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Abstract: The antibiotic amoxicillin (AMX) may reach soils and other environmental compartments
as a pollutant, with potential to affect human and environmental health. To solve/minimize these
hazards, it would be clearly interesting to develop effective and low-cost methods allowing the
retention/removal of this compound. With these aspects in mind, this work focuses on studying the
adsorption/desorption of AMX in different agricultural soils, with and without the amendment of
three bio-adsorbents, specifically, pine bark, wood ash and mussel shell. For performing the research,
batch-type experiments were carried out, adding increasing concentrations of the antibiotic to soil
samples with and without the amendment of these three bio-adsorbents. The results showed that
the amendments increased AMX adsorption, with pine bark being the most effective. Among the
adsorption models that were tested, the Freundlich equation was the one showing the best fit to the
empirical adsorption results. Regarding the desorption values, there was a decrease affecting the soils
to which the bio-adsorbents were added, with overall desorption not exceeding 6% in any case. In
general, the results indicate that the bio-adsorbents under study contributed to retaining AMX in the
soils in which they were applied, and therefore reduced the risk of contamination by this antibiotic,
which can be considered useful and relevant to protect environmental quality and public health.

Keywords: antibiotics; bio-adsorbents; emerging pollutants; soil pollution

1. Introduction

Emerging pollutants include a wide range of chemical compounds, such as various
pharmaceutical products, and specifically antibiotics [1,2]. In 2020, in the European Union
(EU), the average total consumption of anti-bacteria compounds for systemic use (ATC
Group J01) was 16.4 defined daily doses (DDD) per 1000 inhabitants [3]. These compounds
are not fully absorbed in the intestine, causing them to be excreted in significant amounts
(up to 90%) through urine and feces [4,5], thus passing to wastewater in the case of
humans, and to manure pits or manure accumulations in the case of animal farms. These
contaminants can pass into various environmental compartments and may directly cause
undesirable effects in soils [6], including the promotion of antibiotic resistance [7–9], and/or
be absorbed by plants used for human or animal consumption, entering the food chain, as
has been shown for lettuce and other vegetables [7,10,11].

One of the most widely used antibiotics in both human and veterinary medicine
is amoxicillin (AMX), which is frequently used as a first-choice drug for the treatment
of serious infections [12]. Between 80 and 90% of this antibiotic is excreted due to its
poor absorption [13], then reaching the environment, and achieving concentrations of
127.49 ng L−1 in wastewater [14].
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Different authors point out that antibiotics are frequently detected in treated wastewa-
ter, because they come from human use, but also from other sources such as agriculture
and livestock production [15–18]. In this regard, one of the current strategies to alleviate
water scarcity is the reuse of previously treated wastewater, which could result in pub-
lic health issues due to the presence of different chemical pollutants and microbes [19].
Wastewater treatment tries to decrease nutrient loads [20] and pathogens [21], among other
contaminants, but many current treatments are not sufficiently effective in retaining and
inactivating pharmaceuticals such as antibiotics [22,23].

Current EU and United States (US) legislations do not include concentration limits
for antibiotics in treatment plant effluents [24,25], making it more probable that antibiotics
reach soils through WWTP-purified water used in irrigation [26]. In addition, antibiotics
may be spread on soils through WWTP sludge used as fertilizer in agricultural crops and
silvo-pastoral systems [27], and can subsequently be incorporated into the food chain.

Soils have a relevant buffering capacity and filtering potential due to the colloids
present in the clay fraction and in organic matter, which help in preventing environmental
pollution [28–30]. The dynamics followed by antibiotics in the soil depends on their physic-
ochemical properties, as well as on those of the soil, and also on the time of application of
the residual materials, as well as weather conditions [31–33]. Among the various processes
that antibiotics can undergo in the soil environment, it is worth highlighting mineralization,
degradation, volatilization, leaching, surface runoff, bioaccumulation, and adsorption.

The specific behavior of the antibiotic AMX in the soil is highly conditioned by the
pH of the medium, which affects the ionization of the compound and the surface charge
of the soil colloids [34,35]. In this regard, it is highly relevant that AMX has amphoteric
properties due to three functional groups present in its structure: -NH2, -COOH, and
-OH [36]. The dissociation constants (pka) of a molecule indicate its ionization state as a
function of pH [37]. In the case of AMX, pka1 corresponds to carboxyl groups (-COOH),
pka2 is represented by amine groups (-NH2), while pka3 corresponds to phenolic groups
(where hydroxyl (-OH) is attached to a C atom integrated in an aromatic ring), so that, at
different pH values, AMX may appear as a cation, anion, or zwitterion [38]. Specifically, at
pH < pka1 AMX will appear as a cation, at pH > pka3 it will appear as an anion, while at
pH values between pka1 and pka3 it will appear as a zwitterion [39].

The presence of antibiotics in soils and water that have received the spreading/disposal
of wastewater and/or sewage sludge is a matter of concern [40], so different investigations
have focused on the design of a variety of systems intended to its removal [41]. Several tech-
nologies have been proposed to achieve antibiotics removal during wastewater treatment,
such as the use of ozone [42] or advanced oxidation [39], although these methods tend
to generate unwanted toxic side-products. In contrast, adsorption is considered a rather
simple and sustainable alternative [43]. In this way, commonly used adsorbents include
mineral and biological materials, as well as activated carbon, with this last adsorbent being
widely used, although it has a high cost and regeneration issues [44]. In view of this, there
is increasing interest in using low-cost adsorbents, such as industrial waste or by-products,
for which it is necessary to determine their pollutant adsorption capacity, and in particular
their potential to retain/remove antibiotics [45,46].

Among them, certain residues/by-products from the food industry, such as mussel
shell, and from the forestry industry, such as pine bark and wood ash, are abundant,
easily accessible and low-cost, making it interesting to determine their capacity to adsorb
contaminants such as antibiotics that reach different environmental compartments. These
three bio-adsorbent materials could be added to the soil or used in modules specifically
designed and installed in wastewater treatment plants, to minimize the risk of dispersion
of these pollutants in the environment. Mussel shell, pine bark and wood ash have already
been studied previously regarding their ability to retain heavy metals, inorganic anions
and antibiotics from the group of tetracyclines and sulfonamides, obtaining very promising
results [47–56]. There are also previous studies dealing with the adsorption of AMX present
in wastewater by means of adsorbents such as wheat grain, almond shell ash, palm bark,
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bentonite or activated carbon [36]. However, there are no previous publications that have
focused on evaluating the effects on AMX retention derived from amending crop soils with
pine bark, wood ash and mussel shell. In fact, the efficacy of these bio-adsorbents to increase
the adsorption of antibiotics in soils has been previously proven for sulfonamides in the
case of pine bark [57], while wood ash and mussel shell showed worse results. In addition,
mussel shell has been widely studied as a bio-adsorbent in soils contaminated with heavy
metals [58], and wood ash has also been investigated for this purpose (for example [59]),
but studies on the application of these materials in the retention of pharmaceutical products
are very scarce.

In view of the above background, the present study was performed to investigate for
the first time AMX adsorption and desorption on/from different agricultural soils with and
without the presence of the bio-adsorbents pine bark, wood ash and mussel shell, assessing
their potential to decrease the dispersion of this antibiotic, which can be considered of
relevance with regard to environmental preservation and public health protection.

2. Materials and Methods
2.1. Soils and Bio-Adsorbents

Four agricultural soils, devoted to maize and vineyard cultivation, located in different
areas of Galicia (NW Spain), were selected in function of their pH values and organic matter
(OM) contents. All four were characterized as detailed in the Supplementary Materials.
Table S1 (Supplementary Materials) shows values corresponding to soil properties., Within
them, soil pHwater was between 5.01 and 6.04, while organic matter (OM) content was in
the range 3.06–4.59%. The texture of two of the soils (soils M1 and M2) was clay loam,
while it was sandy clay loam for the other two soils (soils M3 and VO).

In addition, the following materials were used as bio-adsorbents/amendments: (a) two
forest by-products: pine bark (commercially distributed by Geolia, Madrid, Spain), and
wood ash (from a local boiler at Lugo, Spain); (b) mussel shell (crushed at <1 mm), from
Abonomar (Pontevedra, Spain). These bio-adsorbents were characterized as indicated in the
Supplementary Materials, with results shown in Table S2. Some additional data regarding
characteristics of these materials have been included in previous publications [55,56].

Different soil + amendment mixtures were elaborated adding the bio-adsorbents to
soil samples at doses of 48 t ha−1, followed by 72 h of stirring at 50 rpm using a rotatory
shaker, and further homogenization by means of a Retsch splitter (Haan, Germany), all this
carried out at stable temperature of 25 ± 2 ◦C. The pH of the different soil + bio-adsorbent
mixtures was analysed, with results shown in Table 1.

Table 1. pH values of the different soils and soil + bio-adsorbent mixtures. VO: vineyard soil; M:
maize soils; A: wood ash; MS: mussel shell; PB: pine bark. Average values (n = 3), with coefficients of
variation always <5%.

Soils and Mixtures pH Soils and Mixtures pH

M1 5.33 M3 5.01
M1 + A 6.93 M3 + A 6.93

M1 + MS 5.29 M3 + MS 5.46
M1 + PB 4.92 M3 + PB 4.79

M2 5.65 VO 6.04
M2 + A 7.04 VO + A 7.81

M2 + MS 5.76 VO + MS 5.92
M2 + PB 5.24 VO + PB 5.35

2.2. Chemical Reagents

The antibiotic AMX used (with purity ≥ 95%) was from Sigma-Aldrich (Barcelona,
Spain), while acetonitrile (purity ≥ 99.9%) and phosphoric acid (85% extra pure) were from
Fisher Scientific (Madrid, Spain), and CaCl2 (95% purity) was from Panreac (Barcelona,
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Spain). All the solutions needed for HPLC analyses were prepared using milliQ water
(from Millipore, Madrid, Spain).

2.3. Adsorption and Desorption Experiments

AMX adsorption and desorption were studied by means of batch experiments, per-
formed on the different soils amended with the bio-adsorbent materials, which were added
to the soils in doses of 48 t ha−1. For this, 2 g of the soil + bio-adsorbent mixtures was
weighed, then adding a volume of 5 mL of a solution with different concentrations of
the antibiotic (2.5, 5, 10, 20, 30, 40, 50 µmol L−1), which also contained 0.005 M CaCl2 as
background electrolyte. The resulting suspensions were shaken for 48 h in the dark, using
a rotary shaker. Previous kinetic tests indicated that the 48 h period is enough to reach
equilibrium (data not shown). This step was followed by centrifuging the suspensions
(15 min at 4000 rpm), and by subsequent filtration of the supernatants through 0.45 µm
nylon syringe filters. Finally, AMX concentration was quantified using specific HPLC-UV
equipment (an LPG 3400 SD device, by Thermo-Fisher Scientific, Madrid, Spain). Details
on AMX HPLC determinations are provided in Supplementary Materials. Additionally,
example chromatograms are shown in Figure S1 (Supplementary Materials).

Regarding desorption, it was studied adding 5 mL of 0.005 M CaCl2 to the material
derived from the adsorption experiments, then repeating the procedure performed for the
previous adsorption phase. In all cases, triplicate determinations were carried out.

2.4. Data Treatment

The experimental adsorption data were fitted to the Freundlich (Equation (1)), Lang-
muir (Equation (2)) and Linear (Equation (3)) models [60].

qe = KFCn
eq (1)

qe =
qmKLCeq

1 + KLCeq
(2)

Kd = qe/Ceq (3)

with qe being the amount of AMX retained, which was calculated as the difference between
the concentration added and that remaining in the equilibrium; Ceq is the AMX concentra-
tion in the equilibrium solution; KF is the Freundlich parameter related to the adsorption
capacity; n is a Freundlich parameter related to the degree of heterogeneity in adsorption;
KL is the Langmuir adsorption constant; qm is the maximum adsorption capacity in the
Langmuir model; and Kd is the partition coefficient in the Linear model.

The fitting of the experimental data to the Langmuir, Freundlich and Linear models
was studied by means of the SPSS Statistics 21 software (IBM, Armonk, NY, USA).

3. Results
3.1. Adsorption

As shown in Figure 1, as well as in data included in Table S3 (Supplementary Materials),
pine bark performed as a very effective material for increasing AMX adsorption in the soils
amended with this bio-adsorbent. Table 1 shows that the pH of each soil changes when the
different bio-adsorbents are added. Specifically, pine bark (which has pH = 3.99) generally
causes an acidification of the amended soil.

Table 2 presents the values of the parameters corresponding to AMX adsorption as
per the Freundlich, Langmuir and Linear models.

Considering R2 values, all the non-amended soils (except M1) presented an overall
good fit to all three models, given that R2 > 0.90 for VO and M3, and R2 > 0.80 for M2.
Focusing on both the non-amended soils and those amended with bio-adsorbents, the
errors in some parameters of the Linear model, and especially in the Langmuir model, were
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too high, invalidating the adjustment in those cases, so the Freundlich’s model shows the
best results.
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Figure 1. Adsorption curves for AMX in unamended and bio-adsorbent-amended soils. Average
values (n = 3), with coefficients of variation always <5%.

Table 2. Values of the adsorption parameters corresponding to the Freundlich (KF, expressed in Ln

µmol1-nkg−1, and n–dimensionless-), Langmuir (KL, expressed in L µmol−1, and qm -µmol kg−1-)
and Linear (Kd, expressed in L kg−1) models. M: maize soil; VO: vineyard soil; A: wood ash; MS:
mussel shell; PB: pine bark; –: fitting not possible.

Freundlich Langmuir Linear

Sample KF Error n Error R2 KL Error qm Error R2 Kd Error R2

M1 50.79 34.56 0.274 0.344 0.723 – – – – – 3.699 0.122 0.983
M1 + A – – – – – 0.78 0.209 2066.7 0 0.344 1525.8 358.85 0.344

M1 + MS 139.24 36.56 0.191 0.145 0.745 27.983 29.168 129 30.23 0.746 – – –
M1+ PB – – – – – – – – – – – – –

M2 11.81 4.224 0.676 0.141 0.896 0.074 0.039 140.85 40.68 0.935 5.057 0.568 0.813
M2 + A 31.042 6.881 0.758 0.16 0.932 – – – – – 22.265 1.671 0.911

M2 + MS 40.022 3.142 0.672 0.062 0.986 0.183 0.064 243.06 53.74 0.984 26.378 1.625 0.939
M2 + PB 91.91 6.984 0.391 0.108 0.923 1.725 0.795 154 27.49 0.934 69.95 11.36 0.633

M3 19.17 4.626 0.67 0.114 0.928 0.124 0.049 161.82 34.48 0.961 3.084 0.113 0.978
M3 + A – – – – – 0.05 0 – – – – – –

M3 + MS 107.418 7.279 0 0.038 0.978 103.812 287.076 – – – – – –
M3 + PB 98.89 11.05 0.282 0.15 0.85 7.342 6.343 112.88 20.25 0.85 94.94 15.65 0.622

VO 9.579 2.155 0.806 0.091 0.974 0.037 0.017 232.67 75.91 0.982 5.934 0.312 0.957
VO + A 10.99 2.246 0.892 0.094 0.982 – – – – – 8.694 0.313 0.979

VO + MS 10.25 4.764 0.795 0.196 0.893 – – – – – 6.287 0.571 0.875
VO + PB 109.63 14.06 0.766 0.214 0.815 – – – – – 112.34 13.83 0.778

Figure 2 shows the AMX adsorption results (expressed as percentage values) for the
different soils with or without bio-adsorbents. It is evident that, in general, adsorption
is lower in the vineyard soil, and in the four soils studied, the amount of AMX adsorbed
increases when amending with the bio-adsorbents, especially for the three highest concen-
trations of antibiotic added (30, 40 and 50 µmol L−1). In three of the soils (VO, M2 and M3),
adsorption increases when amending with the bio-adsorbents, and this takes place for any
of the AMX concentrations added; however, in soil M1, this increase occurs just for the
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three highest concentrations of antibiotic, because for lower concentrations the soil adsorbs
100% of the added antibiotic. These graphs show that the greatest increases in adsorption
occur in both VO and M2 soils, especially after the addition of pine bark, while in soils M1
and M3, no differences were found regarding adsorption onto the different bio-adsorbents
(Figure 2).
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Figure 2. Adsorbed antibiotic (%) for each soil and the mixtures soil + bio-adsorbent in relation to the
concentration of AMX added. M: maize soil; VO: vineyard soil; A: wood ash; MS: mussel shell; PB:
pine bark; AMX: amoxicillin. Average values (n = 3), with coefficients of variation always <5%.

3.2. Desorption

Table 3 shows the values of AMX desorption from the different soils depending on
the concentration of antibiotic added and the bio-adsorbent used. In general, the higher
the concentration of antibiotic added, the greater the desorption from soils, both with and
without bio-adsorbent amendments. In some soils, this progressive increase is observed up
to 40 µmol L−1 of AMX added, with further increase being very scarce or null from this
concentration up to 50 µmol L−1. In most cases, desorption was lower in soils with one
bio-adsorbent than in soils without bio-adsorbents.

Table 3. AMX desorption, in µmol kg−1 and in percentage between brackets, from the soils studied,
with or without bio-adsorbents, as a function of the concentration of antibiotic added (C0). M: maize
soils; VO: vineyard soil; A: wood ash; MS: mussel shell; PB: pine bark; –: no value. Average values
(n = 3), with coefficients of variation always <5%.

C0 (µmol L−1)

Sample 2.5 5 10 20 30 40 50

M1 0.349 (10.9) 1.181 (12.5) 2.331 (12.8) 2.819 (11.1) 4.781 (7.2) 4.816 (11.6) 6.21 (16.9)
M1 + A 0 (0) 0 (0) 0 (0) 0.414 (0.79) 1.698 (2.26) 2.482 (2.51) 5.062 (4.10)

M1 + MS 0 (0) 0 (0) 0 (0) 0.233 (0.44) 2.259 (3.05) 3.943 (3.98) 6.105 (4.99)
M1 + PB 0 (0) 0 (0) 0 (0) 0 (0) 0.824 (1.09) 0.834 (0.84) 1.851 (1.50)

M2 0.767 (9.25) 1.339 (12.19) 3.029 (16.12) 5.032 (13.17) 5.211 (6.07) 11.504 (8.07) 18.489 (8.36)
M2 + A 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.935 (0)

M2 + MS 0 (0) 0.047 (0.34) 0.176 (0.77) – 0.69 (0.99) 1.061 (1.16) 3.488 (3.09)
M2 + PB – 0.164 (1.13) 0.329 (1.35) 0.713 (1.46) 1.075 (1.46) 1.788 (1.83) 2.597 (2.19)
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Table 3. Cont.

C0 (µmol L−1)

Sample 2.5 5 10 20 30 40 50

M3 0.384 (7.45) 0.828 (8.88) 2.6 (10.40) 4.639 (6.11) – 6.151 (9.33) 6.107 (9.67)
M3 + A 0.283 (3.82) 0.313 (2.45) – 0.949 (1.80) 1.055 (1.40) 2.319 (2.31) –

M3 + MS – 0.258 (2.01) – 2.488 (4.74) 2.694 (3.58) – 4.684 (3.79)
M3 + PB 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.14 (0.14) 1.276 (1.05)

VO 0.357 (7.67) 0.735 (13.41) 2.115 (13.85) 2.446 (8.58) 4.741 (8.15) 8.139 (6.26) 8.682 (7.68)
VO + A 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

VO + MS 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
VO + PB 0 (0) 0 (0) 0 (0) 0 (0) 0.219 (0.30) 0.712 (0.73) –

4. Discussion
4.1. Adsorption

In the current study pine bark (with pH 3.99) generally causes an acidification of the
amended soil. In this regard, it must be noted that greater acidification is associated with
more pronounced AMX adsorption increases, as occurs in soils VO and M2. In previous
studies, Githinji et al. [61] found a decrease in AMX adsorption as pH increased from 3.5 to
8.5, whereas other researchers also described a decrease in adsorption for pH values > 5,
using pistachio shell [62] or activated carbon [63] as adsorbents.

In the current piece of research, the pH of the soils is above 5, and it was expected
that lowering it by incorporating acid adsorbents would facilitate AMX adsorption. In
this regard, it is worth noting that, depending on the environmental acid-base conditions,
most antibiotics can behave as cations, anions or zwitterions [64], and in the case of AMX
the electrical charge of the molecule changes depending on the pH, associated with the
charge density present in different functional groups. For AMX, when the pH is lower
than its pka1 value (2.98), the amine groups are protonated and the molecule acquires a
positive charge; when the pH value is between pka1 (2.98) and pka2 (7.4), the molecule
behaves like a zwitterion, with deprotonated carboxyl groups (negative charge density)
and protonated amine groups (positive charge density); on the other hand, at pH values
between pka2 (7.4) and pka3 (9.6), deprotonated carboxyl and amine groups predominate
(with negative charge density); and, finally, at pH > pka3 the phenolic groups are also
deprotonated, and the charge is even more negative [65]. When soil pH decreases due to
amending with acidic bio-adsorbents (such as pine bark), more positive charges appear on
the variable-charge components of those soils, which are summed to those present on the
bio-adsorbents, thus being able to bind functional groups of AMX with negatively charged
sites, due to electrostatic interactions.

In the current study, the wood ash amendment increased the pH of all soils, while the
addition of mussel shell clearly increased the pH of only two of them (M2 and M3) (Table 1).
However, an increase in AMX adsorption was also observed with these two amendments
(wood ash and mussel shell), similarly to what was achieved when pine bark was added.
This is due to the fact that the increase in pH derived from the addition of wood ash and
mussel shell causes the appearance of a large number of negative charges in organic matter
and in the non-crystalline minerals of the soil, which are very abundant in the soils of this
study (Table S1, Supplementary Materials), to be summed to the fact that non-crystalline
minerals are also very abundant in wood ash (Table S2, Supplementary Materials). Thus,
these negative charges present in the soils and in the bio-adsorbents will facilitate bonds
with deprotonated carboxyl groups of the AMX molecule, stablished through cationic
bridges (in which Ca probably plays an important role, given its abundance both in wood
ash and in mussel shell, Table S2, Supplementary Materials). However, it should be noted
that, in the VO soil, despite the fact that wood ash and mussel shell increase the pH, the
increase in AMX adsorption is clearly lower than that achieved by amending with pine
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bark, because organic matter and non-crystalline mineral contents are much lower in this
soil than in the other three.

Regarding the fittings to adsorption models, starting with the Linear model the values
of the distribution coefficient (Kd) were in the range between 1 and 1525.76 L kg−1 in maize
soils, and between 5.93 and 112.34 L kg−1 in the vineyard soil (Table 2). These values are
lower than those reported in previous studies for tetracycline antibiotics [54], but are higher
than for sulfonamides [66]. This would indicate that the interactions with soils that give
rise to AMX adsorption are weaker than those taking place with tetracycline antibiotics,
but stronger than those affecting sulfonamides. Regarding the Freundlich model, the KF
values (affinity coefficient, related to adsorption capacity) vary between 1 and 139.24 Ln

µmol1-n kg−1 in maize soils, and between 9.58 and 109.63 Ln µmol1-n kg−1 in the vineyard
soil. These results are also lower than those obtained by other authors [56] for tetracyclines,
but higher than those obtained for sulfonamide [64]. As for the Freundlich’s n values, in
the case of maize soils they are between 0 and 0.926, while in the vineyard soil they range
between 0.298 and 0.892. These n values are lower than 1 in all soils, which would indicate
that adsorption is not linear, coinciding with that obtained by other authors [61] for other
materials. In fact, values of n < 1 indicate the presence of heterogeneous adsorption sites
and a non-linear and concave curve, which means that the number of available adsorption
sites decreases when the concentration of the added contaminant increases, occupying
firstly the high energy adsorption sites [67,68]. Regarding the Langmuir model, the KL
values range between 0.05 and 103.81 L µmol−1 in maize soils, and between 0.037 and
0.975 L µmol−1 in vineyard soils (Table 2).

As shown in Figure 1 and in Table S3 (Supplementary Materials), both soils M1 and
M3 have very high AMX adsorption scores (sometimes close to 100%) for most of the
antibiotic concentrations added. For these two soils, the incorporation of bio-adsorbents
causes modifications in adsorption that are lower than the results reached in the other two
soils. In the soils that adsorb less AMX (VO and M2), the mixtures with wood ash, mussel
shell or pine bark generally continue to present high R2 values (>0.80) for the three models
(Table 2), but the high errors associated with the estimation of some parameters invalidate
the fittings in several cases (especially in the Langmuir model).

4.2. Desorption

Regarding desorption, focusing on the maximum concentration added (50 µmol L−1),
unamended soils desorb between 6% and 17% of the AMX previously adsorbed, while
the release of the antibiotic from the mixtures of soil + bio-adsorbent was always lower
than 6%. The greatest decrease in desorption occurred in soil M2 when adding pine bark,
going from 17% to 2.5%. Similar results were obtained previously for tetracyclines and
sulfonamides [56,66], by researchers who added pine bark to different soils, detecting a
decrease in desorption of up to 12% for tetracyclines, and up to 17% for sulfonamides. In
this regard, a previous study [69] indicated that the presence of tannins in pine bark favors
adsorption (and decreases desorption). It should be noted that AMX desorption has been
mainly studied in wastewater, while most of the studies on the adsorption of this antibiotic
in soils omit desorption processes. In aqueous matrices, the reported AMX desorption
values went from 5% when almond shell ashes were added [70] up to 40% in cases where
clay materials were used as adsorbents [71].

5. Conclusions

The pH and the abundance of non-crystalline minerals and organic matter are the most
determining factors in the adsorption processes of the antibiotic amoxicillin (AMX) in the
soils evaluated in this study, both alone and amended with the three tested bio-adsorbents
(pine bark, wood ash and mussel shell). It was evidenced that AMX adsorption increased
when the crop soils used (devoted to maize and vineyard cultivation) were mixed with
the different bio-adsorbents. This increase was higher when pine bark (the bio-adsorbent
with the most acidic pH) was added. In addition, AMX desorption decreased when the bio-
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adsorbent materials were incorporated into the soil, reaching values that did not exceed 6%.
The overall results obtained in the current research show that, regarding its applicability,
the incorporation of the three bio-adsorbents into agricultural soils contaminated by AMX
reduced the risk of transport and passage of the antibiotic to surface and groundwater, and
therefore to the food chain, which in fact entails important implications for the environment
and public health. In future studies, it would be interesting to evaluate the effect of other
bio-adsorbents, as well as soils with different characteristics compared to those used here.
Furthermore, possible additional studies could delve into the mechanisms that explain the
retention and release processes of AMX when it reaches the environment as a pollutant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15093200/s1. Table S1. Values corresponding to the basic
parameters determined in the various soils studied. M: maize soils; VO: vineyard soils; OC: organic
carbon; OM: organic matter; eCEC: effective cation exchange capacity; Cae, Mge, Nae, Ke, Ale:
elements in the exchange complex; o subindex: non-crystalline form; pyr subindex: crystalline
form. Average values (n = 3), with coefficients of variation always <5%.; Table S2. Characteristics
of the bio-adsorbent materials. Cae, Mge, Nae, Ke, Ale: elements in the exchange complex; Sat. Al:
Al-saturation in the exchange complex; eCEC: effective cation exchange capacity; XT: total content
of the element (X); Alo, Feo: non-crystalline Al and Fe; <LD: below detection level. Average values
(n = 3), with coefficients of variation always <5%.; Table S3. AMX adsorption, expressed in µmol kg−1

(and in percentage between brackets), for the various soils studied, with or without bio-adsorbents,
as a function of the concentration of antibiotic added. M: maize (corn) soils; VO: vineyard soils; A:
ashes; MS: mussel shell; PB: pine bark. Average values (n = 3), with coefficients of variation always
<5%.; Figure S1. Example chromatograms corresponding to AMX adsorption onto soils amended
with bio-adsorbents
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