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Abstract

Functional constipation (FC) is common, yet the etiology is not clear. Accumulating evidence suggests an association between
FC and abnormal gut microbiota. The relationship between the gut microbiota and the gut transit is likely bidirectional. This
review summarizes the current evidence regarding the impact of gut microbiota on the pathogenesis of FC. By modulating the
colonic motility, secretion, and absorption, gut microbiota may contribute to the development of FC through microbial
metabolic activities involving bile acids, short-chain fatty acids, 5-hydroxytryptamine, and methane. In support of the key
roles of the gut microbiota in FC, treatment with probiotics, prebiotics, synbiotics, and traditional Chinese medicine often
result in compositional and functional changes in the gut microbiota. Further studies on the pathogenesis of FC and the
therapeutic mechanism of microecological agents will provide a knowledge base for better management of FC.
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Introduction

Functional constipation (FC) refers to constipation without an
organic etiology [1, 2]. Patients with FC have symptoms of pre-
dominantly difficult, infrequent, or a feeling of incomplete defe-
cation, which may be accompanied by abdominal pain and
bloating. FC has a significant impact on patients’ quality of life.
According to the Rome IV criteria, to diagnose FC [3] (Figure 1),
the patient must have one of the following conditions for more
than 6 months and have two or more of the following conditions
within the last 3 months: (i) sensation of straining during >25%
of defecations, (ii) lumpy or hard stools of >25% of defecations
(Bristol stool type 1 and 2) [4], (iii) sensation of incomplete

evacuation during >25% of defecations, (iv) sensation of anorec-
tal obstruction/blockage during >25% of defecations, (v) manual
maneuvers for >25% of defecations, and (vi) fewer than three
spontaneous bowel movements per week. In addition, diagnosis
of FC should meet the requirement that loose stools are rarely
present without using laxatives and that irritable bowel syn-
drome (IBS) is not diagnosed at the same time.

A recent demographic survey of 6,300 cases from three coun-
tries showed that the prevalence of FC was 6.9% (95% confi-
dence interval [CI], 5.8%–8.0%) in the USA, 7.9% (95% CI, 6.7%–
9.1%) in Canada and 8.6% (95% CI, 7.4%–9.9%) in the UK, accord-
ing to the Rome IV criteria [5]. Globally, the prevalence of FC
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from 1947 to 2010 was 14% (95% CI, 12.0%–17.0%) according to
the Rome I, II, III criteria or another informal diagnostic stan-
dard. South Asia and East Asia had the lowest prevalence of
11% (95% CI, 7.0%–15.0%), while South America had the highest
prevalence of 18% (95% CI, 15.0%–22.0%). Caution needs to be
exercised in comparing the incidences of FC in different coun-
tries since the diagnosis criteria and the methods for data col-
lection may differ among studies. FC is positively associated
with age and more frequently occurs in people who are
>60 years old [6]. The pathophysiology of FC remains unknown,
but it is generally considered to be multifactorial. Recognized
pathophysiological factors include genetic traits; lifestyle in-
cluding diet, fluid intake, physical activity; colonic dismotility;
psychological factors such as anxiety and depression; and the
gut microbiota, which is the main focus of this review.
Traditionally, three types of FC have been recognized: normal-
transit constipation (NTC), slow-transit constipation (STC)
and rectal-evacuation disorders [7]. The majority of FC patients
have NTC (65%), followed by evacuation disorder (30%) and STC
(5%) [8].

The first choices for FC treatment are nonpharmacological
interventions including education on toileting posture and be-
havior, dietary recommendations, and regular physical activity
[9]. Ohlsson and Manjer [10] showed that the lack of exercise
and regular diet habit are independent risk factors for gastroin-
testinal symptoms in patients with functional gastrointestinal
diseases. Traditional pharmacological treatments include os-
motic laxatives and stimulant laxatives. Polyethylene glycol
(PEG), the most frequently used osmotic laxative for FC,
increases fecal volume and promotes intestinal peristalsis.
Many studies have shown that PEG increases the frequency of
defecation and has fewer side effects [11]. Therefore, PEG can be
used as a long-term first-line treatment. In contrast, although
stimulant laxatives can make a fast improvement in stool con-
sistency and frequency, they should not be used for >4 weeks
considering the possible adverse effects [12]. New therapeutic
agents, including prosecretory agents (e.g. linaclotide), seroto-
nergic agents (e.g. 5-hydroxytryptamine 4 agonist), cholinester-
ase inhibitors (e.g. pyridostigmine), and bile-acid (BA) regulators
(e.g. elobixibat) etc. may improve FC symptoms by promoting
colon secretion and enhancing gastrointestinal motility [9].
Other treatment options with evidence for efficacy include bio-
feedback therapy [13], transanal irrigation [14], surgical inter-
ventions [15, 16], and neuromodulation [14]. Despite all these
intervention options, 40% of pediatric [17] and more than half of
adult FC patients [18–20] are dissatisfied with the treatments
due to the lack of efficacy and adverse effects. Therefore, new
management strategies have been explored. One of the possible
intervention targets is the gut microbiome, which was sup-
ported by the observation that interventions with probiotics,
prebiotics, and fecal-microbiota transplantation improved
colonic transit and defecation frequency [21–23]. Herein, we

summarize the current knowledge on the potential contribution
of the gut microbiota in the pathogenesis of FC.

Intestinal flora characteristics of patients with FC

Zoppi et al. [24] pioneered the study of the gut microbiota in FC
using culture-based microbiological methods in 1998. They
reported that constipation in children was associated with in-
creased abundance in clostridia and bifidobacteria in the gut
compared to healthy controls. Later, Khalif et al. [25] conducted
a similar study with adult patients, still using culture-based mi-
crobiological methods, and reported that the abundances of
Bifidobacterium and Lactobacillus were lower in constipated
patients than in the controls. The opposite observations regard-
ing the abundance of bifidobacteria may be explained by the
pathophysiological differences between pediatric and adult
patients. It is also important to note that culture-based methods
tend to cause inaccurate observations in microbiota study be-
cause: (i) many species are not cultured, (ii) strict anaerobes die
in an oxygenated environment and therefore tend to be under-
estimated, and (iii) in vitro culture changes the original structure
of the microbiota.

In around 2015, Kim et al. [26] studied the microbiota of FC
using a culture-independent method: the quantitative real-time
polymerase chain reaction method. They reported that
Bifidobacterium and Bacteroides species were decreased in the fe-
ces of FC. Although the methodology that Kim et al. [26] used is
one large step more advanced than those reported in most stud-
ies on this topic, we have now progressed to the era of high-
throughput sequencing and we conducted the first 16S rRNA se-
quencing study of the gut microbiota with adolescent FC
patients [27]. Because we excluded those patients treated with
antibiotics or proton-pump inhibitors, which are known to im-
pact the gut microbiota, we were able to identify significant
changes in the gut microbial composition of FC at every taxo-
nomic level, with a relatively small sample size. At the genus
level, the microbiota of FC exhibited a decreased abundance of
Prevotella and increased abundance of Coprococcus, Ruminococcus,
Blautia, Anaerotruncus, and Clostridium. Prevotella encodes a large
set of enzymes for fiber metabolism [28] and is known for its as-
sociation with dietary fibers [29]. Therefore, the decreased
abundance of Prevotella in FC is consistent with the observation
that FC patients usually have a low-fiber diet [30, 31]. In contrast
to the findings of previous studies, conventional probiotic gen-
era Lactobacillus and Bifidobacterium exhibited a trend for in-
creased abundance in FC. At the community level, increased
species richness was observed in the gut of FC, likely because of
the prolonged incubation time of the gut microbiota in the pres-
ence of FC.

Recently, Mancabelli et al. [32] examined the gut microbial
composition of adult FC patients using both the 16S rRNA se-
quencing and the whole-genome sequencing methods. Their
16S rRNA sequencing data indicated that the gut microbiota of
FC patients was depleted of Bacteroides, Roseburia, and
Coprococcus 3, which would predict a decreased level of short-
chain fatty acid (SCFA) production. However, their whole-
genome sequencing data did not validate this functional
change.

Apparently, at this time, there is no consensus on the gut
microbial structure characteristic of FC patients. Inconsistent
observations may have been the consequences of the cultural
and demographical differences of the study cohorts, different
analysis techniques, and possible evolution of the disease over

Figure 1.Diagnosis of functional constipation according to the Rome IV criteria.
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time. Table 1 summarizes several typical studies on the struc-
tural change in the gut microbiota in patients with FC.

The relationship between the gut microbiota and the gut
transit is likely bidirectional. Prolonged colonic transit in FC
may facilitate the amplification and colonization of slow-
growing species, leading to profound structural and functional
alterations of the entire microecology. On the other hand, envi-
ronmental factors may cause alterations in the gut microbiota,
which, in turn, may contribute to the pathogenesis of FC
through microbial metabolic activities.

The contribution of intestinal flora in the
pathophysiological mechanism of FC

The current hypothesis is that the gut microbiota contributes to
the pathogenesis of FC. This was supported by the observations
that many risk factors of FC including age, diet, obesity, and
stress have a large impact on the gut microbiota [33–35]. Thus, it
is speculated that these risk factors may cause FC through
mechanisms involving altered gut microbiota. The underlying
mechanisms are the focus of the current review (Figure 2).

Mechanisms involving BAs

Primary BAs are initially produced in the liver. Normally, most
BAs are reabsorbed into the small intestine while �5% may ar-
rive at the colon, where primary BAs are deconjugated and
modified into secondary BAs by the gut microbiota [36, 37].

BAs may participate in the pathophysiology of FC through
their effect on intestinal motility and colonic fluid transport. BAs
are known to stimulate the release of 5-hydroxytryptamine (5-
HT) and calcitonin gene-related peptide from enterochromaffin

cells and intrinsic primary afferent neurons by activating the G
protein-coupled BA receptor (TGR5), leading to the bowel peristal-
tic reflex [38, 39]. Several studies on FC patients treated with an il-
eal BA transporter inhibitor (elobixibat) demonstrated a causal
relationship between elevated BA level and improved colonic
transit [40–43].

There are direct and indirect mechanisms for BAs to stimu-
late fluid transport. BAs stimulate Cl� secretion and inhibit Naþ

absorption from colonic epithelial cells through regulation of
the ion pumps, exchangers, and transporters [44]. In addition,
BAs may indirectly stimulate colonic secretion through their ef-
fect on local neurons [45] and immune cells [46].

Animal studies suggest that it is the deconjugated BAs that
impact colonic transit. BAs are conjugated with glycine or tau-
rine before being secreted from hepatocytes. After arriving at
the colon, BAs are deconjugated by bacterial bile salt hydrolase
before further modification. Microbial transplantation studies
in mice indicated that altered microbiota affects gastrointesti-
nal transit, through its impact on BA deconjugation [47, 48]. It is
noteworthy that the microbial metabolisms of BAs are different
between mice and humans, thus the mice studies remain to be
validated in humans.

Several mechanisms have been proposed to explain how
BAs mediate the microbial effects on FC. First, the gut micro-
biota may affect gastrointestinal transit through its regulation
of BA synthesis. The gut microbiota is equipped with enzymes
for the production of secondary BAs, which may suppress the
FGF19- and FXR-mediated signaling, leading to the induction of
CYP7A1 [49, 50], and consequently elevated de novo BA synthesis
and improved colonic transit. To test this hypothesis, an inte-
grated study on the colonic BA profiles, the abundances of BA

Table 1. Structural changes in gut microbiota in functional constipation

Reference Year Methods Inclusion criteria Patients Controls Outcomes

Zoppi et al. [24] 1998 Microbial culture Stool frequency
less than one
per 48 h and
hard stool
consistency

Children (n¼ 28,
mean age
9.5 years)

Children (n¼ 14,
mean age
7.9 years)

Bifidobacteria"*

Lactobacilli"
Bacteroides"
Clostridia"*

Khalif et al. [25] 2005 Microbial culture Rome II Adults (n¼ 57,
mean age
42.2 years)

Adults (n¼ 25) Bifidobacterium#*

Lactobacillus#
Bacteroides#
Clostridium#

Kim et al. [26] 2015 qRT-PCR Rome III Adults (n¼ 30,
mean age
35 years)

Adults (n¼ 30,
mean age
32 years)

Bifidobacterium#*

Lactobacillus#
Bacteroides#*

Clostridium#
Zhu et al. [27] 2014 16S rRNA Clinical practice

guideline de-
veloped by the
North
American
Society for
Pediatric
Gastroenterolo-
gy, Hepatology
and Nutrition

Children (n¼ 8,
mean age
11.8 years)

Children (n¼ 14,
mean age
13.2 years)

Prevotella#* Coprococcus"*

Ruminococcus"*

Blautia"*

Anaerotruncus"*

Clostridium*"

Mancabelli et al. [32] 2017 16S rRNA and
shotgun
metagenomics

Rome III Adults (n¼ 68,
mean age
44 years)

Adults (n¼ 44,
mean age
39 years)

Bacteroides#* Roseburia#*

Coprococcus 3#*

Faecalibacterium"*

*P<0.05.
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metabolizing bacteria, and the cell biology of the colonic epithe-
lium is required.

Another mechanism for the gut microbiota to influence FC is
through its impact on BA sulfation, which abolishes the effect
of the BAs on fluid transport [51, 52]. BA sulfation likely occurred
in hepatocytes, while colonic bacterial bile salt sulfatase may
desulfate BA, empowering its effect to stimulate colonic secre-
tion and transit, and consequently improve colonic fluid trans-
port [53]. Future study may characterize the abundances of
sulfated BAs in the gut of patients with FC and its association
with sulfatase-encoding bacteria.

Mechanisms involving SCFAs

SCFAs including acetate, propionate, and butyrate are the major
fermentation products of the gut microbiota. Elevated levels of
SCFAs are found in the stools of FC patients. Jalanka et al. [54]
reported that the level of fecal acetate in FC patients was 2.2-
fold higher than that in healthy controls, and that the levels of
acetate, butyrate, and propionate were associated with the tran-
sit time in constipated patients. Iso-butyrate levels were also
significantly higher in FC subjects than in healthy subjects [55].

SCFAs may contribute to the pathogenesis of FC by regulat-
ing colonic electrolyte absorption and secretion. SCFAs, espe-
cially butyrate, stimulate electrolyte absorption. The
stimulation of Naþ and Cl� absorption by mucosal butyrate was
greater than that by propionate and acetate [56]. The effect of
butyrate on mucin secretion takes a biphasic mode: butyrate
stimulation of mucin section peaks at 5 mM of butyrate. At con-
centrations of >5 mM, butyrate is inversely correlated with mu-
cin section [57]. These results consistently support the roles of
elevated SCFAs in increased electrolyte absorption and de-
creased mucin secretion. On the other hand, the effect of SCFAs

on colonic motility is controversial. In some studies, SCFAs in-
creased colonic motility in rats [58, 59], whereas other studies
reported opposite observations [60, 61]. Several gaps and pitfalls
are to be addressed to understand the role of SCFAs in FC. First,
SCFAs measured in the published studies represent what were
not absorbed, whereas the relevant SCFAs are those in contact
with the SCFA receptors. Second, the working concentrations in
different species likely vary and caution is needed when inter-
preting observations made in studies using SCFA concentra-
tions that are far higher than physiological concentrations.
Third, the long-term effects of SCFAs on the neural structure
are important and need to be considered when interpreting the
SCFA effects on colonic secretion, absorption, and motility [59].

Studies on the structure of the gut microbiota seem to sup-
port a role for SCFAs in the pathogenesis of FC. Butyrate-
producing genera, Roseburia and Faecalibacterium, were increased
in adolescent FC according to 16S rRNA sequencing studies [27,
62]. In a similar 16S rRNA sequencing study for adult FC
patients, Mancabelli et al. [32] reported that Faecalibacterium is el-
evated in FC. However, their data indicated that other butyrate-
producing bacteria Roseburia and Coprococcus 3 were depleted in
FC. Shotgun metagenomic sequencing by Mancabelli et al. [32]
does not support altered SCFA production in FC, which may be
explained by very small sample size. Further study integrating
microbiome survey, metabolome analysis, colonic absorption,
secretion, and colonic motility is warranted to understand the
role of the gut microbiota in promoting FC through altered SCFA
production.

Mechanisms involving 5-HT

Produced by enterochromaffin cells, 5-HT is an abundant neuro-
transmitter in the enteric nervous system. Although it is a

Figure 2.Potential molecular mechanisms for the gut microbiota that contribute to the pathogenesis of functional constipation (FC). (1) Bile acids (BAs) stimulate bowel

movement and colonic secretion and suppress colonic absorption. The gut microbiota impacts these processes by regulating the BA levels, as well as the sulfation of

BAs, which abolishes the effects of BAs on colonic transit. (2) Elevated levels of short-chain fatty acids (SCFAs), the major group of microbial fermentation products,

stimulate electrolyte absorption and suppress mucin secretion, thus contributing to the pathogenesis of FC. The effect of SCFA on colonic motility is a controversial

topic. (3) 5-hydroxytryptamine (5-HT) stimulates colonic motility. The gut microbiota regulates the level of 5-HT through several mechanisms and thereby affects the

pathogenesis of FC. (4) Methane produced by the gut microbiota reduces bowel movement. 5-HTP, 5-hydroxytryptophan.
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controversial subject, a significant amount of evidence suggests
that 5-HT stimulates colonic motility through its receptors 5-
HT3 and 5-HT4 [63]. For example, prucalopride, a highly selec-
tive agonist for serotonin 5-HT4 receptor, increases the number
of bowel movements per week in adults with chronic FC [64].
Thus, the gut microbiota may impact the gut motility by regu-
lating the production of 5-HT. Theoretically, the gut microbiota
may regulate the production of 5-HT via several mechanisms.
First, the gut microbiota influences the growth of colon entero-
chromaffin cells, suggested by the upregulation of 5-HT–posi-
tive enterochromaffin cells in germ-free rats [65]. In contrast to
that of rats, the gut microbiota of mice and humans seem to
have an opposite effect on 5-HT production. Mediated by micro-
bial metabolites, indigenous spore-forming bacteria (Sp) from
the mouse and human microbiota promote 5-HT biosynthesis
from colonic ECs [66]. Independent studies have suggested that
microbial metabolites BAs and SCFAs may induce the release of
5-HT from enterochromaffin cells [38, 39, 67].

A recent study suggests a different mechanism. Cao et al. [68]
reported that the gut microbiota of FC patients upregulates the
expression of serotonin transporter, which removes 5-HT from
the gut. This causes decreased colonic transit and FC. It is note-
worthy that the authors stated several times that they per-
formed a 16S pyrosequencing study, but provided a description
of illumina Miseq sequencing in the method section [68].

Finally, the gut microbiota may influence 5-HT production
by regulating tryptophan metabolism in the gut [69]. For exam-
ple, the gut microbiota may upregulate the production of indole
and kynurenine from tryptophan, thereby reducing the sub-
strate for the production of 5-HT and consequently leading to
FC.

A fundamental gap in the study of 5-HT in FC is whether
mucosal 5-HT is altered in FC patients. While some studies
reported decreased 5-HT [64, 70], there were reports that the 5-
HT level was not altered [71] or was increased in FC [72].
Vigorous studies are needed to validate the role of 5-HT in me-
diating the effect of gut microbiota on the pathogenesis of FC.

Mechanisms involving methane

It has long been proposed that methanogenic gut microbiota
causes constipation by reducing bowel movements [73]. The hy-
pothesis has been supported by the observations that FC
patients carry gut microbiota enriched with methanogenic bac-
teria [74, 75]. In line with this, in patients with constipation-
predominant IBS, treatment with antibiotics reduced the meth-
anogenic bacteria in the gut microbiota and led to improved
symptoms [76]. However, it is worth noting that no control was
used in this retrospective study. On the other hand, one study
reported that in patients with FC, methane production was as-
sociated with the gut microbial composition, but not with con-
stipation or colonic transit [77]. Caution is also required to
interpret these data as all of the 25 patients with constipation
included 13 FC, 6 IBS with constipation, and 6 mixed IBS.
Intervention studies with more strict inclusion criteria and a
larger sample size are needed to clarify the role of methano-
genic bacteria in FC.

FC treatments targeting the gut microbiota

In support of the roles of the gut microbiota in the pathogenesis
of FC, various microbial interventions including probiotics, pre-
biotics, synbiotics, and traditional Chinese medicine (TCM) have

shown beneficial effects on FC. In addition, some of the inter-
vention studies support the mechanisms discussed above.

Probiotics

Probiotics, the most widely used microecologics, are effective in
treating a wide variety of diseases by regulating the immune re-
sponse, preventing the colonization of pathogens, improving
gut barrier function, and reducing stress and anxiety, etc. [78].
Although individual studies have reported varied efficacies [79,
80], an earlier systemic review and meta-analysis of random-
ized–controlled trials indicated that probiotics may improve the
whole-gut transit time, stool frequency, and stool consistency;
Bifidobacterium lactis showed better efficacies than Lactobacillus
casei Shirota [81]. A more recent systemic review and meta-
analysis arrived at a similar conclusion that probiotics increase
stool frequency and decrease intestinal transit time in FC
patients [82]. Most recently, a meta-analysis of randomized–
controlled trials of probiotics on FC concluded that probiotics
consisting of multispecies, not single species such as B. lactis or
B. longum alone, significantly reduced the whole-gut transit
time, increased the defecation frequency, improved stool con-
sistency, and decreased bloating [83]. It is worth noting that pro-
biotics are likely to have a greater effect on the small bowel
than on the colon, as the small bowel has far fewer competing
bacteria. One study showed that probiotics reduced both the
small-bowel transit time and the colonic transit time [84]. It is
possible that the shortened small-bowel transit would increase
the inflow to the colon and would consequently accelerate co-
lonic transit.

However, similar studies with pediatric patients do not sup-
port the efficacy of probiotics on pediatric FC [85, 86]. The differ-
ence between adult and pediatric patients with FC in response
to probiotics may be related to different microbial compositions
in adult and pediatric subjects: while adult patients with FC
exhibited a decreased abundance of Bifidobacterium [26], adoles-
cent patients with FC exhibited a trend for elevated abundance
of Bifidobacterium and Lactobacillus [27].

To explore the different effects of probiotic strains in FC,
Wang et al. [87] treated constipated mice with B. longum, B. infan-
tis, B. animalis, B. bifidum, B. adolescentis, and B. breve, respec-
tively. They observed that B. longum, B. infantis, and B. bifidum
were the most effective strains to relieve constipation. The im-
proved symptoms were attributed to increased abundance of
Lactobacillus and reduced levels of pathogenic bacteria (Alistipes,
Odoribacter, and Clostridium). It is important to note that a ran-
domized, double-blind, placebo-controlled probiotics treatment
trial on FC is rare. In one of these trials, Ibarra et al. [88] reported
no difference between probiotics and the placebo in primary
analysis, but in a post hoc analysis, they reported that B. ani-
malis subsp. lactis HN019 (HN019) increased the frequency of
spontaneous defecations and reduced the degree of straining in
FC patients.

Prebiotics

Prebiotics refers to non-digestible food ingredients that benefi-
cially affect the host by selectively stimulating the growth and/
or activity of one or a limited number of bacteria in the colon
[89]. Recently, a randomized placebo-controlled trial of prebiot-
ics for the treatment of FC was reported. UG1601, composed of
inulin, lactitol, and aloe vera gel, was used to treat female
patients with mild chronic FC [90]. Although UG1601 seemed to
be more effective than placebo in improving abdominal and
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fecal symptoms, statistical significance was not achieved. Other
interesting observations include reduced levels of serum cluster
of differentiation 14 (CD14) and lipopolysaccharide (LPS), and in-
creased abundance of Roseburia hominis, a butyrate-producing
bacterium, upon UG1601 treatment.

D-tagatose is a monosaccharide often used as a food supple-
ment. Liang et al. [91] found that high-dose d-tagatose restored
the gastrointestinal transit rate of constipated mice induced by
loperamide to a similar level of that of control mice, and im-
proved the overall defecation condition including fecal weight,
fecal number, and time to the first black-stool defecation. These
therapeutic effects were attributed to the increased levels of ex-
citatory neurotransmitters (Ach and SP) and the reduced level
of inhibitory neurotransmitters (NO). The therapeutic mecha-
nisms of d-tagatose may also involve the gut microbiota as the
prebiotic therapy restored the composition of the intestinal
flora.

Similarly, partially hydrolysed guar gum (HHGG), a fiber sup-
plement, was shown to increase the fecal water content and en-
hance the small-intestinal transit of loperamide-induced
constipated mice [92]. The therapeutic effects may be mediated
by the gut microbiota as the prebiotics caused significant
changes in the gut microbiota and elevated production of
SCFAs.

Another popular prebiotics, b-glucan, is a polysaccharide
widely found in yeast, fungus, and plants. Chen et al. [93] used
the b-glucan extracted from bread yeast cells to treat
loperamide-induced constipated mice and found enhanced in-
testinal motility. The pharmacological effect of b-glucan may be
mediated by the enhanced expression of epithelial tight junc-
tion proteins (zonula occludens-1 and mucin-2) and neurotrans-
mitters (acetylcholinesterase and serotonin). The gut
microbiota was likely involved in the therapeutic effect of b-glu-
can as it restored the intestinal flora of the constipated mice to-
ward a normal composition.

Although efficacies were shown with the loperamide-
induced mice model, these prebiotics remain to be validated in
randomized, double-blind, placebo-controlled trials.

Synbiotics

Synbiotics are combinations of probiotics and prebiotics, which
may exhibit synergistic effects of both components [94]. In a pi-
lot randomized, double-blind, controlled trial of a small sample
size, synbiotic supplement Psyllogel Megafermenti improved
defecation and decreased ITT [95]. However, in another ran-
domized, double-blind, placebo-controlled trial with a larger
sample size, no significant effect was found for a synbiotic com-
posed of B. lactis BB12, L. plantarum LP01, and inulin-
oligofructose [96]. A more recent trial using a combination of
polydextrose and L. helveticus found beneficial effects on intesti-
nal transit and fecal pH, but no significant advantage was found
with this synbiotic compared with L. helveticus alone [97].
Perhaps different types of synbiotics have different therapeutic
efficacies on FC. More clinical trials are needed to identify effec-
tive synbiotics and to confirm the therapeutic effects.

TCM

Several TCM herbs and formulations are effective for FC. The
hemp seed soft capsule (HSSC) was developed from the ancient
traditional prescription ‘hemp seed pill’, which consists of
Semen Cannabis, Magnolia officinalis, Fructus Aurantii Immaturus,
Radix Paeoniae Alba, Almond, and Rheum rhabarbarum. As a

representative prescription of TCM in the treatment of constipa-
tion [98], the hemp seed pill has been known to improve colonic
secretion and transit [99]. With loperamide-induced constipated
rats, Lu et al. [100] showed that HSSC increased the fecal wet
weight and water content, which was attributed to the com-
bined actions of cAMP-dependent and Ca2þ-dependent Cl�

channels, NKCC, Naþ-HCO3� co-transporter, or Cl�/HCO3�

exchanger.
Recently, the gut microbiota has been often reported to par-

ticipate in the therapeutic effects of these herbs and formula-
tions. Invented in the Qing Dynasty �300 years ago, Zengye
decoction (ZYD) has been used to cure ‘dryness’ by promoting
the production of body fluids according to TCM theory. Liu et al.
[101] examined the effect of ZYD on the gut microbiota of con-
stipated rats. They found that ZYD restored the composition of
the gut microbiota toward a normal state by reducing the abun-
dance of Helicobacteraceae, Desulfovibrionaceae, Ruminococcaceae,
Lactobacillaceae, Prevotellaceae, and Dorea, while increasing the
abundance of Aeromonadaceae, Oxalobacteraceae, Veillonellaceae,
Clostridiaceae, and Roseburia. Metabolomic analysis revealed that
ZYD caused microbial changes in the metabolism of energy,
amino acids, methane, and glutathione.

Records of mulberry fruit for the treatment of constipation
and other digestive diseases date back to 200 BC. According to
TCM theory, mulberry fruit can be used to treat ‘yin’ deficiency.
Hu et al. [102] used the mulberry fruit to treat diphenoxylate-
induced constipated mice and found that the treatment in-
creased the fecal water content, shortened the first red-stool
defecation time, and increased the gastric-intestinal transit
rate. The mulberry-fruit treatment caused alterations in the gut
microbiota, with increased abundance of Lactobacillus,
Bifidobacterium, and Eubacterium, and decreased abundance of
Helicobacter, Alloprevotella, and Prevotellaceae. The compositional
change in the microbiota was accompanied by decreased ex-
pression of aquaporin genes (Aqp3, Aqp4, Aqp8, and AqP9), re-
duced levels of inhibitory neurotransmitters, and increased
levels of excitatory neurotransmitters and SCFAs, suggesting a
therapeutic mechanism whereby mulberry fruit causes a
change in the microbiota, leading to changes in microbial
metabolites, which, in turn, improves colonic motility and
secretion.

Sennoside A, the main active constituent of Da-Huang-Gan-
Cao-Tang (Daiokanzoto, DKT), is converted by microbial b-glu-
cosidases to generate rheinanthrone, the molecule with laxative
activity. Because of the close connection between sennoside A
and the gut microbiota, it was hypothesized that the therapeu-
tic effect of sennoside A depends on the composition and func-
tion of the gut microbiota, which was proved in mice carrying
different types of gut microbiota. Takayama et al. [103] proposed
that different types of gut microbiota represent different
‘patterns’ defined by TCM and therefore they established a
model to investigate the biological mechanisms behind the per-
sonalized medicinal practices in TCM. In DKT, sennoside A is
mainly found in its herbal component of rhubarb. In fact, many
other TCM formulations for the treatment of FC have a compo-
nent of rhubarb, which was shown to increase intestinal secre-
tion and improve stool consistency [104].

TCM usually takes the form of a complex composition and is
multi-targeting. Understanding the links between changes in
the composition of the intestinal flora, the altered gene expres-
sion of the intestines, and the metabolites produced after TCM
therapy requires further investigation.
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Conclusions

Microecological imbalance is an important feature in FC, which
may contribute to the pathogenesis via multiple mechanisms
mediated by microbial metabolites including BAs, SCFAs, 5-HT,
and methane. The therapeutic effects of probiotics, prebiotics,
synbiotics, and TCM often involve compositional and functional
changes in the gut microbiota. Further studies on the pathome-
chanisms of FC and the therapeutic mechanisms of microeco-
logical agents will provide a knowledge base for better
management of FC patients. Given the very different diet and
the gut microbiota of laboratory animals compared to those of
humans, understanding the therapeutic efficacy and the mech-
anisms of microecological agents may require adequately pow-
ered mechanistic clinical trials with FC patients.
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