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Prolactin (PRL) is one of the most versatile hormones known. It is considered an adaptive 
hormone due to the key roles it plays in the modulation of the stress response and 
during pregnancy and lactation. Within the brain, PRL acts as a neuropeptide to promote 
physiological responses related to reproduction, stress adaptation, neurogenesis, and 
neuroprotection. The action of PRL on the nervous system contributes to the wide array 
of changes that occur in the female brain during pregnancy and result in the attenuation 
of the hypothalamic–pituitary–adrenal axis. Together, all these changes promote behav-
ioral and physiological adaptations of the new mother to enable reproductive success. 
Brain adaptations driven by PRL are also important for the regulation of maternal emo-
tionality and well-being. PRL also affects the male brain during the stress response, but 
its effects have been less studied. PRL regulates neurogenesis both in the subventricular 
zone and in the hippocampus. Therefore, alterations in the PRL system due to stress or 
exposure to substances that reduce neurogenesis or other conditions, could contribute 
to maladaptive responses and pathological behavioral outcomes. Here, we review the 
PRL system and the role it plays in the modulation of stress response and emotion 
regulation. We discuss the effects of PRL on neurogenesis and neuroprotection, the 
putative neuronal mechanisms underlying these effects, and their contribution to the 
onset of psychopathological states such as depression.
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inTRODUCTiOn

Prolactin (PRL) is a pleiotropic pituitary hormone with more than 300 known physiological effects. 
This protein hormone has a regulatory control on reproduction, immunomodulation, angiogenesis, 
energy metabolism, osmotic balance, and development. In addition to its peripheral functions, PRL 
also plays many important roles as a neuropeptide. PRL crosses the blood–brain barrier, and local 
hypothalamic production contributes to reach several brain regions producing strong modulatory 
effects. In particular, PRL contributes to the regulation of the stress responses through the inhibi-
tion of the hypothalamic–pituitary–adrenal (HPA) axis. Moreover, PRL modulates anxiety and 
depressive-like behaviors. PRL also regulates neurogenesis, the generation of new neurons, in both 
the subventricular zone (SVZ) and the hippocampus. PRL levels and environmental conditions may 
induce changes in neurogenesis, potentially leading to an impact on emotional behavior. Indeed, 
reduction of PRL levels during early pregnancy affects olfactory bulb neurogenesis and increases 
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postpartum anxiety in the female rat. In addition, PRL may exert 
neuroprotective effects in the hippocampus of adult animals 
exposed to chronic stress or subjected to hippocampal infusions 
of kainic acid. However, PRL reduces neurogenesis, when admin-
istered, during the early developmental stages and promotes 
depressive-like behavior in adulthood. Some of these effects are 
mediated by the activation of different neuronal signaling systems 
and ion channels. Here, we will summarize some aspects of PRL 
actions within the brain and their contribution to the onset of 
psychopathological states like depression.

THe PROLACTin SYSTeM

PRL Synthesis
Prolactin is produced mainly by the lactotroph cells in the 
anterior pituitary. PRL is under the inhibitory control by 
dopamine released from the tuberoinfundibular dopaminergic 
(TIDA) neurons (1). Despite the abundant efforts to map PRL 
in cerebral regions using several techniques, the synthesis of PRL 
within the brain has been brought into question. PRL positive 
neurons were localized by immunocytochemistry in males and 
females of different species (2). PRL mRNA was detected by 
PCR in paraventricular nucleus (PVN) and supraoptic nucleus 
(3) and by qPCR in the hypothalamus of female rats (4). In situ 
hybridization showed PRL expression in the medial preoptic area 
(MPOA), periventricular preoptic nucleus, the bed nucleus of the 
stria terminalis, the PVN, and the lateral septum in the domestic 
turkey and in both the fetal and adult sheep (5, 6). Recent studies 
using microarray techniques detected the expression of PRL in 
the hippocampus of resilient mice (7).

Peripheral PRL is considered the major effector within the 
brain. It has been hypothesized that PRL may cross the blood–
brain barrier through a receptor-mediated mechanism occurring 
in the cells of the choroid plexus (8). However, recent studies 
using the PRL receptor (PRL-R) knockout mice showed that PRL 
transport does not depend on the PRL-R but rather on another, 
yet to be identified, mechanism (9). Thirty minutes after its 
peripheral administration, PRL activates brain neurons through 
the induction of the phosphorylation of Signal Transducer and 
Activator of Transcription 5 [pSTAT5 (9)]. PRL peaks in the cere-
brospinal fluid (CSF) 30 min (10) or 90 min (9) after its peripheral 
administration. These last studies also suggest that PRL does not 
access the brain after entering the CSF (9). Since immunoreactive 
PRL was observed in the choroid plexus and ependymal cells of 
the cerebral ventricles, it has been hypothesized that PRL may be 
transported from these sites to reach its target regions (11, 12). 
However, it is still unknown how PRL accesses its distant target 
regions within the brain. Whether the ependymal cells, or the 
neurons, take up PRL and release it in the vicinity of its target 
cells, or if PRL is released in the extracellular space to diffuse until 
it reaches its receptors is still a matter of debate.

PRL Receptors
Prolactin receptors belong to the class 1 cytokine receptor super-
family (1). PRL-R is encoded by a single gene, but alternative 
splicing produces several PRL-R isoforms. In both humans and 
rats, three isoforms (long, intermediate, and short – e.g., the size 

of the intracellular domain) have been identified. The response is 
triggered after the dimerization of the receptors to form homodi-
mers. Long–long dimers are able to activate second messenger 
pathways, particularly the JAK-signal transducer and activator of 
transcription (JAK-STAT) signaling cascade, through the activa-
tion of STAT3 and STAT5. The short PRL-R isoform activates the 
mitogen-activated protein kinase (MAPK) pathway (13). Both 
long and short receptor heterodimers inhibit PRL signaling (14) 
and contribute to modulate PRL actions.

STReSS ReSPOnSe AnD PRL

Stress is a critical factor that may lead to depressive disorders. 
Stress exposure activates the HPA axis, triggering the release of 
corticotrophin releasing hormone (CRH) in the PVN, which pro-
motes the secretion of adrenocorticotrophin (ACTH) from the 
pituitary. In turn, ACTH triggers the release of glucocorticoids 
from the adrenal glands. PRL is also secreted from the pituitary 
in response to a number of stressors. Initial studies suggested 
that PRL may counteract glucocorticoid actions on the immune 
system during the stress response (15). However, more recent 
studies showed that preventing PRL-R expression in the brain via 
an antisense probe strongly increases the stress-induced ACTH 
secretion in virgin and lactating rats, suggesting that PRL plays 
an inhibitory role on HPA axis reactivity (16, 17). It has been 
hypothesized that PRL modulates the activity of the HPA axis 
through a reduction of neural inputs to the PVN. Both acute and 
chronic PRL intracerebroventricular administrations in virgin 
female rats reduce neuronal activation in the amygdala and CRH 
hypothalamic expression in response to stress (18). Additionally, 
PRL is locally released from the PVN and MPOA in response to 
physiological stimuli, including stress (4).

Prolactin has been recently associated with resilience in a 
model of chronic mild stress (CMS). Adult rats, previously sub-
jected to CMS, were selected as responders and non-responders, 
according to their reaction to stress. The resilient animals (i.e., 
non-responders) presented higher plasma levels of PRL, and 
higher PRL-R mRNA in the choroid plexus than their vulnerable 
(i.e., responders) counterpart (19). Accordingly, a microarray 
study performed on heterozygous 5-Htt-deficient offspring 
subjected to prenatal stress showed that PRL, growth hormone, 
and galanin receptor 3 were differentially expressed in the hip-
pocampus of resilient mice when compared to controls (7). These 
results suggest a role for PRL in stress regulation at hippocampal 
level.

PRL AnD eMOTiOnAL ReSPOnSiveneSS

The effects of PRL on anxiety and depressive behavior have been 
studied, but they differ depending on the species used and the 
physiological state.

PRL and Anxiety
Intracerebroventricular or intravenous administrations of PRL 
exert dose-dependent anxiolytic effects in both male and virgin 
female rats (16). Anxiety levels in pregnant and lactating rats 
undergo a progressive reduction (20, 21). These effects are likely 
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to be mediated by PRL, as suggested by the increased anxiety 
displayed by lactating female rats in the elevated plus maze after 
blockade of PRL-R brain expression (17). Chronic ICV adminis-
tration of PRL to ovariectomized E2-replaced female rats (used 
to simulate the endocrine status during pregnancy) was shown 
to reduce anxiety levels in the elevated plus maze (18). Taken 
together, these results strongly suggest that PRL has an anxiolytic 
effect in rodents.

Studies on inbred lines of rodents have shown an association 
between elevated levels of PRL and increased anxiety. Increased 
basal and stress-induced levels of PRL were reported in male rats 
bred for high anxiety behavior (HAB) as compared to low anxiety 
behavior (LAB) rats (22). The Roman low-avoidance (RLA/Verh) 
line of rats (i.e., rats selected for low performance in a two-way 
active avoidance test) displays increased stress responses, higher 
levels of PRL, and a passive coping style compared to the Roman 
high-avoidance (RHA/Verh) line of rats (i.e., rats selected for high 
performance in a two-way active avoidance test) counterpart 
(23). The elevated levels of PRL found in this animal line could 
stem from an imbalance in one or more secretagogues of PRL 
(serotonin, GABA, etc.). Alternatively, high PRL concentrations 
could help to improve the excessive reactivity of the HPA axis 
observed in these animals. In contrast, clinical studies in humans 
have indicated a correlation between high PRL levels and psycho-
logical distress. Female patients with hyperprolactinemia usually 
report more symptoms of anxiety and hostility than control 
female subjects (24).

PRL and Depressive-Like States
Artificially inducing hyperprolactinemia in adult male rats by 
placing pituitary grafts of a donor rat in the kidney of the recep-
tor animal was shown to exert antidepressive-like effects in the 
forced swimming test (25).

In humans, some patients with hyperprolactinemia exhibit 
depressive symptoms. However, no differences were observed in 
the prevalence of depression in hyperprolactinemic patients com-
pared to controls (24, 26). Remarkably, few studies have made a 
distinction of the origin of hyperprolactinemia (e.g., a pituitary 
tumor, or dysregulation of neural pathways due to neurotransmit-
ter alterations) and its relationship with anxiety and depression. 
Since PRL modulates the expression of its own receptors, it has 
been hypothesized that hyperprolactinemic patients may express 
more PRL-R in the brain. However, it is unknown if the receptors 
are functionally activated. Excessive levels of PRL may prevent 
the formation of the homodimers necessary for the physiological 
functions of PRL. Additionally, long-term hyperprolactinemia 
reduces the ability of the tuberoinfundibular neurons to synthe-
size dopamine (27). High PRL concentrations generate elevated 
levels of the 16K PRL fragment called vasoinhibin. This fragment 
exerts effects opposite to those of the native hormone (28, 29).

Depressive-Like States and Motherhood
Several animal studies report a causal link between reduced 
maternal care and depressive-like state or alterations of emotional 
behavior in the offspring. Stress exposure during pregnancy alters 
the neural mechanisms that prepare the female to her maternal 
role and contributes to the development of psychiatric diseases 

such as depression or anxiety (30, 31). Female rats subjected to 
chronic psychosocial stress during pregnancy exhibit a postpar-
tum depressive-like state (32–34). The activation of oxytocin and 
PRL systems during lactation contributes to the attenuation of the 
HPA axis activation and triggers a positive mood (35). Therefore, 
alterations in these systems could contribute to the development 
of the affective disorders observed in the postpartum period. 
Indeed, oxytocin expression is reduced in the hypothalamus 
of postpartum female rats subjected to chronic stress during 
pregnancy (34). Postpartum levels of circulating oxytocin are 
decreased in women showing depressive symptoms during 
pregnancy (36). Low concentrations of oxytocin could increase 
the risk to develop postpartum depression (37).

Dysregulation of PRL-R responsivity could be associated with 
postpartum disorders (38). Indeed, low levels of PRL were found 
in women suffering from postpartum depressive disorder (39). 
Administration of bromocriptine in the early stages of pregnancy 
reduces PRL levels, induces a depressive-like state, and impairs 
maternal behavior in female rats, suggesting that PRL may play a 
key role in the onset of postpartum depression (40, 41). Moreover, 
breastfeeding-induced raise in PRL levels results in positive 
effects on both the mother’s health and the mother–infant bond-
ing. A correlation was found between stress, dysphoric moods, 
and reduced levels of interferon gamma in mothers using bottle 
feeding (42). On the contrary, breastfeeding mothers scored less 
in anxiety, depression, and anger tests (43).

neUROGeneSiS AnD 
neUROPROTeCTiOn

Chronic stress exposure and depressive states are known to affect 
neurogenesis. Neurogenesis is the process that produces new 
neurons throughout life. New neurons are thought to transiently 
increase neuronal communication. Two neurogenic niches have 
been recognized in the adult brain: the hippocampus and the SVZ. 
The hippocampus exerts a negative control on the HPA axis activ-
ity and it is involved in emotional modulation. Antidepressive 
treatments increase hippocampal neurogenesis and show a corre-
lation with mood improvement (44). Olfactory bulb neurogenesis 
and olfactory dysfunction are also decreased by CMS exposure, 
a procedure that is known to induce depressive-like states (45).

Prolactin is a regulator of neurogenesis. PRL receptors are 
expressed in the SVZ and the hippocampus (46–48). Initial 
evidence of the relationship between PRL and neurogenesis has 
been reported by studies showing an increase in neurogenesis 
in the SVZ of pregnant females. This increase was found to be 
mediated by PRL (47), and it was hypothesized that the olfac-
tory discrimination of odor cues related to pups is critical for 
maternal success. Other olfactory signals are important cues that 
also induce neurogenesis in the SVZ and in the hippocampus. 
Exposure to pheromones from a dominant male induces cell 
proliferation in both the olfactory bulb and the hippocampus of 
female mice. These effects are mediated by PRL in the olfactory 
bulb and luteinizing hormone in the hippocampus, and both 
hormones contribute to the regulation of female reproduction 
(49). Exposure to male pheromones increases SVZ neurogen-
esis and promotes maternal behavior in virgin and postpartum 
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females (50). Injections of bromocriptine, a dopamine agonist, 
in female rats during the first days of pregnancy to lower PRL 
levels, reduces olfactory neurogenesis and induces behavioral 
alterations postpartum (41). These reports clearly suggest that 
PRL may regulate SVZ neurogenesis and play a key role in mood 
regulation.

The reduction of hippocampal neurogenesis due to chronic 
stress exposure was prevented by daily PRL administration in 
male mice. PRL was shown to promote neuronal fate and to exert 
neuroprotective actions in the hippocampus (51). PRL effects 
were initially thought to counteract glucocorticoid reduction 
of neurosphere proliferation and survival. However, incubation 
of PRL together with dexamethasone was unable to inhibit 
dexamethasone effects on neurospheres, despite the induction 
of ERK1/2. Therefore, it was suggested that PRL may affect hip-
pocampal neurogenesis through an indirect mechanism (52). 
Following studies showed both in  vitro (in primary adult hip-
pocampal cells) and in vivo (direct injection into the dentate gyrus 
of adult mice) that PRL administration increases the neurosphere 
number, suggesting a direct effect of this neuropeptide on the hip-
pocampus (53). Furthermore, these authors reported behavioral 
deficits in the PRL null mice trained in hippocampus-dependent 
learning tasks, and suggested a role of PRL in the learning and 
memory processes (53). In contrast, daily injections of PRL in 
rats during the first two postnatal weeks reduces neurogenesis 
in both the dentate gyrus and the olfactory bulb and promotes a 
depressive-like state in both adult male and female rats (54). These 
results suggest that PRL exerts different actions on neurogenesis 
depending on the age of the animals and it could be associated 
with emotional regulation.

During pregnancy and lactation, PRL protects the hippocam-
pus against the high concentrations of glucocorticoids (55). 
Administration of ovine PRL to the cerebral ventricle of ovariec-
tomized virgin females buffers the neurodegenerative process 
induced by kainic acid infusion in CA1, CA3, and CA4 areas of 
the hippocampus (56, 57). These results suggest a neuroprotective 
role for PRL in the hippocampus.

neURAL MeCHAniSMS OF PRL ACTiOnS

Prolactin effects on neurogenesis are mediated by its activation 
of the extracellular signal-regulated kinase 5 (ERK5). ERK5 is 
expressed in the neurogenic niches of the brain (58). Moreover, 
PRL increases both the expression and protein levels of Nestin 
and microtubule-associated protein 2 (MAP2) in neuroblastoma 
(SK-N-SH) cells. This suggests that PRL regulates cytoskeletal 
protein synthesis and therefore contributes to neuronal differ-
entiation (59). Furthermore, PRL modulates Ca2+-dependent K+ 
channels, which could affect the release of neurotransmitters in 

different cerebral regions (60). In the hypothalamus, PRL stimu-
lates the ERK/MAPK pathway in CRH, vasopressin, and oxytocin 
neurons (61) and promotes EGR-1 expression in magnocellular 
neurons (62). Activation of these pathways by PRL could contrib-
ute to the plastic changes observed in the brain during pregnancy. 
PRL stimulation of CRH transcription in hypothalamic cultured 
cells has been interpreted as an indirect inhibitory control of PRL 
on HPA axis activity (62). However, it is still unknown how PRL 
affects the HPA axis.

COnCLUDinG ReMARKS AnD FUTURe 
DiReCTiOnS

Prolactin alters neural circuits to help the individual to cope with 
stress. Reduced activation of neural inputs, activation of ionic 
channels, or the modulation of several signaling pathways are 
some of the putative mechanisms of action underlying the effects 
of PRL on brain circuits. It is unknown how PRL regulates the HPA 
axis function during the stress response. PRL could affect hypo-
thalamic and/or hippocampal activity to regulate emotionality. 
The contribution of PRL to the onset of postpartum depression 
is still unknown. Low PRL levels in nursing women have been 
associated with postpartum depression. Inhibition of PRL reduces 
neurogenesis in the olfactory bulb, but the mechanisms that result 
in a postpartum depressive state are unknown. Besides the path-
ways affected by PRL to regulate anxiety are not yet known, and 
whether the PRL effects on hippocampal neurogenesis contribute 
to modulate anxiety is still uncertain. Administration of PRL in 
the early postnatal stages reduces neurogenesis in the hippocam-
pus and the olfactory bulb and promotes a depressive-like state 
in adulthood. This suggests that PRL affects a critical window 
during brain development and that PRL actions are dependent 
on the age during which it is administrated. Further studies are 
needed to understand the mechanisms of action of PRL in the 
brain, and how this hormone modulates emotionality and anxiety 
at different developmental stages.
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