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Abstract

Background: The quasispecies model is a general model of evolution that is generally applicable to replication up
to high mutation rates. It predicts that at a sufficiently high mutation rate, quasispecies with higher mutational
robustness can displace quasispecies with higher replicative capacity, a phenomenon called “survival of the flattest”.
In some fitness landscapes it also predicts the existence of a maximum mutation rate, called the error threshold,
beyond which the quasispecies enters into error catastrophe, losing its genetic information. The aim of this paper
is to study the relationship between survival of the flattest and the transition to error catastrophe, as well as the
connection between these concepts and natural selection.

Results: By means of a very simplified model, we show that the transition to an error catastrophe corresponds to
a value of zero for the selective coefficient of the mutant phenotype with respect to the master phenotype,
indicating that transition to the error catastrophe is in this case similar to the selection of a more robust species.
This correspondence has been confirmed by considering a single-peak landscape in which sequences are grouped
with respect to their Hamming distant from the master sequence. When the robustness of a classe is changed by
modification of its quality factor, the distribution of the population changes in accordance with the new value of
the robustness, although an error catastrophe can be detected at the same values as in the general case. When
two quasispecies of different robustness competes with one another, the entry of one of them into error
catastrophe causes displacement of the other, because of the greater robustness of the former. Previous works are
explicitly reinterpreted in the light of the results obtained in this paper.

Conclusions: The main conclusion of this paper is that the entry into error catastrophe is a specific case of survival
of the flattest acting on phenotypes that differ in the trade-off between replicative ability and mutational
robustness. In fact, entry into error catastrophe occurs when the mutant phenotype acquires a selective advantage
over the master phenotype. As both entry into error catastrophe and survival of the flattest are caused by natural
selection when mutation rate is increased, we propose differentiating between them by the level of selection at
which natural selection acts. So we propose to consider the transition to error catastrophe as a phenomenon of
intra-quasispecies selection, and survival of the flattest as a phenomenon of inter-quasispecies selection.

1. Background
The quasispecies model was developed by Eigen in 1971
[1], and has been applied in many different fields, on
account of its usefulness as a general evolutionary
model for error-prone self-replicative systems. Prebiotic
self-replicating molecules [2], RNA viruses [3], cancer
cells [4], the immune system [5], etc. have all been mod-
elled as quasispecies. One of the most important impli-
cations of the quasispecies theory, of particular

relevance because of its originality and possibility for
practical applications, is the concept of error catastrophe
[6]. In some fitness landscapes, an increase in the muta-
tion rate beyond an error threshold causes the quasispe-
cies to enter into error catastrophe. In the classical
model developed by Eigen, several different phenomena
can be observed when the population crosses the error
threshold. First, the master sequence, i.e. the sequence
with the highest replicative ability, is lost [1]. Second,
the quasispecies gets delocalized over the whole
sequence space [7], in such a way that sequences
become uniformly distributed. As this is materially
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impossible in finite populations, this delocalization
should be interpreted as the drift of the population over
the sequence space [8]. Finally, several abrupt changes
can be observed for different population traits, namely
in the mean and the variance of the Hamming distance
from the master sequence [9,10], in some collective
order parameters such as the consensus sequence [11]
or in the so-called ancestral distribution [12,13], etc.
Although in the single-peak fitness landscape used by
Eigen, all these phenomena take place at the same value
of q, this is not necessarily the case for other, more
complicated, fitness landscapes [14]. As Hermisson and
co-workers [13] have shown, these phenomena are dif-
ferent kinds of what they call “mutation thresholds”.
These thresholds were defined as “pronounced changes
of the equilibrium distribution of some population trait
or fitness values within a narrow change of mutation
rates” [13]. They identify four different thresholds: a, a
“fitness threshold”, which is the mean fitness of the
population that suffers the pronounced change; b, a
“wild-type threshold”, which is defined as the loss of the
fittest sequence; c, a “degradation threshold”, beyond
which fitness no longer changes with the mutation rate;
and d, a “trait threshold”, defined by a pronounced
change in a population trait. Moreover, it has been
shown that all these thresholds are completely depen-
dent on the fitness and the mutation landscape [13,15].
One problem derived from this fact is that the defini-
tions of the error catastrophe, and of the error thresh-
old, change from paper to paper [13,14,16]. In most
papers the error catastrophe is equated to the loss of
the master sequence [1,17-19], in other papers it is
taken to be the delocalization of the population over the
sequence space [20-23], while in others it is defined as a
transition to more robust regions of the sequence space
[24]. Actually, in some papers two of these definitions
are used simultaneously. However, the usual mathemati-
cal criterion for defining the error threshold is the loss
of master sequence in the absence of back mutation.
The differences that are observed for the phenomenol-
ogy and definition of error catastrophe, and error
threshold, can also be observed in the interpretation of
both concepts. Error threshold is said to be a critical
mutation rate beyond which one of the following phe-
nomena take place: mutation dominates over selection
[13,25,26], natural selection ceases to operate [5,13],
there is no mutation-selection balance [18,27], or evolu-
tionary adaptation [28] or optimization [22] breaks
down.
Furthermore, both the loss of the master sequence

and the delocalization of the quasispecies over the
sequence space have been related to an information “cri-
sis” or “meltdown” [6,16,26,29,30]. In this sense, the
entry into error catastrophe is supposed to establish a

maximum limit on the information content that a self-
replicative system can maintain at a given mutation rate
[20,31,32]. This interpretation has two important practi-
cal consequences. In the field of the origin of life, it
introduces what is known as “Eigen’s paradox” [1,29,33],
according to which the first self-replicating molecules
would not be long enough, at prebiotic mutation rates,
to encode the enzymes, or functions, required to copy
the sequences more accurately. The second important
consequence is in the field of RNA viruses [16,34], since
the possibility of pushing RNA virus replication into
error catastrophe by means of mutagenic drugs was the
origin of the first “lethal mutagenesis” experiments, i.e.
virus extinction through increased mutagenesis, as well
as a first explanation for the loss of viral infectivity
[35-38].
Another implication of the quasispecies theory that we

would like to emphasize is the “survival of the flattest”
concept [39-42]. Basically, the “survival of the flattest”
effect postulates that at high mutation rates a quasispe-
cies with high reproductive capacity, but low mutational
robustness can be displaced by another quasispecies
with lower reproductive capacity but higher mutational
robustness, that is to say, a greater insensitivity to the
deleterious effect of mutations. This implies that muta-
tional robustness may be optimised by natural selection
and, consequently, that quasispecies with higher muta-
tional robustness could be selected at high mutation
rates. Apart from furthering our understanding of the
natural history of populations of self-replicating species,
this effect raises the possibility of a resistance mechan-
ism to therapies based on “lethal mutagenesis”, which
would be distinct from and somehow complementary to
drug resistance. However, this point is still a matter of
contention [43-45].
Both transition to error catastrophe and survival of the

flattest are related to the behaviour of quasispecies at
high mutation rates [18,24,25,46]. Some authors have
explicitly related both concepts, pointing out that entry
into error catastrophe “requires that some genotypes or
phenotypes are more sensitive to mutation than others”
[18], that it is “an evolutionary phenomenon in which
(...) the population evolves to genotypes that are low in
fitness but robust to the effects of mutations” [24], or
that is a theory that shows that “the evolutionary poten-
tial of a phenotype depends on both its fitness relative
to alternative phenotypes and its robustness to muta-
tions” [46]. However, to the best of our knowledge,
neither an explicit study of this relationship, nor an
explicit reinterpretation of its consequences, has as yet
been taken.
This brief review of recent theoretical papers on this

subject shows that the interpretation and meaning of
error catastrophe, and its consequences, is a contentious
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subject. In this paper we will show that what has been
called an entry into error catastrophe should actually be
considered to be as a specific case of survival of the flat-
test. Accordingly, the transition into error catastrophe is
caused by natural selection when the selection pressure
is an increment in mutation rate. For this reason, an
error threshold can only take place in fitness landscapes
with flat enough regions. Thus, entry into error cata-
strophe is caused neither by the dominance of mutation
over selection nor because natural selection ceases to
operate.
In section 2.1 we show throughout a very simplified

model that the entry into error catastrophe is formally
equivalent to the survival of the flattest. In section 2.2
we study how changes the population distribution
beyond the error threshold when the mutational robust-
ness of some Hamming classes is changed by modifying
its quality factor. In section 2.3 the possible relationship
between the entry into error catastrophe and the survi-
val of the flattest is considered. Finally, these and other
previous results are interpreted in the discussion by
considering the transition to error catastrophe as a spe-
cific case of intra-quasispecies survival of the flattest.

2. Results
2.1. A simple model to show that entry into error
catastrophe is caused by survival of the flattest
In order to show that the transition to error catastrophe
is caused by the selection of a flatter phenotype at high
mutation rates, the simplest quasispecies model that dis-
plays an error threshold can be used, applying some
purely formal modifications. This model has a master
phenotype, composed of a single sequence with an
amplification factor Am, and a mutant phenotype, which
combines all the other sequences and has an amplifica-
tion factor Ak. The value of the degradation factor, D, is
assumed to be the same for all the sequences and, with-
out loss of generality, is set to D = 0. Throughout this
section, the classic notation in which q is the quality
factor per digit will be used, so the probability of correct
replication for the master sequence is qν, ν being the
sequence length. As the mutant phenotype is composed
of all the mutant sequences except the master sequence,
back mutation can be neglected as a first approximation.
This means that the probability of a mutant sequence
producing another mutant sequence is unity. Assuming
that the dynamics takes place in a flux reactor [1,2] the
following system of differential equations can be derived:

dx

dt
A q x

dx

dt
A q x A x x

xm
m m

k
m m k k k

m= −

= − + −









0

01( )
(1)

where j is the output flux of information carriers.
Assuming the constraint of a constant population, N,
this results in:

0 = + =A x A x

N
Em m k k (2)

where E is the mean population productivity.
The definition of the error threshold is not a trivial

point, as has been discussed under the Introduction.
Throughout this paper the error threshold will be con-
sidered to be the value of q at which a “fitness thresh-
old” takes place. This kind of threshold can induce the
loss of the master type, i.e. a “wild-type threshold”, or
the delocalization over the whole sequence space, i.e. a
“degradation threshold” [13]. This is equivalent to find-
ing the value of q for which a minimum in the differ-
ence of the first and second eigenvalues appears in the
equivalent linear system obtained, following [2,47].
However, when back mutation is neglected this
approach cannot be used, since the matrix of the linear
system is not irreducible. Therefore, without losing gen-
erality, in this section the error threshold is obtained by
equating xm (t ® ∞) to zero, because in the single-peak
landscape the fitness threshold and the wildtype thresh-
old coincide. Taking this into account, the system (1)
displays an error threshold at:

q
A

A
k

m
c =  (3)

The system of differential equations (1) can be
expressed in terms of relative fitness and selection coef-
ficients referred to the master phenotype, as usually
done in population genetics. A coefficient of selection, s,
indicates the selective advantage or disadvantage of a
given phenotype with respect to another of reference.
So, an s value greater than zero implies a selective
advantage for a given phenotype with respect to that of
the reference, a value less than zero implies a disadvan-
tage, and a value of zero implies neutrality.
To find an explicit relationship between the selection

coefficient and other parameters in this case, the system
can be reformulated by making a variable change:

z A q x

z A q x

m m m

k m k

=

=




(4)

which is equivalent to dividing the equations of the
system (1) by the effective fitness of the master pheno-
type, i.e. the product of its replicative ability and its
mutational robustness: Am qν .
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As Am qν is constant over time, the resulting system
is:

dz

dt
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The selection coefficient can be obtained from this
system of differential equations,, and in this case it is a
function of the quality factor and the sequence length:

s q
q
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A
k

m

( , ) = − 1 (6)

Substituting s in equation (5) results in:
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Thus, the selection coefficient is the quotient between
the effective fitness of the mutant phenotype over that
of the master phenotypes, minus one. Actually, the
effective fitness of the mutant phenotype should be con-

sidered as A Qk k
 , where the tilde denotes that the qual-

ity factor is considered at a phenotypic level, with

Qk = 1 , as back mutation is neglected.

Keeping the constraint of constant population, N, the
flux term is now:




0

1
=

+ +Z s q z

N
q

m
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(8)

Taking this into account, and inserting equation (3)
into equation (6), it follows that the error threshold is
the value of q for which s = 0. That is to say, for q <
qc the mutant phenotype has a selective advantage
over the master phenotype, so s > 0 (Figure 1). It
would therefore be incorrect to say that selection pre-
vails before the error threshold, while mutation pre-
vails beyond it. Instead, the master phenotype is
selected before the error threshold, while the mutant
phenotype is selected beyond this threshold. Thus,
entry into error catastrophe is the selection of the
mutant phenotype because of the selective advantage
provided by its greater mutational robustness. This
phenomenon has previously been called survival of the
flattest [39-41].

2.2. Beyond the error threshold the population evolves to
more mutational robust regions of the sequence space
In the previous section, entry into error catastrophe was
shown to be the result of natural selection acting on the
different effective fitness of the master and the mutant
phenotypes. This can also be observed too by using the
classical extended model [8] equivalent to the previous
one, but in which the mutant sequences are grouped in
ν+1 Hamming classes with respect to the master
sequence, where ν is the sequence length. In this case
back mutation is not neglected, and the system of differ-
ential equations takes the general form:

dx

dt
A Q x Q xA xi

i ii i

j i

ij jj i= + −
≠

∑ 0 (9)

that can be linearized following [2] and then trans-
formed into an eigenvalue-eigenvector problem in the
form of:

W = (10)

The matrix W is given by W = QA-D , where matrices
A and D are diagonal matrices whose elements are the
amplification and degradation factors of the different
Hamming classes, respectively. Matrix Q is the muta-
tional matrix whose elements Qij determine the prob-
ability of obtaining any class i sequence from a class j
sequence. The largest eigenvalue, l, is the mean fitness
of the population at the steady state, and its associated
right eigenvector v is the population distribution in this
state. As this problem is not analytically tractable, even
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Figure 1 Phenotype Fraction vs the selection coefficient (s). The
amplification factors of the master and mutant phenotype are Am =
10 and Ak = 2, respectively. In both cases the degradation factor is
D = 1, and the sequence length is ν = 20. The selection coefficient
is evaluated as in equation 6.
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for small sequence lengths, it was solved numerically
using MATLAB®.
Figure 2 shows that the transitions observed at the

error threshold take place when the selection coefficient
equals zero. This coefficient has been expressed in a
similar way to that of the previous section, and evalu-
ated considering the mutant phenotype as a whole, not
taking into account that it is composed by Hamming
classes.
Beyond the error threshold, the population is deloca-

lized over the whole sequence space. This delocalization
is due to the fact that all the sequences of the mutant
phenotype have the same amplification factor and the
same quality factor, so natural selection ceases to oper-
ate. However, this is an extreme restriction, and no gen-
eral conclusion should be derived from it. When either
the amplification factor or the robustness of some
mutant Hamming classes is changed, the population dis-
tribution beyond the error threshold departs from the
uniform distribution. However, the error threshold is
not necessarily modified by these changes.
We will now study how the population distribution

beyond the error threshold changes when the robustness
of some Hamming classes is modified. As the number of
sequences is an intrinsic property of the classification,
and depends on the Hamming distance with respect to
the master sequence, in order to change the robustness
of each Hamming class, we assume that the quality fac-
tor per digit of each species, qi, depends on its sequence,
as previously done in [48].

In a first approach, the quality factor of each sequence
depends on its Hamming distance with respect to the
master sequence, so the robustness of each Hamming
class can be tuned. By using a truncated mutation land-
scape the quality factor depends on the Hamming dis-
tance in accordance with:

q q k k

q K q k k
k c

k q c

= ≤
= − − >

if

if1 1( )
(11)

where qk is the quality factor of the sequences of the
Hamming class k, and Kq a constant we use to change
the quality factor of the Hamming classes beyond an
arbitrary threshold kc. Figure 3 shows the result for kc =
10. For Kq = 1, then q2 = q1, so the quality factor is the
same for all the sequences, i.e. the classical model. How-
ever, for Kq < 1, then q2 > q1, and the average Hamming
distance of the population at error catastrophe increases
with respect to the homogeneous case (Kq = 1), whereas
for Kq >, 1 then q2 < q1, and the average Hamming dis-
tance at error catastrophe decreases with respect to the
homogeneous case. However, for any Kq, the error
threshold does not change as, at least for kc = 10, the
relative effective fitness of the mutant phenotype as a
whole with respect to the master phenotype is not
affected by the variation in the quality factor. Figure 4
shows the results for the specific case of Kq = 0.1 and
Kq = 3 compared with Kq = 1. As we said before, the
error threshold does not change. On the other hand, the
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Figure 2 Hamming class fraction vs the selection coefficient (s).
The amplification factors of the master sequence, i.e. the zero
Hamming class, is Am = 10, and that of every other Hamming class
Hi is Ai = 2. The degradation factor is the same for all the Hamming
classes and is D = 1. The sequence length is ν = 20. The selection
coefficient is evaluated following equation 6, that is to say
considering the mutant phenotype as a whole, not taking into
account that it is composed by Hamming classes.
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Figure 3 Average Hamming distance at the error catastrophe
when robustness distribution changes. The quality factor of each
sequence depends on the Hamming distance with the master
sequence k, according to qk = q if k ≤ kc and qk = 1 - Kq(1 - q) if k
> kc . In this case kc = 10. Thus, Kq is a parameter that modifies the
quality factor and the robustness of the Hamming classes. (see text
for details). The amplification and degradation factors of the master,
and mutant sequences as well as the sequence length are the same
as in figure 2.
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population distribution at error catastrophe is displaced
to greater or lesser Hamming distances, so the average
Hamming distance beyond the error threshold increases
with respect to the case q1 = q2 (Figure 4b).

2.3. Two competing quasispecies with different
robustness
In previous sections we showed that the entry intro
error catastrophe implies the selection of a flatter phe-
notype when the population confronts a higher muta-
tional pressure. In this section we will consider the
possible relationship between terror catastrophe within a
12 quasispecies and the survival of the flattest between
quasispecies. To study this relationship a simplified
model of two quasispecies, A and B, similar to those
presented in [49-51] to study the survival of the flattest,
has been used. In this model, quasispecies A and B
compete with each other but there is no mutational
flow between them, i.e. a component of a quasispecies is
very unlikely to produce a component of the other qua-
sispecies by mutation. Each quasispecies is made up of a
master phenotype (m), and a mutant phenotype (k). The
four phenotypes have amplification factors AAm, AAk,
ABm and ABk, in each of which the first subscript speci-
fies the quasispecies and the second the phenotype. The
degradation factor, D, is the same for all of them and
equal to zero.
The per digit genotypic quality factor q is also

assumed to be also the same for all of them, but each
phenotype must have a different mutational robustness.
The phenotypic quality factor of each phenotype i is

determined by the expression Q a qi i

~
exp[ ( )]= −1 ,

where ai is an arbitrary parameter inversely related to
robustness [42,52]. Consequently, the master and
mutant phenotypes of quasispecies A have a robustness
inversely related to aAm and aAk, respectively and, in a
similar way, those of quasispecies B have a robustness
inversely related to aBm and aBk.
Taking this into account, it is possible to obtain the

following system of linear differential equations:
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Assuming a constant population size N, the flux term
�0 in these is given by:

0 = − + − + − + −( ) ( ) ( ) ( )A D x A D x A D x A D x

N
Am Am Ak Ak Bm Bm Bk Bk (13)

Figure 5 shows the solution of the model at the steady
state, in the absence of back mutation from the mutant
to the master phenotype (aAk = 0; aBk = 0). In this figure
three regimes, clearly differentiated by two transitions,
can be distinguished. Quasispecies A is dominant in the
first and the third regime, whereas quasispecies B is
dominant in the second. Between these three regimes,
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Figure 4 Changes in population distribution beyond the error threshold for different values of Kq. Part A. Hamming class distribution
beyond the error threshold for different values of Kq. All the distributions have been obtained for q = 0.8. The population for Kq = 1 is the
uniform distribution obtained in classical error catastrophe (see text for details). For a greater or lesser value of Kq, the population is displaced to
nearest or farther Hamming classes, respectively. Part B. Average Hamming distance as a function of 1-q, for different values of Kq. The changes
in Kq does not modify the error threshold, but the average Hamming distance at the error catastrophe is modified as a consequence of the
displacement of the population showed in part A of the figure.
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two “survival of the flattest"-like transitions take place.
The first one at q = 0.9719 and the second one at q =
0.9589 (Figure 5 red and blue line respectively). Of
course, in each regime the population distribution of
each quasispecies changes as the mutation rate varies.
Actually, it is precisely the change in the internal popu-
lation distribution of quasispecies A and B which modi-
fies the result of the competition between both
quasispecies. Although quasispecies A and B are coupled
through competition, their internal dynamics is unaf-
fected by that competition. An analysis of steady states
allows the error thresholds for both quasispecies to be
evaluated. For the specific conditions studied in Figure 5
qcA = 0.9659 and qcB = 0.9539 are obtained. Therefore,
quasispecies A enters into error catastrophe at a value
of q which lies between the values of q of the two “sur-
vival of the flattest"-like transitions. In fact, if quasispe-
cies A can displace quasispecies B at q = 0.9589 (Figure
5 blue line) it is because quasispecies A is in a regime of
error catastrophe, the more robust one, for q ≤ 0.9659.
That is to say, the entry of a quasispecies into a regime
of error catastrophe allows it to outcompete another
quasispecies through a survival of the flattest phenom-
enon. Quasispecies B enters into error catastrophe for q
< qcB, but as the robustness of the mutant phenotypes
of both quasispecies is the same (aAk = aBk = 0), the
mutant phenotype of quasispecies A outcompetes that

of quasispecies B as the amplification factor of the for-
mer is higher.

3. Discussion
3.1. The entry into error catastrophe is an specific case of
survival of the flattest
The aim of this paper has been to show that the transi-
tion into error catastrophe is the result of natural selec-
tion acting on the differences in the trade-off between
replicative ability and mutational robustness, also called
effective fitness. Thus, entry into error catastrophe is a
specific case of survival of the flattest. To show this
more clearly, a minimal quasispecies model that displays
an error threshold was reformulated in section 2.1 in
terms of relative effective fitness and selection coeffi-
cients. Using this new formulation, we showed that the
error threshold is the value of q for which the selection
coefficient, s, equals zero (Figure 1). Therefore the selec-
tion coefficient is positive beyond the error threshold,
which means that beyond that value of q the mutant
phenotype has a selective advantage over the master
phenotype.
Equation 6 shows that the selection coefficient is the

quotient between the effective fitness of the mutant and
the master phenotype. As back mutation has been
neglected, the probability of going from any mutant
sequence to any other sequence of the mutant pheno-
type is unity, so it does not appear in the numerator.
In section 2.2 we showed with the classical extended

model in which sequences are grouped in Hamming
classes that the transitions characteristic of an error
threshold can be observed when the selection coefficient
obtained in the previous section equals zero (Figure 2).
This implies that the use of this formal representation
for the selection coefficient is still valid for the extended
model, when back mutation is taken into account.
Beyond the error threshold, a quasispecies is deloca-

lized over the sequence space in such a way as to pro-
duce a uniform population distribution. This is hardly
surprising, as the mutant phenotype comprises all but
one of the sequences of the sequence space, so it is
effectively flat both with respect to the amplification fac-
tor and the quality factor. However, the mutational
robustness of some mutant sequences can be modified
by considering a quality factor that depends on Ham-
ming distance. In this case, a uniform distribution is not
obtained beyond the error threshold, and the population
evolves in such a way that the regions of the mutant
phenotype with a higher quality factor are more popu-
lated. That is to say, a population evolves to regions
with a greater mutational robustness, as has been shown
previously for other similar situations [53,54]. A remark-
able result is the decoupling between the value of the
error threshold and the delocalization in error
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Figure 5 Population fraction for two competing quasispecies
as a function of genotypic mutation rate. The figure shows the
population fraction obtained from equations 12 at the steady state
as a function of genotypic mutation rate. Colored lines show the
frontiers between the three phases in which alternate quasispecies
dominate. In phase I and III, quasispecies A is selected, whereas in
phase II, quasispecies B is selected. The amplification factors of
quasispecies A are AAm = 10 and AAk = 6. Those of quasispecies B
are ABm = 8 and ABk = 5. The value of ai, which determines the
effect of the genotypic mutation rate on the phenotypic mutation
rate are aAm = 15, aAk = 0, aBm = 7, and aBk = 0.
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catastrophe. Although the population distribution
changes when the mutational robustness of the Ham-
ming classes is modified, the error threshold is not
altered (Figure 4b). This can be explained by the fact
that changing the robustness distribution of the Ham-
ming classes does not modify the effective fitness of the
mutant phenotype as a whole, so the error threshold is
not affected. As we will discuss below, this is not the
case when lethality is introduced.

3.2. Revisiting previous results
Error catastrophe and error thresholds have been exten-
sively studied since they were first postulated in 1971
[1]. In this section, some previous results obtained in
different papers on the error threshold and error cata-
strophe will be reinterpreted in terms of natural selec-
tion and survival of the flattest.
3.2.1. Revisiting the effect of lethality
We have previously studied the effect of lethality on the
error threshold, and shown that an increase in lethality
decreases the error threshold, i.e. the quasispecies enters
into error catastrophe at greater mutation rates [55]. If
we interpret this result as placing an upper limit to the
mutation rate that a quasispecies can tolerate before los-
ing its information, or before extinction, this result is, at
least, counterintuitive. However, if lethality is considered
within the framework of the minimal model presented
in section 2.1, i.e. in terms of selection coefficients, the
result obtained makes much more sense. The introduc-
tion of lethality according to the scheme presented in
[55] decreases the effective fitness of the mutant pheno-
type by both decreasing the number of productive
sequences and the mutational robustness of that pheno-
type. The mutant phenotype therefore becomes less
competitive, with the result that the error threshold
decreases. This is reflected in the selection coefficient,
which would now depend on the quality factor, q, on
the sequence length, ν, and on the number of lethal
positions in the sequence, n.

s q n
q

q

A

A
k

n

m

( , , ) = − 1 (14)

The same paper studied the changes in the error cat-
astrophe distribution caused by the introduction of
lethality. Briefly, the introduction of lethality decreases
the average Hamming distance at the error threshold,
which subsequently increases linearly with the muta-
tion rate. As a consequence, the uniform distribution
is only obtained at q = 0.5. This result is analogous to
the result obtained in section × of this paper, in which
the effect of the quality factor that depends on the
Hamming distance was considered. The introduction
of the lethality scheme used in [55] implies that

Hamming classes that are further away from the mas-
ter sequence have more lethal sequences, and therefore
a lesser effective fitness: as both robustness and repli-
cative ability decrease. This means that Hamming
classes with fewer lethal sequences have a selective
advantage, so that the population distribution is dis-
placed to lower average Hamming distances, once
again reproducing previous results [53,54]. However,
unlike the case when the quality factor depends on the
Hamming distance, the introduction of lethality
decreases the error threshold, as the fitness of the
mutant phenotype as a whole is changed.
3.2.2. Revisiting the effect of neutrality and canalization
Since error threshold is a selective transition to more
robust phenotypes when the mutation rate is increased,
we will study in this section how error threshold is
affected by considering neutrality and/or canalization in
the master and mutant phenotypes. For the sake of
clarity, canalization is considered to be the existence of
different genotypes that produce the same phenotype
[56], and neutrality to be the existence of different phe-
notypes with the same fitness [57].
As far as we aware, the first account of neutrality in

the quasispecies theory was given by Eigen and co-work-
ers [58], who introduced a gene segment with no influ-
ence in the replicative ability of the self-replicating
species. As mutations in this segment do not affect fit-
ness, the segment can vary freely and it is not taken
into account in the maximum length allowed by the
error threshold. In our opinion, this points to the exist-
ing relation between natural selection and the error
threshold.
The introduction of canalization in the master phe-

notype through neutral networks led the introduction
of the distinction between genotypic and phenotypic
error thresholds [28]. When the master phenotype is
composed of more than just one sequence, the genetic
information of the master phenotype is lost for any
value of mutation rate different from zero, beyond
which the population wanders through the master
neutral network [28,59]. It is therefore necessary to
define a phenotypic error threshold for which the
master phenotype is lost, and the population begins a
random walk through the phenotype space. However,
this stricter definition does not change the considera-
tions made in the previous section, namely, that a
phenotypic error catastrophe has no influence at a
higher selective-evolutionary level, as almost all those
phenotypes have the same or almost the same fitness.
In fact, the very idea of the genotypic error threshold
reinforces this conclusion, as the loss of the genetic
information of the master phenotypes has not critical
consequences for their existence or evolutionary
capacities.
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Finally, it is possible to define a selection coefficient
analogous to the one obtained in section × when neu-
trality is introduced in the master phenotype.

s
A Q

A Q

k k

m m

= −
~

~
1 (15)

When, following [31], neutrality is introduced by con-
sidering a fraction of neutral substitutions, a, in all pos-

sible single substitutions, then Q q qm = + −{ ( ) }1   ,

where ν is the sequence length and q the per digit qual-
ity factor. If, additionally, back-mutation to the master
phenotype from every other phenotype is neglected,

which means that Qk = 1 , the selection coefficient

results in:
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which is equal to zero at the error threshold [31]:
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Equation 16 shows that the effect of increasing the
neutral network of the master phenotype is to increase
its mutational robustness, and therefore the effective fit-
ness of the master phenotype, at higher mutation rates.
As a consequence the mutant phenotype outcompetes
the master phenotype at a higher mutation rate than in
the case with no neutrality, so error threshold decreases
[31,59,60].
3.2.3. Revisiting multiple error thresholds
Several papers have described the existence of multiple
error thresholds, also known as error cascades, in com-
plex fitness landscapes [18,61]. In point of fact, this phe-
nomenon had probably been observed previously,
although it was not identified as such, and was instead
identified as either intermediate regions between high
replication accuracy regions and error catastrophe [11]
or as partial “delocalization transitions” to flatter regions
of the sequence space [21].
From the point of view of the survival of the flattest

and natural selection, the appearance of multiple error
thresholds is just a consequence of the existence of mul-
tiple phenotypes with different trade-offs between repli-
cative ability and mutational robustness [18]. As the
effective fitness of these different phenotypes can change
differently with mutation rate, natural selection can
induce several consecutive transitions between them.

Actually, error cascades have been previously related
with survival of the flattest [20,61].
Finally, the existence of multiple error thresholds

shows that delocalization over a given region of the
sequence space is essentially dependent on the pheno-
type’s degeneration. Therefore, delocalization can take
place over the whole sequence space, or just over some
limited regions corresponding to the neutral network of
a given phenotype, as in the case of the so-called geno-
typic error catastrophe commented above.

3.3. Error catastrophe, survival of the flattest, and levels
of selection
The main purpose of this paper has been to show that
the so-called entry into error catastrophe is a specific
form of survival of the flattest, that is to say: it is the
consequence of natural selection acting in systems of
self-replicating species at high mutation rates. As they
are essentially equivalent phenomena, and thus have the
same cause and features, we propose differentiating
between them by considering that they refer to the two
different levels of selection that appears in quasispecies
models. The first selection level is that of individual
self-replicating species, grouped in phenotypes, which,
through selection and mutation, determine the popula-
tion distribution of the quasispecies. The second is a
higher level in which some quasispecies can compete
with others, through their emerging biological fitness
derived from the interaction of their components [26].
Therefore, we propose to use the term “survival of the

flattest” to refer to situations in which two quasispecies
compete, and there is no mutational coupling between
them. This is either because the number of mutations
between them implies that the possibility of obtaining
one from the other in a reasonable time is negligible
[39,62], or because of structural or functional assump-
tions that are translated into “replicative isolation” in
the model [40-42,49]. On the other hand, entry into
“error catastrophe” can be regarded as a selective transi-
tion resulting from the competition between two or
more mutationally coupled phenotypes within the same
quasispecies, each one with a different amplification fac-
tor and/or mutational robustness, in which a more
robust phenotype displaces partially or totally another
phenotype with more replicative ability but less
robustness.
The study of the system of differential equations pre-

sented in section 2.4 shows that the changes produced
by natural selection in the internal population structure
of a quasispecies, i.e. entry into error catastrophe, can
modify the result of natural selection on the immedi-
ately higher level of selection, that of competition
between quasispecies. In fact, it can be said that entry
into error catastrophe induces a survival of the flattest.
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3.4. ¿Survival of the flattest vs. survival of the fittest?
At a metaphorical level, survival of the flattest and survi-
val of the fittest are often used to denote two completely
different concepts [40,41,49,63]. We think that this is
confusing, and can even give rise to serious misunder-
standings. We do not believe that the term “survival of
the flattest” should be discarded, but neither should it
be used to signify the opposite of “survival of the fittest”.
We think it is more accurate to differentiate between
“selection for replicative speed” and “selection for muta-
tional robustness” [41] when comparing both processes.
This differentiation stresses that natural selection always
promotes selection of the fittest. The point is that when
the mutation rate is small, the fittest entity is the entity
with the greatest replicative ability, but when the muta-
tion rate is high enough, the fittest entity could be one
with the greatest mutational robustness. In the latter
case, the fittest entity is the fittest because it is the flat-
test. Thus, mutational robustness should be regarded as
another component of biological fitness, at the same
level as the replicative ability, expressed in the amplifica-
tion factor Ai. Accordingly, mutational robustness may
play a key role in determining the effect of natural selec-
tion at high mutation rate conditions [40]. This point
can be seen more clearly in section 2.1. when, instead of
the intrinsic replicative ability, Ai, the product of the
replicative ability and mutational robustness (the effec-
tive fitness) are compared, and the transition to error
catastrophe arises naturally as a result of natural selec-
tion acting on the difference of fitness.

3.5. Information crisis? What information crisis?
As briefly commented in the introduction, error cata-
strophe has been related either to an information crisis
[1,6,16,26,29], or to a breakdown of evolutionary adapta-
tion [2,22,28]. In light of the results and interpretations
presented in this paper, we think that is quite inaccurate
to speak of any kind of crisis beyond the error
threshold.
The so-called “information crisis” beyond the error

threshold sometimes is associated to the loss of the
master sequence [1,26,29], whereas in other cases it is
associated to the delocalization over the whole sequence
space [2]. When the quasispecies crosses the error
threshold, information is said to melt, suffering a phase
transition [6,16,26,64]. As Hermisson et al [13] have
shown, both phenomena coincide for the single-peak
landscape, but not for other landscapes. In any case,
neither the delocalization beyond the error threshold
nor the loss of the master sequence can be associated to
a critical loss of information.
In the first place, as Eigen has shown, natural selection

implies displacements in the ‘information space’, which
can take the form of phase transitions [62,64]. A phase

transition is a critical phenomenon, but it is critical
because of some physico-mathematical characteristics of
the transition and not necessarily because of the effects
it produces. The error threshold shows a phase transi-
tion for collective order parameters such the consensus
sequence [11,16], but not, for example, for the average
fitness of the population, whose value does not greatly
vary at the error threshold, although its dependence on
mutation rate does [13]. Secondly, although application
of the concept of “information” to biology can be very
useful, it does have its limitations. Delocalization beyond
the error threshold causes an “information melting”, but
only at the symbolic level (i.e. the genotype), the one to
which the mathematical theory of communication can
be applied [65]. However, as all the mutant sequences
can be grouped in the same phenotype, and with the
same fitness, the symbolic delocalization has no critical
consequences at the evolutionary, i.e. biological, level.
As a matter of fact, taking the information metaphor
further, it could be said that this “symbolic melting” has
no consequences at higher informational levels: neither
semantic (the meaning, i.e.: the phenotype) nor syntactic
(relation between meanings or phenotypes).
Finally, the loss of the master sequence obviously

implies the loss of the information contained in it. How-
ever, any natural selection process implies changes in
the informational characteristics of the population.
Obviously, if the result of natural selection is the disap-
pearance of a given phenotype of the population, that
implies an information loss, but, at the same time, it
implies an increment in biological fitness. Again, no cri-
tical consequence can be expected.
A similar reasoning can be applied to the idea of a

“breakdown of evolutionary adaptation” [22,28]. As a
result of natural selection, entry into error catastrophe
does not imply the “breakdown of evolutionary adapta-
tion” but, on the contrary, the adaptation to higher
mutation rates by increasing the mutational robustness
of the population. If there is no adaptation beyond that
point it is because the population has reached the most
adapted state allowed by the model.
In the specific case of the single-peak fitness land-

scape, entry into error catastrophe would be the most
extreme case of selection for mutational robustness
within a quasispecies. On the one hand, there is a mas-
ter phenotype which, as it is made up of a single geno-
type, the master sequence, has null mutational
robustness. On the other hand, there is a mutant pheno-
type which, as it is made up of the rest of the 2ν -1 pos-
sible sequences, has a virtually infinite mutational
robustness (and thus, aiK = 0 in section 2.3). When con-
fronting a mutational pressure, an infinite mutational
robustness is probably one of the best adaptations that a
system can reach. Although the mean fitness is
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insensitive to further increases in mutation rate beyond
the error threshold, the condition of which Hermisson
et al. [13] have termed a “degradation threshold”, this
insensitivity results from the fact that the populations
has reached an infinite robust phenotype, i.e. the fittest
phenotype, which means that calling this phenomenon a
“complete mutational degradation” is, at the least,
misleading.

3.6. Error threshold and RNA viruses
The error threshold concept acquired great importance,
among other reasons, when the quasispecies concept
was applied to RNA viruses [66], as it established a pos-
sible new antiviral mechanism which was radically dif-
ferent to those which had been studied before [36]. In
fact, the error threshold concept inspired a series of
experimental papers which have demonstrated the possi-
bility of extinguishing some RNA viruses using muta-
gens, in a process called lethal mutagenesis. However,
several authors [18,19] have recently called into question
the idea that lethal mutagenesis is a result of entry into
error catastrophe, correctly pointing out that error cata-
strophe is a genetic-evolutionary process while extinc-
tion is a demographic process [24]. In this paper we
have shown that error catastrophe can be regarded as a
particular case of natural selection for mutational
robustness within a quasispecies. Consequently, that
conclusion is reinforced, i.e. entry into error catastrophe
cannot explain viral extinction due to increased muta-
genesis. The quasispecies model, however useful it has
been for the study of RNA viruses [3,67,68], is still only
an initial approach to complex intra- and extracellular
viral dynamics.

Conclusions
The main conclusion of this paper is that the entry into
error catastrophe is a specific case of survival of the flat-
test acting on phenotypes which differ in the trade-off
between replicative ability and mutational robustness. In
fact, the entry into error catastrophe takes place when
the mutant phenotype acquires a selective advantage
over the master phenotype. Moreover, beyond the error
thresholds, changing the quality factor of some
sequences modifies the population distribution at the
error catastrophe, displacing it towards the flatter
regions of the mutant phenotype. However, the value of
the error threshold is not altered by these changes in
the mutant phenotype as it depends on its effective fit-
ness as a whole. Both neutrality and some lethality
schemes increase the effective fitness of the master phe-
notype with respect to the mutant phenotype, so error
threshold decreases. Taking this into account the notion
of crisis information beyond error threshold does not
make sense.

As both entry into error catastrophe and survival of
the flattest are caused by natural selection when muta-
tion rate is increased, we propose differentiating
between them by the level of selection at which natural
selection act. Thus, we propose to use the term “survival
of the flattest” to refer to situations in which two quasis-
pecies compete, and there is no mutational coupling
between them; and the term “entry into error cata-
strophe” as the displacement of a phenotype with high
replicative ability but less robustness by another flatter
phenotype, when they are mutationally coupled and
within the same quasispecies.
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