
Si et al. eLife 2021;10:e68671. DOI: https:// doi. org/ 10. 7554/ eLife. 68671  1 of 16

Epigenome- wide analysis of DNA 
methylation and coronary heart disease: 
a nested case- control study
Jiahui Si1,2, Songchun Yang1, Dianjianyi Sun1, Canqing Yu1, Yu Guo3, Yifei Lin4, 
Iona Y Millwood5,6, Robin G Walters5,6, Ling Yang5,6, Yiping Chen5,6, 
Huaidong Du5,6, Yujie Hua7, Jingchao Liu8, Junshi Chen9, Zhengming Chen6, 
Wei Chen10, Jun Lv1,11,12*, Liming Liang2*, Liming Li1*, China Kadoorie Biobank 
Collaborative Group

1Department of Epidemiology and Biostatistics, School of Public Health, Peking 
University Health Science Center, Beijing, China; 2Departments of Epidemiology 
and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States; 
3Chinese Academy of Medical Sciences, Beijing, China; 4Department of Urology, 
West China Hospital, Sichuan University, Chengdu, China; 5Medical Research 
Council Population Health Research Unit at the University of Oxford, Oxford, 
United Kingdom; 6Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), 
Nuffield Department of Population Health, University of Oxford, Oxford, United 
Kingdom; 7NCDs Prevention and Control Department, Suzhou CDC, Jiangsu, China; 
8NCDs Prevention and Control Department, Wuzhong CDC, Jiangsu, China; 9China 
National Center for Food Safety Risk Assessment, Beijing, China; 10Department of 
Epidemiology, School of Public Health and Tropical Medicine, Tulane University, 
New Orleans, United States; 11Key Laboratory of Molecular Cardiovascular Sciences 
(Peking University), Ministry of Education, Beijing, China; 12Peking University Institute 
of Environmental Medicine, Beijing, China

Abstract
Background: Identifying environmentally responsive genetic loci where DNA methylation is associ-
ated with coronary heart disease (CHD) may reveal novel pathways or therapeutic targets for CHD. 
We conducted the first prospective epigenome- wide analysis of DNA methylation in relation to inci-
dent CHD in the Asian population.
Methods: We did a nested case- control study comprising incident CHD cases and 1:1 matched 
controls who were identified from the 10 year follow- up of the China Kadoorie Biobank. Methyla-
tion level of baseline blood leukocyte DNA was measured by Infinium Methylation EPIC BeadChip. 
We performed the single cytosine- phosphate- guanine (CpG) site association analysis and network 
approach to identify CHD- associated CpG sites and co- methylation gene module.
Results: After quality control, 982 participants (mean age 50.1 years) were retained. Methylation 
level at 25 CpG sites across the genome was associated with incident CHD (genome- wide false 
discovery rate [FDR] < 0.05 or module- specific FDR < 0.01). One SD increase in methylation level 
of identified CpGs was associated with differences in CHD risk, ranging from a 47 % decrease to 
a 118 % increase. Mediation analyses revealed 28.5 % of the excessed CHD risk associated with 
smoking was mediated by methylation level at the promoter region of ANKS1A gene (P for media-
tion effect = 0.036). Methylation level at the promoter region of SNX30 was associated with blood 
pressure and subsequent risk of CHD, with the mediating proportion to be 7.7 % (P = 0.003) via 
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systolic blood pressure and 6.4 % (P = 0.006) via diastolic blood pressure. Network analysis revealed 
a co- methylation module associated with CHD.
Conclusions: We identified novel blood methylation alterations associated with incident CHD in 
the Asian population and provided evidence of the possible role of epigenetic regulations in the 
smoking- and blood pressure- related pathways to CHD risk.
Funding: This work was supported by National Natural Science Foundation of China (81390544 
and 91846303). The CKB baseline survey and the first re- survey were supported by a grant from the 
Kadoorie Charitable Foundation in Hong Kong. The long- term follow- up is supported by grants from 
the UK Wellcome Trust (202922/Z/16/Z, 088158/Z/09/Z, 104085/Z/14/Z), grant (2016YFC0900500, 
2016YFC0900501, 2016YFC0900504, 2016YFC1303904) from the National Key R&D Program of 
China, and Chinese Ministry of Science and Technology (2011BAI09B01).

Introduction
Coronary heart disease (CHD) is one of the leading causes of morbidity and mortality worldwide 
(GBD 2017 Causes of Death Collaborators, 2018). Despite known environmental risk factors and 
the identification of genetic variations, a considerable proportion of the observed CHD risk remains 
unexplained (Deloukas et al., 2013).

Methylation at cytosine- phosphate- guanine (CpG) dinucleotides is a common epigenetic modi-
fication of DNA (Deaton and Bird, 2011), which forms an interface between the genotype and the 
environment (Rosa- Garrido et al., 2018). DNA methylation are responsive to environmental stimuli 
and unhealthy lifestyles, including smoking (McCartney et  al., 2018), alcohol consumption (Liu 
et al., 2018), and obesity (Wahl et al., 2017). This makes DNA methylation a potential biomarker of 
environmental- related and lifestyle- driven diseases of adulthood, for example, metabolic dysfunction 
(including hypertension (Richard et al., 2017), diabetes (Chambers et al., 2015), and atherogenic 
dyslipidemia (Irvin et al., 2014). Unhealthy lifestyles, together with metabolic dysfunction, will further 
increase the risk of cardiovascular disease. Investigating the environmentally responsive DNA meth-
ylation change linked to CHD could gain insights into the underlying mechanisms and identify novel 
clinical biomarkers and therapeutic targets of CHD.

Previous epigenome- wide analysis of DNA methylation and CHD was characterized by small sample 
size (Silvio et al., 2014; Nakatochi et al., 2017; Guarrera et al., 2015; Sharma et al., 2014; Li et al., 
2017; Yamada et al., 2014), based in primarily Western countries (Silvio et al., 2014; Guarrera et al., 
2015; Yamada et al., 2014; Golareh et al., 2019; Liu et al., 2017; Fernández- Sanlés et al., 2018; 
Rask- Andersen et al., 2016), focusing on selective genomic regions (Guarrera et al., 2015; Sharma 
et al., 2014), or the cross- sectional nature of findings which precludes establishment of any temporal 
relationship (Silvio et al., 2014; Nakatochi et al., 2017; Sharma et al., 2014; Li et al., 2017; Yamada 
et al., 2014; Liu et al., 2017; Fernández- Sanlés et al., 2018; Rask- Andersen et al., 2016). Only a 
few prospective studies were conducted in the white populations (Guarrera et al., 2015; Golareh 
et al., 2019).

We examined the association between epigenome- wide methylation of blood- derived DNA and 
CHD risk over the next 10 years, by comparing prospectively ascertained CHD cases with 1:1 matched 
controls in the China Kadoorie Biobank (CKB). We then examined the relationships between the iden-
tified CHD- associated methylation sites and cardiovascular risk factors, and further identified potential 
pathway by causal mediation analysis. The overall analysis flowchart is provided in Figure 1.

Materials and methods
Study population
The CKB is a prospective cohort of 512,715 adults aged 30–79 years from 10 geographically diverse 
areas across China (five urban and five rural areas) since 2004–2008. Details of the study design, 
survey methods, and long- term follow- up have been given elsewhere (Chen et al., 2011). Briefly, all 
participants completed laptop- based questionnaires (including sociodemographic, lifestyle factors, 
and medical and medication history) and physical measurements (including body weight, height, and 
blood pressure). Participants also provided a 10 ml random blood sample for an immediate on- site test 
of random plasma glucose and long- term storage, with the time since last meal recorded. Mortality 
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Figure 1. Flowchart of the present study. CHD = coronary heart disease; QC = quality control; CpG = cytosine- 
phosphate- guanine; FDR = false discovery rate.

https://doi.org/10.7554/eLife.68671
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and morbidity during follow- up were identified through linkage with local death and disease regis-
tries, with the national health insurance system, and by active follow- up if necessary (i.e., visiting local 
communities or directly contacting participants).

Study design
Baseline DNA methylation was measured for 494 CHD cases, whose CHD occurred during the 
follow- up period until 31 December 2015, and 494 matched controls. All these participants were free 
of heart disease, stroke, or cancer at baseline. They also had clinical chemistry measured for baseline 
plasma sample, including total cholesterol (TC), low- density lipoprotein cholesterol (LDL- C), high- 
density lipoprotein cholesterol (HDL- C), and triglycerides (TG) (Wolfson Laboratory at University of 
Oxford, UK).

Incident CHD cases were defined as fatal ischemic heart disease (IHD) coded as ICD- 10 I20- I25 
and nonfatal acute myocardial infarction coded as I21. The diagnosis adjudication has finished for 134 
reported cases by a review of hospital medical records. Overall, 90 % of the diagnoses of CHD were 
confirmed. Cases were excluded if they have developed malignant neoplasms (C00- C97) or cerebro-
vascular diseases (I60- I69) during follow- up. Each case was individually matched to one control who 
was free of IHD, malignant neoplasms, or cerebrovascular diseases throughout follow- up. Controls 
were matched to cases by birth year ( ± 3 years), age at baseline ( ± 3 years), sex, study area, hours 
fasting prior to blood draw (0- < 6, 6- < 8, 8- < 10, and ≥10 hours) at baseline.

Measurement of DNA methylation
For 494 pairs of CHD cases and controls, epigenome- wide methylation level of baseline blood 
leukocyte DNA was measured by Infinium Methylation EPIC BeadChip (Illumina, USA), which inter-
rogates ~850,000 CpG sites (BGI, China). Although the laboratory staff were blinded to case/control 
status, the cases and controls were not strictly randomized on arrays.

We used minfi package (RRID:SCR_012830) to process methylation data. CpG sites were excluded 
if they: (1) were assayed SNPs rather than CpGs (n = 59); (2) had bead count <3 in 5 % of samples (n 
= 1,644), or had >1% of samples with a detection P > 0.05 (n = 2,536); (3) were overlapped with SNPs 
in the 1,000 Genome Project (20130502 release) with minor allele frequency in Eastern Asian popu-
lation >0.05 at the target CpGs sites, single base extension sites of Type I probe, or the probe body 
(Pidsley et al., 2016); (4) possibly cross- hybridized to other genomic locations (Pidsley et al., 2016) 
(3 and 4 contained 132,762 sites in total). Samples were excluded if they (1) were outliers detected 
by multidimensional scaling analysis (n = 0); (2) were sex mixed- up samples (n = 2); (3) had missing 
rate >0.01 across CpG sites (n = 2); (4) were measured in a distinct study batch (n = 2).

After quality control, 982 of 988 samples with 747,726 CpG sites were retained. Also, we randomly 
chose 11 samples (one sample per plate) for duplicate measurements. The correlation for duplicate 
measurements on the same sample ranged from 0.992 to 0.997.

Assessment of covariates
In the baseline questionnaire, for smoking, we asked frequency, type, and amount of tobacco smoked 
per day for ever smokers, and reason to quit for former smokers. We included former smokers who 
stopped smoking for illness in the current smoker category to avoid misleadingly elevated risk. We 
then calculated the current average number of cigarette equivalents consumed per day. For alcohol 
consumption, we asked drinking frequency on a week, type of alcoholic beverage, and volume of 
alcohol consumed on a typical drinking day. We calculated average pure alcohol volume consumed 
per day. For physical activity, we asked the usual type and duration of activities. The daily level of 
physical activity was calculated by multiplying the metabolic equivalent tasks (METs) value for a partic-
ular type of physical activity by hours spent on that activity per day and summing the MET- hours for 
all activities. For dietary habit, we used a short qualitative food frequency questionnaire to assess 
habitual intakes of 12 conventional food groups, that are mainly addressed in the Chinese dietary 
guidelines (2016). We then calculated a diet score: consuming fresh vegetables and fruits every day, 
red meat <7 days/week, soybean products ≥ 4 days/week, fish ≥1 day/week, and coarse grains ≥ 
4 days/week, each item as one score. We then summed the above six scores for the total diet score. 
Trained staff measured weight and height with calibrated instruments. Body mass index (BMI) was 
calculated as weight in kilograms divided by the square of the height in meters.

https://doi.org/10.7554/eLife.68671
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Statistical analysis
Single DNA methylation marker and incident CHD
In the epigenome- wide analysis, raw methylation matrices were normalized using the dasen method in 
the wateRmelon package (RRID:SCR_001296). Linear regression was applied for single- marker tests, 
with the beta- values of methylation as dependent variables, CHD as an indicator, and age (years), 
sex (male or female), 10 study area, fasting time (< 8 or ≥ 8 hr), education level (no formal or primary 
school, middle or high school, technical school or college or higher), marital status (married or not), 
smoking (current average number of cigarette equivalents consumed per day), alcohol consumption 
(average pure alcohol volume consumed per day), physical activity (MET- hours), diet score (continuous 
variable ranging from 0 to 6), and BMI (kg/m2) as covariates. To quantify latent factors, including the 
effects of unobserved batch effects, cell compositions, and other unmeasured confounding factors, 
we used smart surrogate variable analysis by the smartSVA package (Chen et al., 2017). This method 
has been reported to be a fast and robust method for removing batch effects and preserve power 
(Brägelmann and Lorenzo Bermejo, 2019). Variables considered in the smart surrogate variable (SV) 
analysis included case or control status and all covariates. A total of 56 SVs were generated and also 
included as covariates in the above model. We used false discovery rate (FDR) < 0.05 to determine 
epigenome- wide significant CpGs in relation to CHD. We annotated CpGs to genes based on official 
EPIC array annotation file from Illumina, 2017.

In sensitivity analysis, we excluded 100 participants who reported usage of blood pressure- lowering 
drugs at baseline to avoid potential confounding effect caused by medications.

Weighted gene co-methylation network and incident CHD
We also used the network approach to first identify CHD related co- methylation network module 
and then CHD related CpGs within the discovered module. We used weighted gene co- methylation 
network analysis (R package WGCNA, RRID:SCR_003302) to identify potential co- thylation network 
related to CHD. To ensure computation feasibility, we selected the top 20,000 CHD- associated CpGs 
from single- marker tests. This is about the maximum number of CpGs the WGCNA package can 
handle on our high performance computing cluster. Two samples were outliers and excluded during 
sample clustering. We used the function “blockwiseModules” with a minimum module size of 30 sites 
to construct network automatically. Modules were created and merged with the mergeCutHeight set 
to 0.25. We then identified modules that were statistically significantly associated with CHD using the 
module eigengene (the first principal component of the given module), with the same set of covari-
ates as in the individual CpG association analysis. After detection of CHD associated modules, we 
performed the visualization of network modules and its hub gene to depict the connection among 
the annotated genes by VisANT 5.0 (http:// visant. bu. edu/). Because the module was rather large, we 
restricted the genes used in the visualization to the annotated genes of the 24 CpGs with module- 
specific FDR < 0.01.

To ensure the selection of top 20,000 CpGs did not inflate the false positives of CHD- module asso-
ciation, we carried out a permutation- based test by shuffling the case- control status and re- selected 
top 20,000 CpGs based on the permuted data to construct module and test for association with CHD. 
In the permutation test, we found no inflated false positives due to the selection of top 20,000 CpGs 
(the most significant module has P > 0.032, Figure 2—figure supplement 1).

For CHD- associated modules (P < 0.05/the number of modules, Bonferroni correction), we 
performed gene enrichment analysis using the list of annotated genes from this module (DAVID, 
https:// david. ncifcrf. gov/) (Huang et al., 2007), and further determined the significant CHD related 
CpGs within the module (module- specific FDR < 0.01). For CHD- associated loci, we further fitted 
logistic regression adjusting for the same set of covariates and all SVs to interpret the effect size 
better.

Association between CHD-associated CpGs and aardiovascular risk factors
We investigated the associations between lifestyle factors and CHD- associated CpGs, with the methyl-
ation value as the outcome. Lifestyle factors included smoking, alcohol consumption, physical activity, 
dietary habit, and BMI.

If the lifestyle- methylation association suggests marginal significance (P < 0.05), we performed 
causal mediation analysis using parametric regression models, achieved by paramed package in STATA 
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(RRID:SCR_012763). Two models were estimated 
for each CpG: (1) a model for the mediator (meth-
ylation level as a continuous variable) conditional 
on exposure (the corresponding lifestyle factor) 
and covariates (age, sex, study area, fasting time, 
education level, marital status, the other four life-
style factors, and batch); (2) a model for the risk 
of CHD conditional on exposure, the mediator, 
and covariates. We allowed for the presence of 
exposure- mediator interactions in the outcome 
regression model.

We aimed to calculate how much of the CHD 
risk associated with lifestyle factors (total effect, 
TE) was attributable to mediating effect of meth-
ylation level at a specific locus (natural indirect 
effect, NIE). The proportion attributable to the 
NIE was calculated as NIE divided by TE on log 
odds scale, with 0 indicating no mediation effect.

We also investigated the association 
between CHD- associated CpGs and cardiomet-
abolic traits, with the cardiometabolic traits as 
the outcome. Cardiometabolic traits included 
systolic blood pressure (SBP), diastolic blood 
pressure (DBP), blood lipid level (TC, LDL- C, 
HDL- C, and TG), and random glucose.

For CpGs which were statistically signifi-
cantly associated with any of the cardiometa-
bolic traits, we calculated the mediation effect 
of methylation level on CHD through a specific 
cardiometabolic trait. Two models were esti-
mated for each CpG: (1) a model for the medi-
ator (the corresponding cardiometabolic risk 
factor) conditional on exposure (methylation 
level) and covariates (age, sex, study area, 
fasting time, education level, marital status, five 
lifestyle factors, and batch); (2) a model for the 
risk of CHD conditional on exposure, the medi-
ator, and covariates.

In the analysis of blood pressure, we added 
15 and 10 mmHg to the measured SBP and DBP 
respectively among participants who reported 
usage of blood pressure- lowering medications. 
In the analysis of random glucose, we addi-
tionally adjusted for treatment of diabetes at 
baseline.

We adjusted batch IDs instead of SVs in 
CpGs- CHD risk factor association analysis and 
the corresponding mediation analysis because 
SVs adjustment was more appropriate when the 
methylation value was treated as the outcome.

Results
Baseline DNA methylation was measured for 
494 CHD cases and 494 matched controls. After 
quality control, we inculded 491  cases free of 

Table 1. Age-, sex- and study area- adjusted 
baseline characteristics of 982 participants 
according to the case or control status.

Baseline 
characteristics

Cases
(n = 491)

Controls
(n = 491) P value

Age, year 50.6 49.5 -

Female, % 43.6 43.6 -

Urban area, % 20.6 20.6 -

Middle school and 
above, % 43.4 45.6 0.730

Married, % 90.4 94.7 0.028

Family history of 
heart attack, % 6.9 4.7 0.127

Fasting time, h 4.0 4.0 -

Lifestyle factors

Daily tobacco 
smoker, % 46.6 40.3 0.004

Daily alcohol drinker, 
% 9.0 10.0 0.455

Physical activity, 
MET- h/day 22.0 23.9 0.097

Diet score 2.3 2.5 0.001

Vegetables 7 days/
week, % 92.7 91.0 0.278

Fruit 7 days/week, % 9.4 13.8 0.030

Read meat <7 days/
week, % 79.2 80.0 0.600

Soybean 
product ≥4 days/
week, % 5.9 9.6 0.026

Fish ≥1 days/week, % 24.6 28.9 0.022

Coarse grains ≥ 
4 days/week, % 22.8 24.6 0.047

Body mass index, 
kg/m2 23.9 23.3 0.002

Metabolic risk factors

Prevalent 
hypertension, % 52.5 29.9 < 0.001

Prevalent diabetes, % 10.0 4.5 0.004

Blood lipids

Total cholesterol, 
mmol/L 4.69 4.52 0.005

LDL- C, mmol/L 2.35 2.21 0.003

HDL- C, mmol/L 1.22 1.18 0.025

Triglyceride, mmol/L 2.20 2.01 0.064

The results are presented as means or percentages. 
P values were not showed for matched factors. MET 
= metabolic equivalent of task; LDL- C = low- density 
lipoprotein cholesterol; HDL- C = high- density 
lipoprotein cholesterol.

https://doi.org/10.7554/eLife.68671
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CHD at baseline and developing CHD during follow up and 491 controls free of CHD at baseline and 
follow up and matched for birth year, age at baseline, sex, study area, and area, hours fasting prior to 
blood draw.

The mean age was 50.6 ± 7.6  years for incident CHD cases and 49.5 ± 7.3  years for matched 
controls. Compared with control participants, the CHD cases were more likely to be daily smokers, 
have unhealthy dietary habits, and have higher BMI. CHD cases also had a higher prevalence of hyper-
tension and diabetes and worse lipid profile at baseline (Table 1).

Association between single DNA methylation marker and incident CHD
EWAS revealed an excess of association across a range of P thresholds (Supplementary file 2A). 
The genomic inflation factor was 1.09 after adjustment for covariates and surrogate variables (SV). 
The Quantile- Quantile plot (Q- Q plot) indicated little residual confounding (Supplementary file 2B). 
Methylation markers at two genetic regions were associated with incident CHD at FDR < 0.05 (Table 2 
and Supplementary file 2B). The corresponding p- value of the FDR = 0.05 threshold was 2.01E- 07. 
The adjusted difference (standard error, SE) in methylation level between cases and controls was 
–0.003 (0.0006) for cg23398826 (P = 1.57E- 08), which was annotated to SNX30. The SD of the beta 
value of cg23398826 was 0.008. The odds ratio (OR) (95 % confidence interval [CI]) for incident CHD 
was 0.56 (0.45, 0.70) per SD increase in methylation level at cg23398826. The corresponding adjusted 
difference (SE) for cg02386575 was 0.006 (0.0011; P = 9.61E- 08), annotated to IMPDH2 and QRICH1 
(Table 2). The SD was 0.016. The OR (95% CI) for per SD increase in cg02386575 was 2.00 (1.57, 2.56).

Association between weighted gene co-methylation network and CHD 
risk
We used weighted gene co- methylation network analysis (WGCNA) (Langfelder and Horvath, 
2008) to identify potential co- methylation network related to CHD. This method can be used for 
identifying clusters of highly correlated co- methylation genes and relating modules to external 
sample traits to find biologically or clinically significant modules. Two samples were outliers and 
excluded during the sample clustering step. We included 491 cases and 489 controls in the following 
analysis. A total of five modules were produced in the clustering step of WGCNA (Figure 2). One 
module (called: Brown module), containing 2,106 CpG sites, was associated with incident CHD 
after adjustment for covariates and all SVs (P < 0.05/the number of modules, P = 6.41E- 08).

Gene enrichment analysis of the annotated genes of 2106 CpG sites in this module revealed six 
annotation clusters with at least one term having an FDR < 0.05 (Supplementary file 2C). These anno-
tation clusters were significantly enriched in terms associated with intracellular signaling (zinc- finger, 
pleckstrin homology domains, C2 domains, and protein kinase activity) and transcription regulation. 
Annotated genes in this module were also enriched in genes associated with tobacco use disorder, 
stroke, and kidney disease (the Genetic Association Database). We performed the visualization of the 
Brown module (Hu et al., 2008) and found CpGs annotated to ZNF790, CC2D1B, TBR1, RERE, and 
PLXNB2 had the most connections with other genes (Figure 2—figure supplement 2).

Within the Brown module, 24 CpGs were significantly associated with CHD (module- specific FDR 
< 0.01), with P ranging from 1.10E- 04–9.61E- 08 (Table 2). Together with two CpGs identified from 
single- maker tests, a total of 25 CpGs were associated with CHD, with OR (95 % confidence interval) 
ranging from 0.53 (0.38, 0.73) for cg26334131 to 2.18 (1.47, 3.23) for cg21210537 (Table 2).

CHD-associated CpGs and cardiovascular risk factors
Methylation level at cg08106661 was associated with the average number of cigarette equivalents per 
day (effect size = 1.50E- 04, SE = 4.67E- 05, P = 0.001; Table 3). Further mediation analysis revealed that 
28.5 % of the smoking- associated CHD risk was mediated through methylation level at cg08106661 
(P = 0.036). We also found three loci associated with diet score and two loci associated with BMI, but 
no statistically significant mediation effect was noted (P > 0.05). Alcohol consumption and physical 
activity were not associated with any of the CHD- associated CpGs (Table 3 and Table 3—source data 
1).

Compared with participants in the bottom quartile of methylation level at cg23398826, those in the 
top quartile had 6.4 (SE 2.1) mmHg lower SBP (P = 0.003) and 3.6 (1.2) mmHg lower DBP (P = 0.003). 
The proportions of reduced CHD risk associated with cg23398826 mediated by SBP and DBP were 
7.65 % (P = 0.003) and 6.39 % (P = 0.006), respectively (Table 4, Table 4—source data 1 and Table 

https://doi.org/10.7554/eLife.68671
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4—source data 2). The analysis also showed statistically significant mediation of methylation level at 
cg13311494 (annotated to PEMT) on CHD risk through SBP and DBP, with the mediation proportions 
of 15.61% and 12.38%, respectively. Four TC- related (Table 4 and Table 4—source data 3), six LDL- C 

Table 2. Associations of 25 significant CpGs with the risk of coronary heart disease.

Chr
Position
(hg19) CpG SD Gene Relation to gene

EWAS WGCNA*

Odds Ratio† 
(95% CI)β‡ P FDR

Module- 
specific 
FDR

9 115513036 cg23398826 0.008 SNX30 TSS200 –0.003 1.57E- 08 0.012 1.05E- 04 0.56 (0.45, 0.70)

3 49068057 cg02386575 0.016

IMPDH2 TSS1500

0.006 9.61E- 08 0.036 2.02E- 04 2.00 (1.57, 2.56)QRICH1 Body

19 37329330 cg10400937 0.007 ZNF790 TSS200 0.002 1.09E- 05 0.288 0.009 1.53 (1.24, 1.89)

12 131758671 cg20562821 0.022 (RPS6P20 §) 0.005 2.42E- 05 0.288 0.009 1.72 (1.28, 2.31)

6 34855635 cg08106661 0.016

TAF11 1stExon

0.003 3.16E- 05 0.305 0.009 1.87 (1.35, 2.59)ANKS1A TSS1500

1 153203211 cg11630610 0.019 (MIR584§) 0.005 3.83E- 05 0.329 0.009 1.77 (1.36, 2.32)

1 8426319 cg20302171 0.018 RERE 5'UTR –0.004 4.29E- 05 0.340 0.009 0.55 (0.42, 0.73)

11 63909324 cg26334131 0.025 MACROD1 Body –0.005 4.44E- 05 0.340 0.009 0.53 (0.38, 0.73)

20 2444631 cg07560408 0.018

SNORD119 TSS1500

–0.005 4.46E- 05 0.340 0.009 0.60 (0.47, 0.77)SNRPB Body

19 46522185 cg21210537 0.027 MIR769 TSS200 0.004 4.85E- 05 0.356 0.009 2.18 (1.47, 3.23)

20 60546782 cg15833447 0.021 (TAF4§) 0.006 5.55E- 05 0.375 0.009 1.50 (1.20, 1.88)

11 94963255 cg02591826 0.005 LOC100129203 TSS200 0.002 5.70E- 05 0.375 0.009 1.52 (1.23, 1.87)

7 100861083 cg16639138 0.006

ZNHIT1 5'UTR/1stExon

0.002 6.46E- 05 0.375 0.009 1.52 (1.24, 1.86)PLOD3 TSS200

6 27863042 cg01545454 0.007 (HIST1H2BO§) 0.002 7.29E- 05 0.378 0.009 1.64 (1.26, 2.13)

1 203242409 cg07219103 0.008 (CHIT1§) 0.002 7.35E- 05 0.378 0.009 1.78 (1.28, 2.47)

22 23994996 cg05681643 0.018 GUSBP11 Body 0.004 7.42E- 05 0.378 0.009 1.60 (1.24, 2.08)

2 88991375 cg06358566 0.009 RPIA 1stExon –0.002 7.74E- 05 0.385 0.009 0.62 (0.48, 0.80)

2 162273185 cg19583211 0.016 TBR1 1stExon –0.003 7.97E- 05 0.385 0.009 0.56 (0.41, 0.77)

20 3613189 cg10643850 0.025 ATRN Body 0.004 8.04E- 05 0.385 0.009 1.97 (1.37, 2.82)

17 17460905 cg13311494 0.016 PEMT Body –0.005 8.50E- 05 0.397 0.009 0.64 (0.52, 0.79)

1 179852195 cg11754670 0.009 TOR1AIP1 Body 0.001 8.84E- 05 0.398 0.009 2.04 (1.40, 2.97)

15 74928935 cg05740632 0.014 EDC3 Body –0.004 9.07E- 05 0.398 0.009 0.62 (0.49, 0.78)

11 1972510 cg08484100 0.023 MRPL23 Body –0.004 9.19E- 05 0.398 0.009 0.54 (0.40, 0.74)

1 52822428 cg24792179 0.019 CC2D1B Body 0.004 9.87E- 05 0.410 0.009 1.79 (1.36, 2.35)

7 68973036 cg22794712 0.021 (LOC100507468§) –0.006 1.10E- 04 0.413 0.010 0.63 (0.50, 0.80)

*cg23398826 in the Turquoise module, all other CpGs in the Brown module.
†Odds ratios were for per standard deviation increase in DNA methylation level.
‡Effect sizes were calculated based on normalized methylation values, denoting the methylation difference between cases and controls.
§For inter- genic CpG sites, R package FDb.InfiniumMethylation.hg19 was used to locate the nearest annotated gene.
CpG = cytosine- phosphoguanine site. Chr = chromosome. EWAS = epigenome wide association. WGCNA = weighted gene co- methylation network 
analysis. FDR = false discovery rate. CI = confidence interval. TSS200 = within 200 bp from transcription start site. TSS1500 = within 1500 bp from 
transcription start site. Body = the CpG is in gene body. 1stExon = the first exon. and UTR = untranslated region.

https://doi.org/10.7554/eLife.68671
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related (Table 4 and Table 4—source data 4), two HDL- C related (Table 4 and Table 4—source data 
5), and six random glucose- related (Table 4 and Table 4—source data 6) CpGs had P for trend <0.05. 
However, no statistically significant mediation effect was shown for the associations between corre-
sponding methylation level on CHD through these traits. TG was not associated with any of the CHD- 
associated CpGs (Table 4—source data 7).

To test the robustness of the findings, we restricted both CpGs- CHD and CpGs- SBP/DBP anal-
yses to participants without the usage of blood pressure- lowering drugs at baseline (n = 880). The 
association magnitudes of methylation level with CHD were mostly unchanged (Supplementary 
file 2D). Such restriction slightly attenuated the association of methylation level at cg23398826 and 
cg13311494 with SBP and DBP (Supplementary file 2E and F). In the association analyses of 25 
CHD- associated CpGs and cardiovascular risk factors, we also performed smart SVA for each trait. 
Adjustment for all SVs instead of batch did not change the association materially (Table 4—source 
data 1; Table 4—source data 2; Table 4—source data 3; Table 4—source data 4; Table 4—source 
data 5; Table 4—source data 6; Table 4—source data 7).

Discussion
In this prospective study of middle- aged Chinese, we found methylation at 25 CpGs across the 
genome were associated with incident CHD risk over the next 10 years. One SD increase in methyla-
tion level of identified CpGs was associated with differences in CHD risk, ranging from a 47 % decrease 
(cg26334131) to a 118 % increase (cg21210537) in CHD risk. Further mediation analyses revealed 
two potential pathways to CHD risk, one with methylation at cg08106661 mediating the impact of 
smoking, and the other with blood pressure mediating the impact of methylation at cg23398826 and 
cg13311494. One co- methylation network suggested a role for intracellular signaling in CHD risk.

Figure 2. Heatmap of association with methylation network modules. Correlation coefficient and -log10(P) (inside the bracket) were reported; the 
degree of -log10(p) is illustrated with the color legend. Linear regressions were fitted with inverse normal transformed module eigengene (ME) as 
dependent variables; coronary heart disease (CHD1) as indicator; and age, sex, education, marital status, smoking (SMK), drinking (DRK), physical 
activity (PA1 and PA2 as the second and third tertile respectively), diet score, body mass index, fasting time, study area and all surrogate variables as 
covariates.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Permutation test to confirm the validity of weighted gene co- methylation network analysis.

Figure supplement 2. Visualization of the brown module.

https://doi.org/10.7554/eLife.68671
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We summarized the annotated or nearest annotated gene of the identified CHD- associated CpGs 
in our study and the previous GWAS findings (Supplementary file 2G). Four of the total 25 identified 
CpGs map to genes that have been reported in association with cardiovascular disease in previous 
GWAS studies. CpG cg08106661 maps to the ANKS1A (Ankyrin repeat and SAM domain- containing 
protein 1 A) gene with critical roles in regulating the epidermal growth factor receptor (EGFR). Activa-
tion of EGFR has been implicated in endothelial dysfunction, atherogenesis, and cardiac remodeling 
(Makki et al., 2013). SNPs in ANKS1A have been consistently linked to CHD and smoking behaviour 
in different populations (Dichgans et  al., 2014; Charmet et  al., 2018; Schunkert et  al., 2011). 
Furthermore, our mediation analysis noted that more than 25 % of the increased CHD risk related 
to smoking was mediated through methylation level at cg08106661. Our results provide evidence 
that smoking- induced epigenetic modification of DNA may play an important part in the underlying 
pathway from smoking to CHD.

Five identified CHD- associated CpG loci were linked to blood pressure in previous GWAS studies. 
CpG cg23398826 was located within 200 bp from the transcription start site of the SNX30 (Sorting 
Nexin 30) gene, a member of the sorting nexin family which plays a vital role in endocytic trafficking. 
The perturbation of this process may lead to impaired homeostatic responses and possibly disease 
states, including cardiovascular disease (Yang et al., 1979). SNX30 has been reported in a GWAS of 
DBP night- to- day ratio (Rimpelä et al., 2018). The methylation level at CpG cg23398826 was found to 
be associated with SBP and DBP in our study. Further mediation analysis showed that blood pressure 
mediated ~10 % of the reduced CHD risk related to methylation at cg23398826, suggesting that such 
epigenetic regulation might exert an important influence on blood pressure and subsequent risk of 
CHD. However, methylation level and blood pressure were both measured at baseline. We note that 
directional association between methylation and blood pressure is still unknown.

WGCNA identified one CHD- associated gene co- methylation network. Gene members of this 
network were enriched in several protein domains, molecule function, and pathways that are involved 
in intracellular signaling. Cells can respond to the environment and extracellular cues by this vital 
mechanism (Schulman, 2013). One previous study using an in vitro model of cardiac hypertrophy 

Table 3. Associations between lifestyle factors and methylation level of identified CpGs, and the risk 
of coronary heart disease mediated through methylation level of CpG sites.

 Effect size
(SE) P

Mediation effect

Proportion mediated, 
% P

Smoking, no. of cigarettes/day
    

cg08106661 1.50E- 04 (4.67E- 05) 0.001 28.50 0.036

Diet score (ranging 0- 6)
    

cg21210537 3.60E- 03 (1.27E- 03) 0.005 4.66 0.206

cg10643850 2.57E- 03 (1.26E- 03) 0.042 -6.91 0.088

cg05740632 1.37E- 03 (6.88E- 04) 0.047 11.30 0.068

Body mass index, kg/m2
    

cg20302171 3.90E- 04 (1.67E- 04) 0.020 -2.87 0.267

cg08484100 4.17E- 04 (2.10E- 04) 0.048 -1.91 0.373

Linear regression was fitted by including all five lifestyle factors (smoking, alcohol consumption, physical activity, 
diet score, and body mass index) simultaneously in the same model, with methylation values as dependent 
variables, and age, sex, study area, fasting time, education level, marital status and batch as covariates. CpG 
= cytosine- phosphoguanine site; SE = standard error. Alcohol consumption and physical activity were not 
associated with any of the coronary heart disease- associated CpGs. Details were reported in the Table 3—source 
data 1.

The online version of this article includes the following source data for table 3:

Source data 1. Association between lifestyle factors and identified CpGs.

https://doi.org/10.7554/eLife.68671


 Research article Epidemiology and Global Health | Genetics and Genomics

Si et al. eLife 2021;10:e68671. DOI: https:// doi. org/ 10. 7554/ eLife. 68671  11 of 16

Table 4. Associations between quartile methylation level of identified CpGs and cardiometabolic 
traits, and the risk of coronary heart disease mediated through different cardiometabolic traits.

 

 

Quartile 1 vs. 4

P for trend

Mediation effect

Effect size
(SE)* P Proportion mediated, %

P
 

Systolic blood pressure†, mmHg
     

cg23398826 -6.410 (2.118) 0.003 <0.001 7.65 0.003

cg13311494 -6.580 (2.122) 0.002 0.020 15.61 0.031

Diastolic blood pressure†, mmHg      

cg23398826 -3.574 (1.218) 0.003 <0.001 6.39 0.006

cg13311494 -3.650 (1.221) 0.003 0.029 12.38 0.045

Total cholesterol, mmol/L      

cg26334131 0.197 (0.089) 0.026 0.003 -31.62 0.168

cg05740632 0.163 (0.089) 0.066 0.013 -3.21 0.126

cg21210537 0.175 (0.094) 0.064 0.027 -8.19 0.197

cg19583211 -0.064 (0.088) 0.466 0.047 2.73 0.270

Cholesterol in LDL, mmol/L
     

cg26334131 0.110 (0.063) 0.079 0.007 -32.14 0.135

cg20302171 0.107 (0.063) 0.09 0.029 -10.48 0.161

cg05740632 0.109 (0.063) 0.083 0.019 -3.38 0.110

cg19583211 -0.078 (0.062) 0.208 0.020 3.60 0.210

cg13311494 -0.117 (0.062) 0.06 0.027 3.70 0.208

cg21210537 0.126 (0.067) 0.059 0.044 -8.55 0.177

Cholesterol in HDL, mmol/L
     

cg15833447 0.037 (0.026) 0.154 0.013 -10.77 0.180

cg21210537 0.040 (0.027) 0.146 0.019 7.30 0.235

Random blood glucose‡, mmol/L      

cg10400937 0.551 (0.231) 0.017 0.003 6.72 0.107

cg01545454 0.203 (0.234) 0.385 0.006 9.58 0.097

cg11754670 0.466 (0.236) 0.049 0.005 36.39 0.086

cg26334131 -0.517 (0.234) 0.028 0.018 32.70 0.109

cg07219103 0.578 (0.244) 0.018 0.032 6.17 0.135

cg20302171 -0.556 (0.234) 0.018 0.027 15.77 0.123

*Effect sizes denoted the differences of metabolic traits between the top and bottom quartile methylation level. Details of other quartiles 
were reported in the Table 4—source data 1.
†We added 15 and 10 mmHg to the measured systolic blood pressure and diastolic blood pressure respectively among participants who 
reported usage of blood pressure- lowering medications.
‡Additionally adjusted for treatment of diabetes (yes or no) at baseline. Multivariable model was adjusted for: age, sex, education level, 
marital status, smoking, drinking, physical activity, dietary score, body mass index, fasting time, study area, and batch. The CpGs which 
were significantly associated with any metabolic risk factors were reported. Details of other CpGs were reported in the Supplementary 
tables. CpG = cytosine- phosphoguanine site; SE = standard error; LDL = low- density lipoprotein; HDL = high- density lipoprotein.

The online version of this article includes the following source data for table 4:

Source data 1. Association between quartile methylation level of identified CpGs and systolic blood pressure 
(mmHg).
Table 4 continued on next page
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revealed that differentially methylated promoters were involved in the intracellular signaling process 
(Stenzig et al., 2015). Nevertheless, these findings could only be interpreted as a possible functional 
indication and may stimulate future studies in translating these findings toward a better understanding 
of disease mechanisms.

Previous epigenome- wide studies of CHD in Asian population were all cross- sectional design with 
relatively small sample size (Nakatochi et al., 2017; Sharma et al., 2014; Li et al., 2017), in which the 
changes in DNA methylation at identified CpGs might be a result of disease state. Only two studies 
have employed prospective design (Guarrera et al., 2015; Golareh et al., 2019). One of them used 
a meta- analysis of nine population- based cohorts from the US and Europe (11,461 participants, mean 
age 64  years, mean follow- up time 11.2  years) to analyze CHD- associated DNA methylation at a 
single- nucleotide resolution (Golareh et al., 2019). Based on HumanMethylation450 BeadChip data, 
methylation levels at 52 CpG sites were identified to be associated with incident CHD or myocardial 
infarction. Differences in the nature of study design, genetic background and age distribution of the 
study population, follow- up time, and coverage of CpG sites might explain that our findings did not 
overlap with the previous CHD EWAS in either Asian or European population. Three identified loci in 
the present study could be replicated at the gene level (ANKS1A, RERE, and EDC3), by a small study 
which investigated differential DNA methylation loci using 15 donor- matched healthy and atheroscle-
rotic human aorta samples in Spain (Silvio et al., 2014). Similar DNA methylation patterns at certain 
genes might be consistent in blood leukocytes and atherosclerotic lesions during the development 
of CHD.

Our study is by far the first prospective and the largest EWAS of CHD in the Asian population. The 
prospective design allowed us to identify loci where changes in DNA methylation potentially predict 
the risk of future CHD. The use of the latest DNA methylation array that covers over 850,000 CpG 
methylation sites provides extensive coverage of CpG islands, genes, and enhancer, however, also 
increases the burden of multiple hypothesis testing. The causal mediation analysis was added to help 
understand the functional potential of identified loci.

Our study has limitations. Although we have made a comprehensive adjustment for preselected 
potential confounders and also used the recommended SVA method to remove the unknown 
confounding effect, residual confounding is still possible. However, the potential inflation due to 
unadjusted confounding effect was small as indicated by the Q- Q plot. The cases and controls were 
not randomized on arrays. Adjusting batch effect may lose power to some extent. Future studies with 
samples at multiple time points preceding CHD onset are expected to provide insights into the role 
of dynamic changes of methylation and expression level in the progress of CHD.

We presented novel findings on associations of leukocyte DNA methylation at 25 CpGs with CHD 
risk over the next ten years among Chinese. Our findings also suggested the possible role of epigen-
etic regulations in the pathways to CHD risk, through or from lifestyle and cardiometabolic factors. 
Studies are warranted to validate our findings, elucidate the functional mechanisms of newly identified 
CpGs, and further translate our findings toward preventive or clinical implications.
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Source data 2. Association between quartile methylation level of identified CpGs and diastolic blood pressure 
(mmHg).

Source data 3. Association between quartile methylation level of identified CpGs and total cholesterol (mmol/L).

Source data 4. Association between quartile methylation level of identified CpGs and cholesterol in low- density 
lipoprotein (mmol/L).

Source data 5. Association between quartile methylation level of identified CpGs and cholesterol in high- density 
lipoprotein (mmol/L).

Source data 6. Association between quartile methylation level of identified CpGs and random glucose (mmol/L).

Source data 7. Association between quartile methylation level of identified CpGs and triglyceride (mmol/L).

Table 4 continued
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of methylation markers associated with incident coronary heart disease across the range of P 
thresholds in the epigenome- wide association study. (B) Manhattan plot (A) and QQ plot (B) of 
the P values of the associations between each cytosine- phosphoguanine (CpG) site and incident 
coronary heart disease. In the Manhattan plot, the red line represents -log10(P) at false discovery 
rate (FDR) = 0.05. (C) Gene enrichment analysis of 2106 probes from the brown module which was 
significantly associated with coronary heart disease. (D) Associations of 25 significant CpGs with risk 
of coronary heart disease among 880 participants without usage of blood pressure lowering drug. 
(E) Association between quartile methylation level of identified CpGs and systolic blood pressure* 
(mmHg). (F) Association between quartile methylation level of identified CpGs and diastolic blood 
pressure* (mmHg). (G) The annotated or nearest annotated gene of the identified CHD- associated 
CpGs in our study and the previous GWAS finding.
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of case- control studies.
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