaluating a potential effect of T2DM on the

CC tissue proteome, we found 425 proteins differen-

tially expressed in diabetics compared with

Cytoplasmic translation

Cytosolic small ribosomal subunit

Mitochondrial intermembrane space

Cytosolic large ribosomal subunit

Translational initiation

Nuclear−transcribed mRNA catabolic process, nonsense−mediated decay

Mitochondrial translational elongation

Mitochondrial translational termination

SRP−dependent cotranslational protein targeting to membrane

Organellar large ribosomal subunit

Mitochondrial inner membrane

0 5 10 15 20
–log(FDR)

5 10 15 20
% of annotation

Gene Ontology terms (MF and CC)

Regulation of expression of SLITs and ROBOs
GTP hydrolysis and joining of the 60S ribosomal subunit

L13a−mediated translational silencing of Ceruloplasmin expression
Major pathway of rRNA processing in the nucleolus and cytosol

Formation of a pool of free 40S subunits
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC)

Eukaryotic Translation Termination
Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC)

Viral mRNA Translation
Mitochondrial translation initiation

Mitochondrial translation termination
SRP−dependent cotranslational protein targeting to membrane

Peptide chain elongation
Mitochondrial translation elongation

Selenocysteine synthesis

0 5 10 15
–log(FDR)

11.512.012.513.013.5
% of annotation

Reactome pathways

A

B

Fig. 2. Functional enrichment of the proteins upregulated in diabetics in both the tumor and the normal colonic mucosa. (A) The most

specific (nonredundant) Gene Ontology terms from biological processes (BP) and cellular component (CC) with FDR < 0.05. (B) The most

specific (nonredundant) Reactome pathways with FDR < 0.05. In both plots, the terms are sorted according to their statistical significance

(FDR) in log scale. The intensity of the gray scale colors in the bars shows the percentage of annotation with every term in the set of

proteins selected as upregulated in diabetics.
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nondiabetics at tumor area (TD versus T; Fig. 1C),

309 upregulated (175 fold change > 1.2, Table S4), and

116 downregulated (76 fold change > 1.2, Table S5).

Interestingly, T2DM also influenced the proteome in

the adjacent mucosa: 143 proteins were differentially

expressed, 82 upregulated (51 with fold change > 1.2,

Table S4), and 60 downregulated (26 with fold change

> 1.2, Table S5) in ND versus N (Fig. 1D). From

these comparisons, we selected proteins up- and down-

regulated with FDR < 0.05 and fold change > 1.2 (log

(2) = 0.26) for further analysis.

3.4. Proteins related to mitochondrial activity are

key targets of T2DM in both tumor and normal

adjacent mucosa

A total of 220 proteins were upregulated in diabetics

in either the tumor or its adjacent mucosa. An enrich-

ment analysis of this signature provides several over-

represented Gene Ontology terms and Reactome path-

ways (Table S6). The main nonredundant terms are

shown in Fig. 2 with three keywords in common:

mitochondria, ribosome, and translation. Interestingly,

there are only six proteins upregulated both in tumor

and mucosa in diabetics, five of them are mitochon-

drial proteins (Table 2). In contrast to the strong

signal coming from the upregulation toward

mitochondrial dysfunction, the downregulated proteins

showed a more heterogeneous scenario in terms of

affected functions in both the common proteins down-

regulated in diabetic tumors and mucosas (Table S7)

and the over-represented functions in the whole set

(Fig. S3 and Table S8).

Since both the mucosa and the tumor share this

molecular signature, we focused on mucosa samples

for confirmation analysis with the premise that these

shared features between mucosa and tumor could rep-

resent the earliest stage of carcinogenesis. Analysis of

individual extracts (not pools) by ELISA confirmed

the increased expression in ND compared with N for

the mitochondrial proteins MRPL18 (Fig. 3A),

MRPL53 (Fig. 3B), and TIMM8B (Fig. 3C).

Additionally, for further validation, cultured epithe-

lial cell line derived from normal colon mucosa was

exposed to high or normal glucose (NG) condition. In

agreement with MS data, western blot analysis of cell

extracts revealed higher levels of MRPL18 (Fig. 4A),

TIMM8B (Fig. 4B), and EIF1A (Fig. 4C) in high

glucose than in NG, and no changes in the osmotic

control condition. This shows that high microenviron-

mental glucose levels, a cardinal feature of diabetes,

could itself elicit the differential expression of at least

some proteins identified as differentially regulated by

diabetes in vivo.

Table 2. Proteins upregulated in diabetics versus nondiabetics, both in tumor and in adjacent mucosa.

Entry Protein id Protein Name

Tumor

Diabetic to nondiabetic

ratio (log2)

Mucosa

Diabetic to nondiabetic

ratio (log2)

O14602 EIF1AY Eukaryotic translation initiation factor 1A, Y-chromosomal 1.126 0.954

Q96EY8 MMAB Cob(I)yrinic acid a,c-diamide adenosyltransferase, mitochondrial 0.631 0.442

Q9Y5J9 TIMM8B Mitochondrial import inner membrane translocase subunit Tim8B 0.471 0.769

Q9H0U6 MRPL18 39S ribosomal protein L18, mitochondrial 0.420 0.339

Q96EL3 MRPL53 39S ribosomal protein L53, mitochondrial 0.404 0.258

O60220 TIMM8A Mitochondrial import inner membrane translocase subunit Tim8 A 0.303 0.268

Fig. 3. ELISA analysis for MRPL18 (A), MRPL53 (B), and TIMM8B (C) in individual extracts from T and N. *P-value < 0.05.
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4. Discussion

The FC concept, defined as the capacity of initiation

of carcinogenesis processes in a normal tissue exposed

to some factors such as inflammatory processes, has

already been demonstrated using proteomics (Galan-

diuk et al., 2012; Leedham et al., 2009). To the best of

our knowledge, here we show for the first time specific

molecular changes triggered by T2DM in CC patients.

These changes represent evidence of FC due to dia-

betes represented by abnormal protein levels in tumor

and normal adjacent mucosa. In this regard, we identi-

fied six proteins upregulated in the tumor region and

its adjacent normal mucosa triggered by T2DM.

This protein signature reveals a diabetes-associated

abnormal mitochondrial protein pattern, which is in

agreement with previously described impaired mito-

chondrial responses to metabolic regulation in insulin

resistance (Sivitz and Yorek, 2010). Supporting this

concept, proteins associated with mitochondrial energy

metabolism had been identified when compared dia-

betic and nondiabetic transgenic mice (Lu et al., 2008).

Indeed, mitochondrial abnormalities may result in

increased reactive oxygen species production, causing

subsequent organ damage (Szendroedi et al., 2011). In

this regard, higher mitochondrial mass, increased

mitobiogenesis, and translation were positively corre-

lated with proliferating tissue compared with solid

(stable) tumors, and in metastatic tumors, they corre-

lated with recurrence and poor clinical outcome

(H€uttemann et al., 2007). Gene expression studies have

identified differential expression of mitochondrial ribo-

somes (mitoribosomes) genes in association with can-

cer development, and mitochondria have been

proposed as key targets in cancer therapeutics (J€ar�as

and Ebert, 2011; Kim et al., 2017; Koc et al., 2015;

Lamb et al., 2015; Wallace, 2012). In particular, more

than 95 gene transcripts associated with mitochondrial

biogenesis and/or translation were significantly upregu-

lated in human epithelial breast cancer cells. Of them,

> 40% were mitochondrial ribosomal proteins (MRPs)

including MRPL18 and TIMM8B (Sotgia et al., 2012)

that we here report to be upregulated in diabetics both

in the tumor and the mucosa. MRPs are proteins func-

tionally associated with mitochondrial translation of

OXPHOS complex components, and with these evi-

dences, we may hypothesize that a diabetic environ-

ment may also amplify oxidative mitochondrial

metabolism and favor mitochondrial biogenesis simi-

larly to what was observed in epithelial cancer cells. In

a different study, high gene expression of a subset of

MRPs including MRPL18 correlated with poor breast

Fig. 4. Western blot analysis of MRPL18 (A), TIMM8B (B), and EIF1A (C) from in vitro experiments using a normal colon mucosa epithelial

cell line exposed to high (HG) or NG condition. Relative densitometric quantification and representative immunoblots are shown. CO:

(osmotic) control. Error bars indicate SEM. Mann–Whitney statistical U-test used with three biologically independent replicates included (*P-

value < 0.05).
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cancer survival (Huang et al., 2015), and predicted

tumor recurrence and tamoxifen resistance (Sotgia

et al., 2017). A new role for MRPL18 has been

reported in the cytosolic stress response, in agreement

with the diabetic microenvironment (Zhang et al.,

2015). EIF1A is a eukaryotic translation initiation fac-

tor. As a PAS kinase substrate, it regulates the cellular

metabolism and glucose homeostasis (DeMille and

Grose, 2013). An altered translation initiation is

increasingly related to the risk of cancer, with a poten-

tial impact of EIF1A on NF-kB signaling in an inflam-

matory microenvironment (Spilka). Finally, TIMM8A

is a mitochondrial import inner membrane translocase

subunit and its increase was related to increased malig-

nancy in what refers to proliferation, metastasis, or

cellular migration (Arnoult et al., 2005; Gagn�e et al.,

2007; Peiris-Pag�es et al., 2018; Rosdah et al., 2016).

We present herein a proteomic experiment with four

types of paired samples from CC patients divided into

diabetics and nondiabetics. Although we have focused

on the description of the diabetes effect in normal

colonic mucosa and the signal that shares with the

tumor, our rich framework can be exploited for dis-

covery in several fronts. For instance, we found Fuma-

rate hydratase, again a mitochondrial protein,

downregulated in tumors versus normal mucosa in

nondiabetics supporting the Warburg effect and Peto’s

paradox (Peto, 2016; Tidwell et al., 2017; Warburg,

1956).

The present study has some limitations. The number

of studied samples was not high. However, the patients

were carefully selected from a wider cohort for homo-

geneity and comparability. Additionally, although the

identified differentially expressed mitochondrial are

known to be involved in tumor development, the

definitive assignment of a cause-and-effect relationship

to FC the diabetes context and to the increased risk of

CC in diabetes requires carefully designed interven-

tional experimental approaches.

5. Conclusions

We describe for the first time an altered proteome

suggestive of mitochondrial deregulation in diabetic

CC patients, thus supporting the epidemiological evi-

dence of a higher risk of cancer development in dia-

betics. Since some of the identified proteins are

known to be involved in cancer, the findings are con-

sistent with the FC concept in a diabetic environ-

ment. The mitochondrial protein signature identifies a

potential therapeutic target that should be further

explored regarding its potential contribution to the

higher risk of CC in diabetics.
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