
 International Journal of 

Molecular Sciences

Review

Beyond What Your Retina Can See: Similarities of
Retinoblastoma Function between Plants and
Animals, from Developmental Processes to
Epigenetic Regulation

Estephania Zluhan-Martínez 1,2, Vadim Pérez-Koldenkova 3 , Martha Verónica Ponce-Castañeda 4,
María de la Paz Sánchez 1, Berenice García-Ponce 1 , Sergio Miguel-Hernández 5,
Elena R. Álvarez-Buylla 1,* and Adriana Garay-Arroyo 1,*

1 Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología,
Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria,
UNAM 04510, Mexico; ezluhanm@gmail.com (E.Z.-M.); mpsanchez@iecologia.unam.mx (M.d.l.P.S.);
bgarcia@ecologia.unam.mx (B.G.-P.)

2 Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000,
Coyoacán 04510, Mexico

3 Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del
Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
vadim.perez@imss.gob.mx

4 Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI,
Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; vponce@ifc.unam.mx

5 Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias
Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda,
Manuel Stampa 07738, Mexico; sergio.mi.encb@gmail.com

* Correspondence: elenabuylla@protonmail.com (E.R.Á.-B.); agaray@iecologia.unam.mx (A.G.-A.)

Received: 28 May 2020; Accepted: 7 July 2020; Published: 12 July 2020
����������
�������

Abstract: The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety
of organisms. Experimental analysis of pRb’s functions in animals and plants has revealed that this
protein participates in cell proliferation and differentiation processes. In addition, pRb in animals
and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the
possibility that analogies exist not only between functions carried out by pRb orthologs themselves,
but also in the structure and roles of the protein networks where these proteins are involved. Here,
we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the
regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities
that exist between the composition of such networks in plants and animals.

Keywords: retinoblastoma protein; cell proliferation; cell differentiation; plants; animals; cell cycle;
stem cells; epigenetics; DNA damage; morphogenetic regulatory networks

1. Introduction

Eukaryotic organisms evolved from a common unicellular ancestor, from which they diverged 1500
million years ago [1–3]. Testimonies of this ancient kinship are some processes and genetic components
that have been preserved throughout evolution, along with many others which subsequently emerged
exclusively in plants or animals [4–6]. Interestingly, it has been shown that plants and animals evolved
multicellularity independently, but unlike animals, plants have an extensive post-embryonic growth
and development, that is highly influenced by the environment [7,8]. However, in both multicellular
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organisms, morphogenesis depends on a delicate balance between cell division and differentiation
rates. In animals, when this balance is lost, it can cause tumors and cancer, not seen during most of
plant development. Nonetheless, Arabidopsis thaliana (hereafter Arabidopsis), the most studied model
plant, has been shown to be an important model system to understand basic regulatory mechanisms
involved in human diseases [9–11]. For example, Arabidopsis has homologous genes for 70% of
those involved in human cancer. Interestingly, a higher percentage than that found in the genome of
Drosophila melanogaster or of Saccharomyces cerevisiae [9,10]. Hence, Arabidopsis has already been used
as a screening tool to evaluate the action and efficacy of some drugs to treat human cancer and other
diseases [11–13].

Retinoblastoma (RB1) is a highly conserved gene, that encodes the so-called tumor suppressor
protein, that regulates different developmental processes of phylogenetically distant organisms.
The name of this gene comes from the retinoblastoma illness, a rare intraocular malignant tumor that
has its onset during early childhood. As determined by karyotyping, this disease is associated with
losses in chromosome 13, which contains the RB1 gene [14–16]. RB1 was identified by positional cloning
and after subsequent molecular analysis, it became known as the first tumor suppressor gene, giving
robust evidence for the genetic predisposition of cancer development in some cases [17,18]. After its
discovery, alterations in this gene were described in other malignant tumors such as osteosarcomas,
cervical cancer, prostate carcinoma, small cell lung cancer, and some forms of leukemia [19,20]. RB1 is
an essential gene whose best studied function is the regulation of the cell cycle transition from G1 to
S phase through formation of a protein complex with transcription factors of the E2F-family; that are
regulated by the Retinoblastoma protein (pRb) multiple phosphorylation states. In many cancer types,
an altered regulation of pRb, like permanent hyperphosphorylation that promotes pRb dissociation
from the complex with E2F, leads to an unregulated cell proliferation [21,22]. Moreover, altered
regulation of the pRb pathway is considered one of the most common traits in different types of
cancer [23,24], and several studies have proposed targeting pRb regulation pathway as alternative
treatments [25–27]. In fact, cyclin dependent kinases (CDKs), the kinases that phosphorylate pRb are
commonly deregulated in many malignant tumors. From the therapeutic standpoint, pRb cannot
be a target of drugs, however, CDKs are therapeutic targets, and several generations of non-specific
cell cycle CDKs inhibitors have been under clinical evaluation as cancer treatments with mixed
results. More recently specific cell cycle CDK4/6 and transcriptional CDKs inhibitors may become
alternative therapeutic strategies under current clinical evaluation [28–30]. In summary, a more
thorough understanding of pRb’s developmental functions could help find new efficient treatments
for different cancer types.

In this review, we will focus on how the protein encoded by the RB1 gene, and its plant ortholog
RETINOBLASTOMA-RELATED (RBR), participates in important developmental processes such as
cell cycle control, cell differentiation, as well as in the homeostasis of stem cell/pluripotency, that are
cellular processes shared by plants and animals. First, we analyze the structure of the RB/RBR proteins,
secondly, we describe their interaction with proteins that participate in different developmental
processes and regulatory networks. Finally, we analyze their participation in the epigenetic and
chromatin structure regulation, which is important for different developmental decisions. Interestingly,
many of the protein interactions involving RETINOBLASTOMA, as well as the overall structures of
the regulatory networks in which this protein participates are similar between plants and animals.
This suggests that once such regulatory networks were assembled during evolution, the key role of
this protein as an integrator of internal developmental cues remained functionally constrained among
eukaryotic organisms’ evolution.

2. Structure of the Retinoblastoma Protein

In humans, Retinoblastoma susceptibility gene is a member of a small gene family that includes
RB1 (p105/pRb), RBl1 (p107/pRBL1), and RBl2 (p130/pRBL2), whose protein structure are very similar,
and that share some overlapping functions [31–33]. From the three family members, RB1 has been the
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most studied gene since it participates in tumor onset and progression, while RBl1 and RBl2 rarely
display mutations in human retinal cancer [34,35].

The human Retinoblastoma protein (pRb) consists of 928 amino acids and includes three distinctive
domains: the N-terminal structural domain (RbN), the so-called “pocket” (RbP) domain, the C-terminal
domain (RbC), and the non-structured regions between them (Figure 1A). The pocket domain includes
two highly conserved subdomains (A and B) called cyclin folds, which are formed by two structural
nuclei, each conformed by three helix bundles with two additional helices packing at the sides in
each one. These subdomains are required to mediate interactions with other proteins like several
oncoproteins and transcription factors (TFs) [34,36–38]. According to current interaction databases 322
proteins interact with human pRb, the E2F TFs being the best characterized ones (Figure 1A) [39,40].
The interaction of pRb with many other proteins depends on the pRb structure and its post-translational
modifications, which determine this protein’s function in different developmental processes [40,41].
Many of the pRb-interacting proteins contain the motif ‘LxCxE’ (Leu-X-Cys-X-Glu where X stands for
any amino acid), essential to bind with the Pocket B subdomain of pRb (Figure 1A). Examples of such
proteins are D-type cyclins that are cell cycle regulators, the histone deacetylases 1 and 2 (HDAC1/2);
several viral proteins like SV40 large T antigen (SV40 T-ag) and two viral proteins that stimulate the cell
cycle progression in infected cells through pRb inactivation: Human Papillomavirus E7 (HPV E7) and
Adenovirus early region 1A (Ad5 E1A) [38,42–44]. The RbN domain is also composed of two cyclin folds
very similar to those found in the “pocket” domain. The RbN domain can physically interact with the RbP
one and deletion of this domain abrogates the regulation of the pRb/E2F complex [45]. Finally, the RbC
region, that includes approximately 150 residues, is intrinsically disordered and has been shown to be
required for the interaction between pRb and the E2F/DP complex [36,46]. The three pRb domains are
connected by sequences that confer flexibility to the protein and contain sites that can be subjected to
post-translational modifications, that play important roles in the regulation of pRb activity [47].

The post-translational modifications can assist or avoid occurrence of other modifications that,
together, can modulate pRb protein interactions and function and create a diversity of biological
activities, making this protein a key node in several regulatory networks. In total, human pRb has 14
phosphorylation sites [37,40], two acetylation sites [43,48], six methylation sites [49–51], and it can also
be modified through ubiquitination or sumoylation [52–54] (Figure 1B). Studies on the structure of pRb
have revealed that phosphorylation changes pRb structure and promotes new interactions with other
proteins. For example, phosphorylation of residues S608/S612, localized between subdomains A and B of
the Pocket domain, induces a new conformation of the pocket domain and its interdomain, that partially
prevents E2F binding to pRb. Phosphorylation of residue T373 promotes the binding of the RbN domain
to the Pocket domain. The result is a globular structure of pRb that can no longer interact with E2F.
In addition, phosphorylation of the S788/S795 and T821/T826 residues, affects the interactions of the RbC
domain with the E2F/DP complex [45–47,55,56]. Furthermore, acetylation and methylation sites are
close to the carboxyl-terminal of the protein. Introduction of these post-translational modifications
depend upon different signals such as pRb localization, DNA damage, and cell differentiation [48,51,57].

The RB ortholog in plants was identified approximately a decade after the animal gene was
discovered: RB1 gene was first described in humans between 1986 and 1989 [17,18,58] and the first plant
orthologous RB1 cDNA (RBR), was first identified and cloned from maize in 1994 (ZmRBR) [59–61],
then in tobacco (NtRBR) [62] and then in Arabidopsis (AtRBR) [63]. Afterwards, there have been
numerous reports characterizing RBR orthologs in different plant species. Intriguingly, monocotyledons
seem to have various RBR paralogs while dicotyledons have only one [64]. As a dicot plant, Arabidopsis
carries a single copy of the RBR gene displaying ≈35% sequence similarity within the pocket domain
with respect to the human pRb. Interestingly, and even though the function of the N-terminal domain
has not yet been characterized, this region is highly conserved between pRb from mammals and the
RBR from Zea mays and Arabidopsis [65–67], suggesting that this region could also be involved in
a conserved function in plants and animals. The Arabidopsis RBR (AtRBR) protein contains 1013
amino acids with the same modular structure of human pRb with putative phosphorylation residues.
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The role of four of them, located in the protein’s inter-domains, have been experimentally tested
(Figure 1B) [68–70]. Interestingly, we observe that the S685 phosphorylation site in AtRBR is conserved
in the same interdomain, between RbP A and RbP B subdomains, found in pRb (S608/S612), suggesting
a conserved function in mediating the interaction with E2F TFs in animals and plants (Figure 1B).
Additionally, human antibodies for human phospho-pRb protein in S807/811 can bind to RBR of Medicago
sativa and Arabidopsis [71,72]. Even though the specific regulatory functions of these sites are still
unknown, it has been shown in plants that cyclin-dependent kinases also phosphorylate RBR to
regulate cell cycle through its inactivation and release of E2F, similar to what it has been described in
humans [73,74].
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Figure 1. Retinoblastoma protein structure. (A) Representation of the human Rb protein structure with
the domains RbN (blue), Pocket (RbP), with the RbP A (purple) and B (grey) subdomains interacting
with an E2F TF (red), the RbC domain (orange) and the inter-domains (black lines) are also shown.
The “P” inside a circle represents three examples of phosphorylation sites that change the structure of
the protein. The position of the LxCxE cleft that allows Retinoblastoma protein (pRb) to interact with
different proteins is also shown. (B) Comparison of the domains of human Rb protein (blue foreground)
and Arabidopsis RBR protein (green foreground) and their reported post-translational modifications.
Phosphorylation sites (P) are shown in black, methylation sites (M) in red, acetylation sites (A) in
orange, and sumoylation sites (S) in pink.

Like in humans, in plants there are viral proteins (e.g., RepA from geminivirus) that also have the
ability to interact with the pocket domain of RBR [61,75,76]. This suggests that the protein–protein
interaction between pRb/RBR with specific viral proteins is a viral mechanism that controls cell
cycle progression both in plants and animals. Such viral–eukaryotic cell interaction could have been
established before plant and animal divergence, or it has evolved independently.

pRb is also found in unicellular organisms such as the algae Chlamydomonas reinhardtii,
the choanoflagellate Monosiga brevicollis, and the amoeba Dictyostelium discoideum, suggesting that it
was already present in the common eukaryotic ancestor before the separation of animal and plant
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lineages, before they diverged. In addition, at least one copy of RB has been identified in species from
each of the eukaryotic supergroups [68,77].

3. Cell Cycle Control through Retinoblastoma

The cell cycle is a well-studied process essential for the growth and reproduction of all eukaryotic
organisms. It assures the faithful duplication of the genetic material and its distribution between two
daughter cells [78,79]. The cell cycle has two major phases: Interphase and Mitosis phase. Additionally,
in the interphase other three stages can be distinguished: G1, S, and G2. Many of the components that
regulate these phases and the transition between them, are conserved among different organisms [80,81].
The availability of growth factors, nutrients, and intrinsic developmental signals determine whether a
cell remains in a quiescent state, when the cell does not divide (G0), or transits from phase G1 to S,
during which the genetic material is duplicated to later divide. In humans, this transition is under the
control of the pRb/E2F pathway, that regulates the transcription of genes encoding proteins involved
in DNA synthesis [22].

The G1/S transition is one of the main regulation checkpoints of the cell cycle, being the
“commitment point”, also known as the “restriction point” in animals, the one that determines the
cell’s commitment to engage proliferation in a way independent from environmental signals [82,83].
Therefore, at this point the cell integrates environmental and intrinsic signals to prepare its nucleus to
start cell division. A deregulation of this transition in humans can lead to the generation of tumors
and cancer [22,84,85]. pRb hypophosphorylated acts as a negative regulator of cell cycle progression
through its interaction with the E2F proteins. The heterodimer keeps the chromatin in a closed
conformation in the regulatory regions of E2F-regulated genes [22,86]. The E2F family includes
the transcription factors E2F1, E2F2, and E2F3a, which typically promote transcription and E2F3b,
E2F4-E2F8 that are associated with transcriptional repression. However, it has been reported that,
depending on the developmental stage, some E2Fs, like E2F1-4, can function both as activators or
as repressors of transcription [87–89]. E2F1-6 members can heterodimerize with the Dimerization
Partner (DP) proteins, although this interaction is not always required for transcriptional activation [90].
E2F7 and E2F8 are independent of DP and these TFs are also different to other E2Fs because they
possess two DNA-binding domains [87,91,92]. The hypophosphorylated pRb form binds and inhibits
activating E2F1-3, whereas E2F4 and E2F5 bind to pRBL1 (p107) and pRBL2 (p130) at the promoters of
target genes, to repress transcription [22,93]. In addition, E2F1-3 carry a nuclear localization signal,
whereas E2F4 and E2F5 lack it, and apparently rely on pRBL1 and pRBL2 for their nuclear translocation.
On the other hand, E2F6-8 lacks the sequences required to bind with pRbs [94–96]. At the same
time, the expression of different E2Fs is itself subjected to spatiotemporal regulation during cell cycle
progression and different stages of development [97]. Moreover, when the pRb/E2F interaction is
disrupted by loss or reduction of pRb, a high rate of cell proliferation is observed, and this generally
triggers cancer [98].

pRb phosphorylation by cyclin/CDKs (cyclin-dependent kinases) complexes changes the pRb
protein structure and its interactions with other proteins, inducing the release of E2F. For instance,
this occurs in human cells when cyclin type D or E (CYCD/E) associate with cyclin kinases 4 or 2
(CDK4/2), respectively (Figure 2A) [22,99,100]. When pRb phosphorylation is altered, for example by
overexpression of CYCDs, or by a miss regulation of CDKs, or by a disruption of the LxCxE-binding
function the cell cycle is altered [101–103].

In humans, pRBL1 and pRBL2 participate in the repression of genes when cells are in the
G0 quiescent state, through a complex called DREAM (DP-Rb-E2F-MuvB), that coordinates the
repression of genes during quiescence and also the periodic gene expression during the G1/S and G2/M
transitions [104,105]. DREAM is a multimeric protein complex that in humans is composed of DP
(DP1-DP3), pRBL1 or pRBL2, E2F proteins (E2F4 and E2F5), and the subcomplex MuvB (Multi vulval
class B). The MuvB subcomplex acts as a repressor when it is part of the DREAM complex, and is
composed of LIN (LIN9, LIN37, LIN52, LIN54) and RBBP4 proteins. When pRb is phosphorylated,
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the DREAM complex is disassembled and the MuvB subcomplex can associate with TFs such as B-Myb
(Myb type) and Fox-M1 (Forkhead box protein M 1), to promote the regulation of gene expression
and the transition from quiescence to proliferation (Figure 2A) [104,106,107]. This complex is also
conserved in phylogenetically distant organisms, but some of its components can vary among species,
as in Arabidopsis compared to mammals (see below).
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Figure 2. Interaction of the Retinoblastoma protein involved in cell cycle regulation of humans and
plants. (A) pRb- and pRBL1/2-containing protein complexes from humans, formed at different stages
of the cell cycle (G0/G1; G1/S; G2/M). (B) Arabidopsis protein complexes formed at different stages of
the cell cycle (G0/G1; G1/S; G2/M), including AtRBR as a component. (C) Maize protein complexes
formed at different stages of the cell cycle (G0/G1; G2/M), involving the ZmRBR proteins (RBR1 and
RBR3) as components. Similar components in humans, Arabidopsis, and maize are displayed using
the same colors: Rb proteins (blue), E2F transcription factors (TFs) (green), DP (grey), cyclins (CYC),
and cyclin-dependent kinases (CDK) (orange), Muv complex proteins (red and pink), Myb TFs (purple),
FOXM1 TF (pink).

At about the same time that the pRb ortholog in plants was discovered, homologs of other
components of the animal’s cell cycle regulatory machinery were identified and characterized in corn,
as well as in Arabidopsis and Medicago sativa (alfalfa) [61,108–111]. In these plants, it was shown that
the phosphorylation of RBR by the CDKA/CYCD protein complex regulates cell cycle progression, as it
occurs in humans (Figure 2B) [73,74].

In Arabidopsis, the null mutant plants of AtRBR are gametophytic lethal because of supernumerary
nuclei alterations in the divisions at late stages of female gametogenesis; whereas the male gametophyte
(pollen) contains multiple sperm cells [112,113]. Therefore, in order to study the function of RBR
function of Arabidopsis and maize, either its transcript accumulation has been reduced by RNAi or
conditional repression has been employed. In addition, protein competence for RBR binding, has also
been used to address the role of RBR in cell proliferation [114–117].

In monocots, like rice, wheat, barley, and sugarcane, at least two different RBR types are present,
RBR1 and RBR3 [64], although maize carries four ZmRBR genes: ZmRBR1, ZmRBR3, and two paralogs,
ZmRBR2 and ZmRBR4 [118,119]. ZmRBR1 is constitutively expressed, and its protein interacts with
E2F and with a HDAC (ZmRpd3I) that lacks the characteristic LxCxE motif. Besides, the two paralogs,
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ZmRBR1/2, negatively regulate cell cycle as it occurs in humans and Arabidopsis (Figure 2C) [119–122].
In addition, ZmRBR3/4 transcripts accumulate in mitotic tissues from the endosperm. Recently, high
levels of ZmRBR3/4 were found in tumor-like formations (induced by the fungus Ustilago maydis)
from maize leaves [118,123]. Interestingly, the protein complex ZmRBR3/4/E2F has a unique role
not observed in other plants or animals: high levels of ZmRBR3/4 in complex with E2F promotes
the expression of genes involved in DNA replication and cell cycle progression; contrary to what
has been reported for overexpression of pRb and AtRBR (Figure 2C) [118,119,123,124]. Besides,
ZmRBR3/4 is negatively regulated by the ZmRBR1-E2F complex; as in lines expressing RepA, which
inhibits ZmRBR1, ZmRBR3 is upregulated, suggesting a compensatory mechanism to ensure cell cycle
progression [118,125]. This mechanism has also been observed in undifferentiated germline cells in
which the absence of pRb is compensated by pRBL1 (p107) to maintain the cell’s quiescent state [126].

The conservation in plants and animals of the “restrictions point” and of key cell cycle regulators
like Cyclin-CDKs and RB/E2F, suggests that the common ancestor of these two groups of organisms
already had these components. Interestingly, there is a different number of genes encoding for each
cell cycle protein suggesting the emergence of different and novel lineage-dependent proteins between
plants and animals [78]. For example, it is known that Arabidopsis has 10 genes that code for cyclin-D
(CYCD) classified into seven subtypes [127,128], while in humans there are only three [129]. In contrast,
nine E2F are found in humans (three activators and six repressors), and only six in Arabidopsis.
Of these, AtE2Fa functions as activator, AtE2Fb functions either as an activator or repressor, depending
on the plant developmental stages; E2Fc is a repressor; and the other three members of this family
(E2Fd/e/f) are atypical since they have a duplicated DNA-binding domain, do not heterodimerize
with DP and lack the trans-activating and Rb pocket-binding domains, and thus resemble E2F7/8 in
animals [130–133]. Finally, some components of the cell cycle regulatory machinery are plant-specific
such as type B cyclin dependent kinases (CDKB1/2) [134,135], while others are animal-specific, such as
cyclin E in humans [136,137].

The DREAM complex also appears to be conserved in plants [138,139]. In addition to the presence
of AtRBR, E2Fs/DPs, a MuvB-like complex has also been found that contains ALY2/3 (orthologs
of LIN9) and TCX5 that is part of the TSO1-like family members (orthologs of LIN54) [140,141].
Furthermore, MYB3R, a transcription factor of the Myb family, has a protein structure resembling the
DNA binding domain of B-Myb, which in humans forms part of the MuvB complex. These plant’s
MYB3Rs also participate in the regulation of the G2/M transition as follows: MYB3R3 associates
with E2Fc and AtRBR to repress G2/M genes, while MYB3R4 associates with E2Fb and AtRBR to
activate G2/M genes (Figure 2B) [142–144]. CDKA;1 and cyclins could as well be involved in the
plant DREAM complex since MYB3R3 and MYB3R4 interact with CDKA;1 and, in tobacco, CDKA;1
regulates MYB3R phosphorylation [139,144,145]. Moreover, E2Fc can physically interact with CDKA;1,
CYCD2;1, and CYCD2;2 in vitro (Figure 2B) [146]. Interestingly, the function of the activation complex
MYB3R4/AtRBR1/E2Fb is similar to the function of ZmRBR3 in maize that positively regulates transcript
accumulation of genes involved in DNA replication and cell cycle progression in the transition G2/M
(Figure 2B,C) [124]. However, in contrast to what has been reported in animals, RBR presence in the
DREAM complex is able to control cell cycle in different stages of cell cycle in plants (Figure 2B,C).

4. The Roles of Retinoblastoma in Cell Differentiation

The formation of any organ relies on two different but interlinked cellular processes: cell
proliferation and cell differentiation. Proliferation produces all the cells that later will acquire
fates, specialized functions, and morphologies through differential gene expression during cell
differentiation [147,148]. pRb has been widely studied in proliferation and, recently, its participation in
many different animal differentiation processes in the eye, brain, peripheral nervous system, muscle,
liver, placenta, lung, cerebellum, pituitary gland, and heart has been elucidated (Figure 3A) [149–154].

The participation of pRb in these processes has been studied in vivo in mutant mice and/or cell
cultures derived from cancer cells, characterized by alterations in their RB1 expression levels [155–157].
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Mice with RB1 ablation are embryonic lethal, and those with low levels of the three pRb (RB1,
RBl1, and RBl2) not only die in utero but also present defects in erythroid, neuronal, and muscular
differentiation [158–160]. Additionally, in mice with conditionally-regulated levels of the three pRb,
cells overproliferated inducing retinal cancer (Retinoblastoma) and also display defects in laminar
organization of the retina and the crystalline [161–163]. E2Fs target genes are also important for
differentiation of the adipose tissue, bone, nervous system, and muscles [164–167]. Interestingly,
expression of pRb in mutants with altered E2F function has shown that pRb can also independently
regulate tissue-specific genes in mammals, pointing to its broad roles in development [168,169].

Similar to pRb in animals, RBR participates in differentiation processes in the root
and shoot meristems, the vascular system, leaves, stomas, and trichomes tissues in plants
(Figure 3A) [116,117,170,171]. In Arabidopsis, AtRBR functions as a negative regulator of primary root
development; its downregulation leads to longer roots with larger meristems whereas its overexpression
results in shorter roots with smaller meristems [172]. In this organ, AtRBR forms a protein complex
with the TF ARABIDOPSIS RESPONSE REGULATOR12 (ARR12) that activates the transcription
of the AUXIN RESPONSE FACTOR19 (ARF19) TF [172]. These TFs participate in two different
hormone signaling pathways: ARR12 is part of the cytokinin signaling pathway involved in root
differentiation, while ARF19 is part of the auxin signaling pathway which is important for root
cell proliferation [172,173]. ARF19 is activated by RBR mostly in between the meristematic and the
elongation zones in roots and it is suggested to promote differentiation [172].

The role of RBR in differentiation at the shoot apical meristem (SAM) has also been analyzed.
In this case, overexpression of AtRBR accelerates differentiation, increasing the expression of genes
involved in metabolic pathways that are not present in the SAM and decreasing the expression of
genes that are only expressed in the SAM [114,170]. AtRBR RNA interference (RNAi) in leaf primordia
delays differentiation and, consequently, increments two to four-fold the cell number in both the
adaxial and abaxial sides of the leaves [114,170]. In addition, also in leaves, AtRBR participates in the
endoreplication and differentiation of trichomes, in which the AtRBR transcription is regulated by the
TFs GLABRA1 (GL1) and GLABRA3 (GL3) [174,175]. In the vascular system, AtRBR associates with
XYLEM NAC DOMAIN1 (XND1), a negative regulator of differentiation, thus controlling processes
related to the differentiation of tracheary elements [176,177].

It is difficult to compare the roles of pRb and RBR during differentiation due to lack of information
and because the components involved in cell differentiation are more species-specific and less conserved
than those involved in cell cycle regulation. However, taking as examples skeletal muscle differentiation
in humans and stomatal guard cells differentiation in Arabidopsis, conserved factors that coordinate
cell differentiation can be identified, namely Rb, MADS-box TFs, and TFs of the bHLH family, as well
as the cyclins/CDKs protein complexes (Figure 3D) [178,179].

At post-embryonic stages, myocyte differentiation in mammals can be triggered in response to
muscle damage or a specific growth-inducing stimulus. This last provokes massive proliferation
of myoblasts through the hierarchical activation of several MRF (Myogenic Regulatory Factors):
Myogenic Factor 5 (Myf5), myoblast determination protein 1 (MyoD), Myogenin (MyoG), and Myogenic
Regulatory Factor 4B (MRF4), which are TFs that belong to the bHLH family. These MRF are required
together with pRb for the muscle regeneration process [180–182]. In resting state conditions, muscle stem
cells or satellite cells express only the box protein Pax7 [183]. When the muscle is injured, satellite cells
get activated and become myoblasts that massively proliferate to generate the myogenic progenitors,
which express Myf5 and/or MyoD TFs [184]. Later, when myoblasts start differentiation into myocytes,
Myf5 and Pax7 are repressed and MRF4 and myogenin are expressed promoting cell cycle exit. Finally,
when the cells fuse to become myofibrils, myogenin and MRF4 are expressed as part of the final steps of
differentiation (Figure 3B) [180,182]. In this process, the protein complex of MyoD with pRb, is thought
to initiate differentiation, as it promotes cell cycle arrest [185–188]. Despite immunoprecipitation
experiments that proved that pRb and MyoD can interact [189], later experiments using nuclear
magnetic resonance allowed to determine that there is no direct protein–protein interaction between
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MyoD and pRb [190]. Still, MyoD does activate RB1 expression through its association with the
cAMP response element-binding (CREB) TF and the coactivators p300 and P/CAF (Figure 3) [191,192].
Myocyte Enhancer Factor 2 (MEF2), that belongs to the MADS-box family of TFs, is also a component
necessary to carry out the final stages of muscle differentiation [149,193,194].
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Figure 3. Retinoblastoma proteins are involved in cell differentiation in mammals and plants.
(A) Mammals’ and plants’ organs whose differentiation depends on pRb/RBR. (B) Sequential steps
of skeletal muscle differentiation in mammals. Shown are pRb interactions and bHLHs-family
proteins (Mef2, MyoD, Myogenin, MRF4), involved in muscle quiescence maintenance, proliferation,
and differentiation. (C) Sequential steps of guard cells differentiation in Arabidopsis. Shown are
RBR interactions and bHLHs-family proteins (SPCH, MUTE, FAMA, SCRM, SCRM2) involved in
quiescence maintenance, proliferation, and differentiation of guard cells. (D) Correlations between
components involved in muscle and guard cell development in mammals and Arabidopsis, respectively.
Differentiation in both lineages involves proteins of the pRb, bHLH TF, cyclins and CDKs, MADS-box
TF families.
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Induction of muscle biogenesis also requires the regulation by cyclins-CDKs in association with
pRb [195]. The stable repression of cyclin D1, required for cell cycle arrest during differentiation,
is regulated by the joint action of MyoD and pRb through the regulation of the upstream intermediary
gene Fra-1 (antigen related to FOS 1) (Figure 3B) [196,197]. Antagonistically, cyclin D1 inhibits the
activity of MyoD: overexpression of cyclin D1 promotes nuclear accumulation of CDK4, that binds
MyoD, preventing its interaction with DNA, and inhibiting the CDK4-dependent phosphorylation
of pRb (Figure 3B) [198–200]. Additionally, when HDAC1 interacts with pRb, the MyoD protein can
bind its target DNA regulatory sites [201,202]. In summary, there are two different protein complexes
formed during different stages of muscle development: HDAC1/MyoD during proliferation and
HDAC1/hypophosphorylated pRb during differentiation (Figure 3B) [201,202].

In plants, some epidermal cells undergo differentiation producing the two mature guard cells
that form the stomata pores, structures that are conserved among land plants and allow them to
regulate gas exchange and water loss [203,204]. Stomatal development is hierarchically regulated by
the sequential activation of several TFs of the bHLH family: SPCH (SPEECHLESS), MUTE, and FAMA.
These three bHLHs form heterodimers with either the bHLHs SCREAM (SCRM, also called ICE1) or
SCRM2 [205–207], that belong to the same family of TFs that participate in muscle development in
mammals (MRFs) (Figure 3D). These plant TFs orchestrate cell division events of protodermal cells,
which give origin to guard cells (stomatogenesis). SPCH triggers the maturation of a protodermal
cell into a meristemoid mother cell (MMC) and is also involved in the asymmetric cell division of the
MMC, that results in one meristemoid cell and one larger sister cell (SLGC). The meristemoid cell
exits stemness and engages in differentiation to become a guard meristemoid cell (GMC). MUTE must
be expressed at this stage, to direct further differentiation of a GMC, and to ensure that this cell
undergoes a single symmetric division. In addition MUTE regulates the expression of FAMA, which
controls the final stages of differentiation, promoting guard cell (GC) identity acquisition and the
irreversible termination of the meristematic activity of the cells (Figure 3C) [208–210]. AtRBR plays
important roles in the regulatory network of stomata development, and its downregulation at the
GMC or GC stages, induces extra divisions in differentiated GCs and the formation of aberrant
stomata-in-stomatal nested structures [114,211]. In fact, AtRBR hyperphosphorylation inhibits stomatal
initiation affecting the asymmetric division of protodermal cells that produces MMCs, this seems to be
controlled by CDKA;1, that negatively regulates AtRBR, and regulates positively SPCH TF through
phosphorylation (Figure 3C) [212–214]. It has also been hypothesized that AtRBR hyperphosphorylation
by CDKB1;1-CYCD7;1 inhibits the AtRBR/FAMA repression complex leading to the induction of
cell-cycle regulators of the GMC symmetric division event [215–217]. At the same time, MUTE directly
upregulates FAMA and FLP; and FAMA represses cell-cycle control genes such as CDKB1;1, ensuring a
single symmetric division to form GCs (Figure 3C) [208,218]. Mutation in the FAMA LxCxE sequence
prevents the formation of the AtRBR/FAMA complex, making cells unable to maintain the long-term
commitment to differentiate into GC, and arresting this process at the GMC stage [211,215]. A similar
mechanism is present in mammals, in which downregulation of MyoD allows cells to dedifferentiate;
an ability that determines the muscular capacity to regenerate [219]. Finally, it is also possible that
FAMA functions at early steps of guard cell differentiation since the AtRBR/FAMA heterodimer binds
to SPCH and FAMA promoters, and this complex negatively regulates the accumulation of the SPCH
transcript, which is normally expressed at early stages of guard cells development (Figure 3C) [211,220].

As it can be appreciated, the differentiation processes of skeletal muscle in mammals and guard
cells in Arabidopsis are both regulated by a similar set of conserved elements: pRb/RBR, bHLHs, cyclins
and CDKs (Figure 3D). Moreover, in both organisms, members of the MADS-box family participate in
these processes: MEF2 is involved in early stages of muscle differentiation and in cell proliferation of
other tissues (Figure 3B) [221–223]. Similarly, a plant MADS-box gene, AGAMOUS-LIKE16 (AGL16),
is expressed and participates in GC development (Figure 3D) [224,225]. AGL16 mediates the stomata
development process at the MMC cell lineage level and represses FAMA as well as other genes involved
in the development and differentiation of guard cells (Figure 3C) [225,226].
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5. Retinoblastoma Function in Stem Cells Homeostasis

Accumulated evidence indicates that pRb loss of function in mammals results in altered progenitor
cells (or stem cells) quiescence. Quiescent cells are usually in the G0 phase of the cell cycle or in a
prolonged G1 phase; and have a very low proliferative activity. Through asymmetric division stem cells
can give origin to a new quiescent stem cell and a new daughter cell that can proliferate several times
to eventually produce one or more differentiated cell types [227–229]. pRb participates in pluripotency
maintenance, inhibition of differentiation, and in self-renewal of stem cells [230–232]. Mutants with
low expression levels of Rb display an increased cell division of both embryonic and post-embryonic
stem cells from retina, mesenchymal, and early osteoblasts progenitors, as well as of post-embryonic
stem cells of the liver, muscle, and nervous system [233–239]. Interestingly, in these pRb mutants
somatic cells acquire stem cells features, as it occurs in some human cancers [240,241]. In human
pluripotent stem cells (hPSC), the pRb/E2F pathway enhances differentiation towards all germ layers
in response to a DMSO stimulus [153]. pRb together with E2F1 can bind and suppress the transcript
accumulation of pluripotency promoting factors, such as SEX DETERMINING REGION Y-BOX 2
(SOX2) and OCTAMER-BINDING TRANSCRIPTION FACTOR 4 (OCT4). In addition, pRb can alter the
accumulation of transcripts by directing chromatin modifiers to promoters of specific TFs, as it happens
in the case of KRUPPEL-LIKE FACTOR 4 (KLF4), the homeobox NANOG and TRANSCRIPTION
FACTOR 3 (TCF3), that are part of the induced stem cell pluripotency regulatory network; and also in
the case of ENHANCER OF ZESTE HOMOLOG 2 (EZH2), which is a methyltransferase that participates
in establishing stem cells establishment [242,243].

The plant ortholog, RBR, is also implicated in pluripotency maintenance. Lowering transcript
levels of AtRBR induces disorganization of the root stem cell niche (SCN) in Arabidopsis, as well as in
the shoot meristem that harbors flower and leaf stem cells [114–116]. The root SCN consists of a central
organizer, the quiescent center (QC), which is surrounded by four type of stem cells called initial
cells, that in Arabidopsis are columella initials (CI), cortex/endodermis initials (CEI), epidermis/lateral
root cap initials (ELRCI), and stele initials (SI) [244]. Under normal growth conditions, proliferation
rate at the QC is very low compared to adjacent zones, although the division rate increases at the
QC in older seedlings [245,246]. AtRBR silencing increases the proliferation of both QC and CI cells,
resulting in an overgrowth of undifferentiated cell layers. Conversely, overexpression of AtRBR causes
premature differentiation of CIs [115,116,247]. Interestingly, absence of AtRBR favors the duplication
of differentiated columella cells that normally do not duplicate in wild-type plants [247].

Within CEI cells and their progeny, the TF SCARECROW (SCR), a member of the GRAS TFs
family, interacts, through its LxCxE motif, with AtRBR forming a ternary complex with SHORTROOT
(SHR), which is another member of the GRAS family. This AtRBR/SCR/SHR complex inhibits the
transcription of target genes of the SHR/SCR heterodimer. One of these target genes is CYCLIN D6;1
(CYCD6;1), which controls the cell cycle progression of the CEI cells progeny. Moreover, CYCD6;1
together with the kinase CDKB1;1, in turn, regulates the phosphorylation of AtRBR, liberating the
SCR/SHR complex, favoring in this way CEI cells’ asymmetric division [115,248,249]. AtRBR, SCR,
and CYCD6;1 are degraded by the proteasome before mitosis, which is consistent with a model where
the degradation of these proteins allows CEI cells to restart the asymmetric divisions [248]. Moreover,
the same AtRBR/SCR interaction is necessary to establish the QC cells and is regulated by the interaction
of AtRBR with the ETHYLENE RESPONSE FACTOR115 (ERF115) TF, that belongs to the AP2/ERF
family. This interaction also occurs through the LxCxE domain of ERF115, that competes with SCR
for AtRBR, reducing in this way the levels of the AtRBR-SCR heterodimer [250]. Importantly, most of
the AtRBR functions related to differentiation and cell cycle arrest in the SCN are cell-autonomous,
highlighting the crucial role of AtRBR activity level in the QC, in the columella stem cells, and in their
immediate progeny in the acquisition of niche-specific features [247].

Interestingly, it has also been observed that the TOPOISOMERASE 1α (TOP1α) together with
AtRBR, is also involved in the control of stem cell maintenance during root development. TOP1α is an
enzyme present in plants and animals that creates breaks in double DNA strands to relax supercoiled
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structures. In humans, it has been used as a target to stop the proliferation of breast cancer stem cells
in cell cultures [251,252]. In Arabidopsis roots it has been shown that TOP1α is downregulated by
AtRBR to maintain the undifferentiated state of cells and the number of CI cells in the SCN. In addition,
TOP1α is epistatic over AtRBR and its overexpression results in an increased number of CI cells, as it
happens in AtRBR loss of function mutants [253]. Besides, mutations that disrupt the activity of TOP1α,
induce cell death in the initial cells of the stele (SI) which can be partially reversed by the activation of
ERF115 expression, since TOP1α negatively regulates the expression of ERF115 [253], and as it was
mentioned above, ERF115 also interacts with AtRBR to establish the QC [250]. Although it is not yet
known whether TOP1α participates with AtRBR in the shoot meristem or not, TOP1α also regulates
the establishment of stem cells through indirect transcriptional repression of WUS (WUSCHEL) [254].

In the shoot meristem, silencing of AtRBR also produces disordering of the stem cell divisions
within the SAM, resulting in a significant reduction in the typical height-to-width ratio of the SAM; and
also in alterations in stem cell maintenance and differentiation [114]. Overexpression of AtRBR triggers
cells toward a more differentiated state; but the molecular mechanism has not yet been described to
explain this phenotype [170]. In addition, AtRBR regulates proliferation and differentiation of MMC of
guard cells in leaves as it has been described above.

It can be noted from the examples presented, that pRb/RBR of animals and plants, respectively,
participate in the maintenance of stem cells by controlling the cell cycle and cell differentiation, as well
as regulating specific genes that give identity to these cells.

6. Function of Retinoblastoma in Epigenetic Modifications, Chromatin Regulation,
and DNA Damage

Epigenetic modifier proteins participate in the regulation of gene expression throughout development.
This allows cells with the same genetic background to exhibit different phenotypes [255,256]. Epigenetic
modifications alter DNA accessibility and chromatin structure by mechanisms such as DNA methylation
and histones modifications by acetylation, methylation, ubiquitination, phosphorylation, sumoylation,
etc. [257,258]. In mammals and plants, many epigenetic modifier proteins interact with protein
complexes that include pRb/RBR, allowing them to regulate different developmental processes.

Human pRb has been reported to interact with over 300 proteins and many such protein interactions
are epigenetic modifier proteins or interact with the latter [40,256]. pRb levels decrease leads to an
incomplete chromosome condensation and segregation during mitosis, as it has been observed in
cancer cells; some alterations of the chromatin structure are also induced by changes in histone
methylation and acetylation [259–261]. pRb can interact with chromatin remodeling factors, such as
histone deacetylases, DNA methyltransferases, histone methyltransferases, and with complexes like
SWI/SNF; and like Polycomb group (PcG), the latter is a chromatin-modifying complex that maintains
repressed gene expression states and is subdivided into two main complexes: Polycomb repressive
complex 1 (PRC1) and PRC2 [259,262–265].

The interaction of pRb-epigenetic with modifiers complexes are also important to maintain
heterochromatin in intergenic zones as well as in centromeres and telomeres (Figure 4A) [260,261].
The interaction of pRb with ENHANCER OF ZESTE HOMOLOG 2 (EZH2), a histone methyltransferase
of the PRC2 complex, allows the deposition of the trimethylation of lysine 27 of histone H3 (H3K27me3),
a repressive mark, on pRb target genes (Figure 4A). In turn, pRb-E2F negatively regulates EZH2
transcript accumulation and proliferation; conversely high expression of EZH2 is observed in
cancer stem cells as has a critical function in regulating stem cell expansion and maintenance
(Figure 4A) [242,266]. Interestingly, it has been observed that pRb can also recruit EZH2 protein into
sequences within introns and intergenic regions, specifically in repeated sequences, transposons, long
interspersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs), and long terminal
retroviruses (LTR). The loss of the pRb-EZH2 complex provokes loss of the H3K27me3 mark at these
elements, leading to dispersion or loss of heterochromatin and probably disorganized proliferation as
observed in cancer cells (Figure 4A) [267].
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Figure 4. pRb and RBR are involved in modifications and DNA repair mechanisms both in mammals
and plants. (A) Mammalian pRb participates in developmental processes and chromatin localization
together with EZH2, a component part of the PRC2 complex. (B) Arabidopsis RBR participates in
development and chromatin localization together with the PRC2 complex. (C) Mammalian pRb is part
of the machinery involved in DNA repair. (D) Arabidopsis RBR is part of the machinery involved in
DNA repair. Proteins and complexes conserved between mammals and Arabidopsis are marked with
the same colors.

DNA integrity in mammals is altered when pRb is absent and, in some cases, this can be provoked
by the overexpression of E2F regulated genes that are able to introduce double-strand DNA breaks,
or by stress conditions that generate aneuploidies [37]. In the case of a double strand break, pRb
is necessary to form the complex of the heterodimer E2F1-pRb with TopBP1 (DNA topoisomerase
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2-binding protein 1) [268]. TopBP1 is a protein that interacts with Topoisomerase 2β (Top2β) and with
other proteins that participate in DNA replication and in the maintenance of the DNA integrity and
genome stability [261,269]. In addition, the protein complex E2F1-pRb-TopBP1 interacts with BRG1
(also known as ATP-dependent chromatin remodeler SMARCA4) which is a member of the SWI/SNF
complex that is necessary to reduce nucleosome density at injury sites, allowing DNA end resection
and reparation by homologous recombination (HR) (Figure 4C) [268,270]. Another novel aspect of the
pRb-BRG1 interaction is its influence in mediating cell cycle arrest, by the regulation of different genes
also involved in human cancer cells (Figure 4C) [271–273]. pRb interacts with the tumor suppressor
BRCA1 (Breast cancer 1), which is also involved in DNA repair via Homologous Recombination.
The BRCA1-pRb complex interacts with histone deacetylases (HDAC1/2) and with topoisomerase
2β (Top2β) to regulate DNA stability (Figure 4C) [274,275]. Furthermore, the pRb-BRCA1 complex
is involved not only in the response to DNA damage, but also in cell cycle control, as deletions in
the BRCA1 binding domain with pRb, inhibits BRCA1-dependent cell cycle progression [262]. pRb
also participates in another DNA repair pathway: the non-homologous end joining (NHEJ), the exact
role of pRb in this mechanism is unknown but it has been reported that pRb interacts with two of the
proteins that recognize the breakdown of the double chain: KU-70 and KU-80 (Figure 4C) [261,276].

In plants, there are also numerous reports of RBR interactions with epigenetic modifiers, which
are important in the regulation of different developmental processes [277]. In Arabidopsis, like in
animals, it has been shown that PRC2, a subcomplex of PcG, participates together with AtRBR in
the establishment of the H3K27me3 mark during differentiation and development of the female
and male gametophytes, in leaf development and during the establishment of stoma cell lineages.
In these three processes, AtRBR associates with components of the PRC2 repressor complex such as
MULTICOPYSUPPRESSOR OF IRA1 (MSI1), FERTILIZATION INDEPENDENT ENDOSPERM (FIE),
VERNALIZATION 2 (VRN2), and CURLY LEAF (CLF), a gene orthologous to EZH2 from humans
(Figure 4B) [66,278]. In addition, AtRBR together with MSI1 directly represses the expression of the
DNA methylase METHYLTRANSFERASE 1 (MET1) (Figure 4B), that maintains DNA methylation
during DNA replication and regulates gene imprinting. The repression of MET1 by this complex allows
the transcriptional activation of FERTILIZATION INDEPENDENT SEED 2 (FIS2) and FLOWERING
WAGENINGEN (FWA), that are important for female gametogenesis [66,113,279]. In turn, MET1 is
positively expressed during male gametogenesis; and is important for maintaining the gene repression
of FIS2 and FWA in the paternal allele, leading the monoparental expression of these genes during
fertilization and endosperm development, [279,280]. Furthermore, AtRBR loss of function mutants
present higher levels of SWINGER (SWN), MSI1, and FIE transcripts, which are components of the
PRC2 complex. Interestingly, the AtRBR transcript in pollen is directly repressed by the PRC2 complex
(Figure 4B) [113]. In plant embryos, the PRC2 complex with AtRBR directly binds and deposits
the H2K27m3 mark on different embryonic genes, leading to their repression and subsequent seed
germination (Figure 4B) [69,281]. Similarly, in stomatal development, AtRBR/FAMA heterodimer is
required to recruit PRC2 to H3K27me3 deposition into SPCH and MUTE regulatory regions, and repress
its transcript accumulation, necessary to control differentiation and stomatal development correctly
(Figure 4B) [211,215,282].

AtRBR also appears to regulate DNA repair in several conditions. First, AtRBR binds and represses
genes involved in homologous recombination such as RADIATION SENSITIVE 51 (RAD51) and helps
to locate RAD51 to the right place at DNA lesions (Figure 4D) [283]. Additionally, TOP1α is critical
to ensure genome integrity and survival of root stele stem cells, as the loss of function of TOP1α
triggers DNA double-strand breaks and cell death in these cells; in the root, TOP1α is downregulated
by AtRBR (Figure 4D) [253]. Although the participation of AtRBR and Top1α in the shoot meristem
have not yet been studied, TOP1α participates with the PRC2 complex in the repression of the WUS
locus (Figure 4D) [252–254].

AtRBR also is recruited to damaged DNA sites, along with E2Fa and AtBRCA1 and helps to
maintain the integrity of the root meristem (Figure 4D). Furthermore, similar to what is observed
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for animals for BRCA1 and pRb (Figure 4C) [262,284], AtRBR and AtBRCA1 have been shown to
physically interact when cells are damaged [285]. In addition, E2Fa is required for AtBRCA1 expression,
when genotoxic stress is induced (Figure 4D) [285]. Thus, it would be interesting to analyze if the
AtBRCA1-AtRBR complex participates in the regulation of the cell cycle, as it occurs in humans. Finally,
analysis of chromosome sites to which AtRBR physically binds, show that this protein not only targets
gene regulatory sequences, but also transposons, especially Miniature Inverted-repeat Transposable
Elements (MITEs) (Figure 4B) [142].

7. Conclusions

Development is a process where proliferation and differentiation cellular rates must be finely
regulated. As we can appreciate from the examples presented throughout the text, pRb/RBR are
multifunctional and highly connected proteins that control cell fate determination and differentiation
through interactions with different proteins. The pRb/RBR structures and diverse post-translational
modifications allow the proteins to differentially interact with an exceptionally high number of proteins,
making them a key node in several regulatory networks. Interestingly, many of the protein partners
are conserved between animals and plants, and in both lineages are involved in equivalent cellular
processes such as cell cycle regulation, stem cell homeostasis, and cell differentiation. In addition,
interaction with epigenetic and DNA topology regulators suggests that the protein–protein networks
that involve RETINOBLASTOMA are also similar in plants and animals. Thus, important aspects
of the regulatory networks underlying cell proliferation and differentiation in which this protein is
involved, seem to be shared by plants and animals, despite the fact that these two lineages have unique
cellular and structural characteristics.
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