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The fractional nonlinear PT  dimer
Mario I. Molina

We examine a fractional discrete nonlinear Schrodinger dimer, where the usual first-order derivative 
in the time evolution is replaced by a non integer-order derivative. The dimer is nonlinear (Kerr) and 
PT -symmetric, and for localized initial conditions we examine the exchange dynamics between both 
sites. By means of the Laplace transformation technique, the linear PT  dimer is solved in closed 
form in terms of Mittag–Leffler functions, while for the nonlinear regime, we resort to numerical 
computations using the direct explicit Grunwald algorithm. In general, we see that the main effect of 
the fractional derivative is to produce a monotonically decreasing time envelope for the amplitude 
of the oscillatory exchange. In the presence of PT  symmetry, the oscillations experience some 
amplification for gain/loss values below some threshold, while beyond threshold, the amplitudes of 
both sites grow unbounded. The presence of nonlinearity can arrest the unbounded growth and lead 
to a selftrapped state. The trapped fraction decreases as the nonlinearity is increased past a critical 
value, in marked contrast with the standard (non-fractional) case.

The topic of fractional calculus has experienced a rekindled interest in recent times. Essentially, it extends the 
notion of a derivative or an integral of integer order, to one of a fractional order, (dn/dxn) → (dα/dxα) for real 
α . The subject has a long history, dating back to letters exchanged between Leibnitz and L’Hopital, and later 
contributions by Euler, Laplace, Riemann, Liouville, and Caputo to name some1–5. The starting point was the 
computation of dαxk/dxα , where α is a non-integer number:

For instance, (d1/2/dx1/2)x = (2/
√
π)

√
x , and dx/dx = (d1/2/dx1/2)(d1/2/dx1/2)x = (2

√
π)(Ŵ(3)/Ŵ(1))

x0 = 1 , as expected. From Eq.  (1) the fractional derivative of an analytic function f (x) =
∑

k akx
k can 

be computed by deriving term by term. This basic procedure is not exempt from ambiguities. For instance, 
(dα/dxα) 1 = (dαx0/dxα) = (1/Ŵ(1− α))x−α �= 0 , according to Eq. (1). However, one could have also taken 
(dα−1/dxα−1)(d/dx) 1 = 0 . For the case of a fractional integral, a more rigorous starting point is Cauchy’s for-
mula for the integral of a function. From the definition

we apply the Laplace transform L to both sides of Eq. (2)

After n integrations, one obtains

Extension to fractional α is direct:

After noting that the RHS of Eq. (5) is the product of two Laplace transforms we have, after using the con-
volution theorem

From this definition, it is possible to define the fractional derivative of a function f(x) as

(1)
dnxk

dxn
=

Ŵ(k + 1)

Ŵ(k − n+ 1)
xk−n →

dαxk

dxα
=

Ŵ(k + 1)

Ŵ(k − α + 1)
xk−α .

(2)I1x f (x) =
∫ x

0
f (s)ds,

(3)L
{

I1x f (x)
}

= (1/s) L{f (x)}.

(4)L
{

Inx f (x)
}

= (1/sn) L{f (x)}.

(5)L
{

Iαx f (x)
}

= (1/sα) L{f (x)}.

(6)Iαx f (x) =
1

Ŵ(α)

∫ x

0

f (s)

(x − s)1−α
ds.
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where m− 1 < α < m . Equation (7) is known as the Riemann–Liouville form. An alternative, closely related 
form, is the Caputo formula5:

which has some advantages over the Riemann–Liouvuille form for differential equations with initial values. 
The various technical matters that arise in fractional calculus have prompted a whole line of research that has 
extended to current times. Long regarded as a mathematical curiosity, it has now regained interest due to its 
potential applications to complex problems in several fields: fluid mechanics6,7, fractional kinetics and anomalous 
diffusion8–10, strange kinetics11, fractional quantum mechanics12,13, Levy processes in quantum mechanics14, 
plasmas15, electrical propagation in cardiac tissue16 and biological invasions17. In general, fractional calculus 
constitutes a natural formalism for the description of memory and non-locality effects found in various complex 
systems. Experimental realizations are not straightforward given the nonlocal character of the coupling, however 
some optical setups have been suggested that could measure the effect of fractionality on new beam solutions 
and new optical devices18,19.

On the other hand, when dealing with effectively discrete, interacting units, as one encounters in atomic 
physics (interacting atoms), or in optics ( coupled optical fibers), it is common to deal with discrete versions 
of the continuum Schrödinger equation, or the paraxial wave equation. The effective discreteness comes from 
expanding the solution sought in terms of (continuous) modes that can be labelled unambiguously. The simplest 
of such examples is the bonding, anti-bonding electronic mode that one finds for a two-sites (dimer) molecule 
after diagonalizing the two-site Schrödinger equation in the tight-binding approach. Something similar happens 
in optics, where the paraxial equation is formally equivalent to the Schrödnger equation. In that case, for two 
optical waveguides, the total electric field is expanded in terms of the electromagnetic modes in each guide which 
interact through the evanescent field between the two guides giving rise to a transversal dynamics for the optical 
power. The procedure can be extended to N interacting units, either atoms or waveguides, where the relevant 
dynamics is given by a discretized version of the Schrödinger equation for N units20,21. Of course, at the end one 
has to collect all the discrete amplitudes and multiply them by the corresponding continuous mode profiles and 
superpose them, to obtain the final field. The simplest case N = 2 is termed a dimer and oftentimes constitute a 
basic starting point when studying an interacting, discrete system. Ensembles of interacting dimers have been 
studied before in classical and quantum statistics22–24, and more recently, they have been considered in model of 
correlated disorder25 and in magnetic metamaterial modeling26.

In this work we consider the discrete Schrödinger equation for a dimer system, where the standard time 
derivative is replaced by a fractional one. The dimer considered is rather general and contains fractionality, PT  
symmetry and nonlinearity (Fig. 1). Our main interest is in ascertaining the effect of the fractional derivative 
on the excitation exchange between the sites, its stability and selftrapping behavior, for several cases of interest.

The fractional dimer
The standard dimer has the form

where quantities C1,2 are probability amplitudes in a quantum context, or electric field amplitudes, in an optical 
setting. Parameter V is the coupling term and χ is the nonlinearity parameter. Before going into the fractional 
version of this equation, it is convenient to rewrite Eq. (9) in a dimensionless form27. We define φ1,2 = C1,2/C0 
as the dimensionless amplitudes, where C0 is a characteristic amplitude, like (1/2)(C1(0)+ C2(0)) . Also, we 
define z = Vt as the dimensionless time, σ1,2 = ǫ1,2/V  as the dimensionless site energies, and γ = (χ/V)C2

0 as 
the dimensionless nonlinearity. In terms of the new variables, we have

(7)
dα f (x)

dxα
=

(

dm

dxm

)

Im−α
x f (x) =

dm

dxm

[

1

Ŵ(m− α)

∫ x

0
(x − s)m−α−1f (s) ds

]

,

(8)
dα f (x)

dxα
= Im−α

x

(

dm

dxm

)

f (x) =
1

Ŵ(m− α)

∫ x

0
(x − s)m−α−1f (m)(s)ds,

(9)
i
dC1(t)

dtα
+ ǫ1C1(t)+ VC2(t)+ χ |C1(t)|2C1(t) =0

i
dC2(t)

dtα
+ ǫ2C2(t)+ VC1(t)+ χ |C2(t)|2C2(t) =0

Figure 1.   Nonlinear anisotropic fractional dimer where the excitation is on site 1 initially ( t = 0 ). In the PT  
case, σ1 = −σ2 = iσ.
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We now go into the fractional version of the model by adopting a fractional derivative, (d/dz) → (dα/dzα) 
in Eq. (10):

Equation (11) needs two arbitrary constants. This can be seen, for instance, by means of elementary manipula-
tions and using the composition property of the fractional derivative, to re-cast (11) in the linear limit ( γ = 0 ) 
as a decoupled system

According to the general theory of fractional calculus3, each of Eq. (12) needs just a single arbitrary constant, 
for 0 < α < 1 . Thus, for our coupled system (11), just two arbitrary constants are required.

Let us first consider the case of a general linear ( γ = 0 ) dimer, and assume φ1(0) = 1,φ2(0) = 0 . We will solve 
this case in closed form by the use of Laplace transforms: For 0 < α < 1 , the Laplace transform of the Caputo 
fractional derivative of order α is given by

After applying the Laplace transform L to both sides of Eq. (11) we have

Solving for L(φ1) and L(φ2) gives:

and

Using the inverse Laplace formula28

we obtain φ1(z) and φ2(z) in closed form:

where Eδα,β(z) is defined as

where (δ)n = Ŵ(δ + n)/Ŵ(δ) , and α,β , δ ∈ C , Re (α) > 0, Re (β) > 0, z ∈ C . Figure 2 shows examples of the 
time evolution of the square of the dimer amplitudes, for several site energy parameters, and fractional derivative 
orders. In general we observe that, as soon as α differs from unity, the dynamics is either bounded or unbounded, 

(10)
i
dφ1(z)

dz
+ σ1φ1(z)+ φ2(z)+ γ |φ1(z)|2φ1(z) =0

i
dφ2(z)

dz
+ σ2φ2(z)+ φ1(z)+ γ |φ2(z)|2φ2(z) =0

(11)
i
dαφ1(z)

dzα
+ σ1φ1(z)+ φ2(z)+ γ |φ1(z)|2φ1(z) =0

i
dαφ2(z)

dzα
+ σ2φ2(z)+ φ1(z)+ γ |φ2(z)|2φ2(z) =0

(12)
(d2α/dz2α)φ1 − i(σ1 + σ2)(d

α/dzα)φ1 + (1− σ1σ2)φ1 =0

(d2α/dz2α)φ2 − i(σ1 + σ2)(d
α/dzα)φ2 + (1− σ1σ2)φ2 =0

(13)L{f (α)(z)} = sαL{f (z)} − sα−1f (0+).

(14)
i(sαL(φ1)− sα−1)+ σ1L(φ1)+ L(φ2) =0

i sαL(φ2)+ σ2L(φ2)+ L(φ1) =0.

(15)L(φ1) =
−i(σ2 + isα)sα−1

s2α − i(σ1 + σ2)sα + V2 − σ1σ2

(16)L(φ2) =
i sα−1

s2α − i(σ1 + σ2)sα + 1− σ1σ2
.

(17)L
−1

{

sρ−1

sα + asβ + b

}

= zα−ρ
∞
∑

r=0

(−a)rz(α−β)rEr+1
α,α+(α−β)r−ρ+1(−bzα),

(18)

φ1(z) =
∞
∑

r=0

(i(σ1 + σ2))
r zαrEr+1

2α,αr+1

(

(σ1σ2 − 1)z2α
)

− iσ2z
α

∞
∑

r=0

(i(σ1 + σ2))
rzαrEr+1

2α,α(1+r)+1

(

(σ1σ2 − 1)z2α
)

(19)φ2(z) = izα
∞
∑

r=0

(i(σ1 + σ2))
rzαrEr+1

2α,α(1+r)+1((σ1σ2 − 1)z2α)

(20)Eδα,β(z) =
∞
∑

k=0

(δ)k z
k

k! Ŵ(αk + β)
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depending on the values of the site energy parameters. For the bounded cases, there is some oscillation initially, 
with a decreasing envelope towards zero.

The linear PT  dimer.  A particularly interesting case of Eq. (9), is the fractional PT -symmetric dimer. 
For systems that are invariant under the combined operations of parity ( P ) and time reversal ( T  ), it was shown 
that they display a real eigenvalue spectrum, even though the underlying Hamiltonian is not hermitian29,30. In 
these systems there is a balance between gain and loss, leading to a bounded dynamics. However, as the gain/loss 
parameter exceeds a certain value the system undergoes a spontaneous symmetry breaking, where two or more 
eigenvalues become complex. At that point, the system loses its balance and its dynamics becomes unbounded. 
According to the general theory, for our system to be PT  symmetric, the real part of the site energies in Eq. (9) 
must be even in space while the imaginary part must be odd: Re (σ1) = Re (σ2) and Im (σ1) = − Im (σ2) . For 
simplicity we take the real parts of σ1 , σ2 as zero and thus, σ1 = −σ2 ≡ i σ , where σ is the gain/loss parameter. 
Recent work on the classical and quantum version of the linear PT  dimer aim at ascertaining its potential for 
future light transport in optical circuits31.

Here, we explore the effect of using a fractional-order derivative for the PT  dimer. The equations have the 
form

whose exact solutions can be extracted from the general solution, Eqs. (18) and (19) as

where Eα,β(z) = E1α,β(z) is known as the generalized Mittag–Leffler function

The function Eα,β(z) is the natural extension of the exponential function and plays the same rol for fractional 
differential equations, as the exponential function does for the standard integer differential equations. The initial 
conditions used are inspired from optics where the dimer stands for a system of two coupled waveguides, where 
optical power is placed on one guide (“guide 1”) only, and the exchange dynamics is studied, in the presence of 
gain/loss and/or nonlinearity. Of course, more general initial conditions can be treated using this same Laplace 
formalism, or by superposing solutions with simple initial conditions in a judicious manner.

Two interesting limiting cases can be extracted from the general solution. The first one is the limit α → 0 . 
In this case,

(21)
i
dαφ1(z)

dzα
+ iσφ1(z)+ φ2(z) =0

i
dαφ2(z)

dzα
− iσφ2(z)+ φ1(z) =0

(22)
φ1(z) =− σ zαE2α,α+1

(

(σ 2 − 1)z2α
)

+ E2α,1
(

(σ 2 − 1)z2α
)

φ2(z) =izαE2α,α+1

(

(σ 2 − 1)z2α
)

,

(23)Eα,β(z) =
∑

k

zk

Ŵ(αk + β)
.

Figure 2.   Dimer amplitudes for the linear case ( γ = 0 ) and several site energy parameters σ1, σ2 and different 
fractional derivative orders α . Solid(dashed) line denotes |φ1|2 (|φ2|2).
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which could be interpreted as a linear selftrapping. In the absence of gain/loss, |φ1|2 = |φ2|2 = 1/4 . Further 
increase in σ decreases the amplitudes and, when σ → ∞ , |φ1|2 → 1/σ 2 and |φ2|2 → 1/σ 4 . The second case is 
the standard one, α → 1 , where we have

Thus, for σ 2 > 1 , we gave exponential growth, while for σ 2 < 1 there is oscillatory behavior. This behavior at 
α = 1 can also be seen for other smaller α values, as Fig. 3 shows. The figure shows examples of time evolutions 
for |φ1|2, |φ2|2 for several fractional orders and several gain/loss parameter values. In general we observe that, 
while α tends to create damped oscillations, the presence of σ 2 < 1 produces a degree of amplification of the 
oscillations and, for σ 2 > 1 , it gives rise to an unbounded amplification.

The asymptotic behavior of φ1(z),φ2(z) depends on the behavior of the Mittag–Leffler functions Eα,β(z) at 
large values of |z|. After writing z = |z| exp(iφ) , we have32

where Q = z1/α = exp((1/α) log(|z|)+ i φ) and |φ/α| ≤ π ( φ = σ 2 − 1 ). This implies,

Thus, bounded behavior in time will occur for (π/2) < |φ/α| < π , while unbounded behavior occurs for 
0 < |φ/α| < π/2 . In our case, φ = arg (σ 2 − 1) = 0,π , implying that φ1(z) and φ2(z) will increase (decrease) 
asymptotically in time if (σ 2 − 1) is positive (negative). This behavior is sketched in Fig. 4.

The nonlinear PT  dimer.  We now explore a PT  dimer in the presence of nonlinearity, and subject to 
fractional evolution equations

(24)
φ1(z) =(1− σ) E0,1(σ

2 − 1) =
1− σ

2− σ 2

φ2(z) =i E0,1(σ
2 − 1) =

i

2− σ 2
,

(25)
φ1(z) =− σ zE2,2

(

(σ 2 − 1)z2
)

+ E2,1
(

(σ 2 − 1)z2
)

= −σ
sinh

(
√
σ 2 − 1z

)

√
σ 2 − 1

+ cosh
(

√

σ 2 − 1 z
)

φ2(z) =izE2,2
(

(σ 2 − 1)z2
)

= i
sinh

(
√
σ 2 − 1 z

)

√
σ 2 − 1

.

(26)Eα,β(z) ≈ (1/α) Q1−β exp(Q)

(27)exp(Q) = exp(|z|1/α cos((1/α)φ))× exp(i |z|1/α sin((1/α)φ))

Figure 3.   Dimer amplitudes |φ1(z)|2 (continuous line) and |φ2(z)|2 (dashed line) for the linear PT  case 
( γ = 0, σ �= 0 ) for several fractional derivative orders and various gain/loss parameters. (a) α = 1, σ = 0 , 
(b) α = 0.9, σ = 0 , (c) α = 0.5, σ = 0 , (d) α = 0.25, σ = 0 , (e) α = 1, σ = 0.5 , (f) α = 0.9, σ = 0.5 , (g) 
α = 0.8, σ = 0.5 , (h) α = 0.25, σ = 1.1 , (i) α = 0.8, σ = 1.1.
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In the absence of PT  symmetry ( σ = 0 ), and for order α = 1 , Eq. (28) have been explored before in 
the literature33–35. For initial conditions φ1(0) = 1,φ2(0) = 0 , it was shown that they lead to the phenom-
enon of a seltrapping transition: The existence of a critical nonlinearity parameter γc = 4 below which, the 
long-time average of the square of the amplitudes, �|φ1,2|2� = (1/T)

∫ T
0 |φ1,2|2dz (with T ≫ 1 ) is the same: 

�|φ1|2� = �|φ2|2� = 1/2 . At nonlinearity values above γc , �|φ1|2� increases past 1/2 and converges to 1 at large γ 
values, while �|φ2|2� decreases towards zero. The trapped fraction at the initial site, �|φ1|2� , increases abruptly as 
the critical nonlinearity is crossed.

In the presence of PT  symmetry and nonlinearity both, the nonlinear dynamics of the excitation exchange 
and the Hamiltonian nature of the nonlinear dimer have been recently explored36–38. It is interesting to note that 
the nonlinear PT  dimer has a Hamiltonian structure in spite of being a system containing losses and gains.

For a fractional order derivative ( 0 < α < 1 ), where we take the Caputo version of the fractional derivative, 
and in the presence of PT  symmetry, we resort to the Grunwald algorithm39 to compute the time evolution of 
φ1(z),φ2(z) for initial conditions φ1(0) = 1,φ2(0) = 0 . This approach is based on finite differences, and in our 
case leads to the following difference equations:

where X ≡ φ1,Y ≡ φ2 , and

Numerical results are shown in Fig. 5. In panel (a) we show the behavior of |φ1(z)|2 in the linear limit 
( γ = 0 ), for a fixed α and several different gain/loss parameter values. We see that the effect of increasing σ is 
to augment the amplitude and decrease the frequency of the oscillation. When σ approaches 1, the amplitude 
grows unbounded and the oscillation stops. In panel (b) we take γ = 0 as before, with a fixed gain/loss σ and 
for several order α values. As we noticed before, the presence of 0 < α < 1 induces a decreasing oscillation 
behavior in |φ1(z)|2 . If we reduce now the value of α , we see a further decrease of the oscillation amplitude, 
with little effect on the frequency. We now move to the nonlinear case. In panels (c, d) we show the behavior of 
|φ1(z)|2 in time for fixed α, σ parameters and for several γ values. Roughly speaking, what we observe here is that 
there seems to exist a special nonlinearity value below which the curves decrease steadily to zero at long times, 
and above which they approach a constant nonzero value in time. To help understand this, we show in Fig. 5e 
�|φ1|2� = (1/T)

∫ T
0 |φ1|2dz (T ≫ 1) , the time-averaged fraction remaining at the initial site vs the nonlinearity 

strength. As soon as the nonlinearity increases from zero there is a finite amount of trapping at the initial site 
that increases monotonically with nonlinearity. As the nonlinearity parameter reaches a critical value γc whose 
precise value depends on α , there is an abrupt increase in �|φ1|2� signaling a seltrapping transition, like in the 

(28)
i
dαφ1(z)

dzα
+ iσφ1(z)+ φ2(z)+ γ |φ1(z)|2φ1(z) =0

i
dαφ2(z)

dzα
− iσφ2(z)+ φ1(z)+ γ |φ2(z)|2φ2(z) =0

(29)

Xn+1 =
n+1
∑

ν=1

�α
νXn+1−ν + ih

(

Yn + iσXn + γ |Xn|2Xn

)

+ rαn+1X0

Yn+1 =
n+1
∑

ν=1

�α
νYn+1−ν + ih

(

Xn − iσYn + γ |Yn|2Yn

)

+ rαn+1Y0

(30)�α
ν = (−1)ν−1

(

α

ν

)

rαν =
ν−α

Ŵ(1− α)
.

Figure 4.   Asymptotic stability for the amplitudes φ1(z),φ2(z) for the fractional PT  dimer system (22). Here, 
U ≡ unbounded , B ≡ bounded , and ξ = (σ 2 − 1)z2α . The dots denote the position of our two phases, 
phase (σ 2 − 1) = 0 for σ 2 − 1 > 0 , and phase (σ 2 − 1) = π for σ 2 − 1 < 0.
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standard ( α = 1 ) nonlinear dimer. What is interesting though, is that if we continue increasing the nonlinear-
ity past the critical point, the trapped fraction begins to decrease instead of increasing towards unity as in the 
standard case. This fragility of the trapping could perhaps be a manifestation of the tendency of α to decrease the 
amplitude of oscillations in general. Thus, what we are seeing here is the interplay of two opposing tendencies: 
Trapping by nonlinearity and amplitude decay by α.

Conclusions
We have examined the excitation dynamics in a nonlinear PT  dimer when the evolution equations are ruled by 
a fractional-order time derivative, instead of the usual first-order. In the absence of nonlinearity we solved the 
fractional PT  dimer equations in closed form, using the formalism of Laplace transform, obtaining a solution 
in terms of Mittag–Leffler functions.

The system is admittedly a complex one since it combines several behaviors stemming from fractionality, gain/
loss and nonlinearity. The general solution shows that, in the absence of gain/loss and nonlinearity, the effect of 
the fractional derivative alone is to induce a damping in the oscillatory exchange between the two sites. When 
gain/loss effects are added, we observed two regimes: For gain/loss parameter smaller than a certain threshold, we 
observe an amplification of the oscillatory amplitudes. The α → 0 case shows that, for gain/loss below threshold, 
the dynamics is sinusoidal, while above threshold it leads to an exponential growth.

Finally, when nonlinearity is added to the picture, and for a gain/loss below threshold, we observe selftrap-
ping at long times at the initial site, that increases steadily as the nonlinearity reaches a critical value. Above this 
nonlinear threshold, the trapped fraction at the initial site decreases monotonically as nonlinearity is increased 
further. This is in marked contrast with the standard case where an increase in selftrapping produces a mono-
tonic increase in selftrapping. When the gain/loss parameter is above threshold, the unbounded behavior can be 
arrested by the selftrapping tendency of the nonlinearity giving rise to a non-zero saturation of the amplitudes 
as a function of time.
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