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Large-scale exome sequencing of tumors has enabled the identi-
fication of cancer drivers using recurrence-based approaches. Some
of these methods also employ 3D protein structures to identify
mutational hotspots in cancer-associated genes. In determining such
mutational clusters in structures, existing approaches overlook
protein dynamics, despite its essential role in protein function. We
present a framework to identify cancer driver genes using a
dynamics-based search of mutational hotspot communities. Muta-
tions are mapped to protein structures, which are partitioned into
distinct residue communities. These communities are identified in a
framework where residue–residue contact edges are weighted by
correlated motions (as inferred by dynamics-based models). We
then search for signals of positive selection among these residue
communities to identify putative driver genes, while applying our
method to the TCGA (The Cancer Genome Atlas) PanCancer Atlas
missense mutation catalog. Overall, we predict 1 or more muta-
tional hotspots within the resolved structures of proteins encoded
by 434 genes. These genes were enriched among biological pro-
cesses associated with tumor progression. Additionally, a compari-
son between our approach and existing cancer hotspot detection
methods using structural data suggests that including protein dy-
namics significantly increases the sensitivity of driver detection.
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Large-scale cancer genome studies, such as The Cancer Ge-
nome Atlas (TCGA) project (1, 2) and the International

Cancer Genome Consortium (ICGC) (3, 4), have generated
comprehensive catalogs of somatic alterations for various cancer
cohorts. The majority of these somatic variants incur little or no
functional consequence on tumor progression and are thus often
termed neutral “passengers.” In contrast, a handful of “driver”
mutations are considered to provide a selective advantage to
cancer cells. One of the critical goals of TCGA and ICGC projects
has been to distinguish between these positively selected “driver
mutations” (5–7) from a large number of neutral passenger
mutations.
A majority of the cancer-driver detection algorithms quantify

the recurrence of mutations to identify significantly mutated
genes and noncoding genomic elements (8–11). However, the
somatic mutational landscapes of cancer genomes are highly
heterogeneous (12–14) and exhibit a long tail of low-frequency
mutations (11, 13, 15–17). The presence of this long tail of rare
somatic mutations, along with limited cohort sizes, makes
recurrence-based driver identification very challenging. This long
tail often contains many latent drivers (18, 19): That is, variants
which may not individually confer selective advantages to tumor
cells, but which can potentially drive tumor growth in the pres-
ence of other mutations. Thus, canonical recurrence-based ap-
proaches are likely to overlook such latent drivers.
An alternative is to employ algorithms that aggregate muta-

tion recurrence on gene/element-levels (11, 20) or to predict the
molecular functional impact of mutations (21) to distinguish driv-
ers from passengers. Compared to protein-truncating mutations
and large structural variants, missense mutations induce subtle
changes, which are often difficult to interpret on the phenotypic

level. Thus, identifying missense driver mutations based on their
molecular functional impact (22) is also challenging. However, the
signal of positive selection aggregated on functional elements or
subregions of the coding genome [such as protein domains (23–25),
posttranslational modification sites (26–28), protein interaction
interfaces (29, 30), and mutation cluster/hotspots (31–33)] has been
shown to be effective. We note that these approaches are in-
herently limited by the fact that only a subset of mutations might
occupy these functional elements or subregions.
Prior studies have identified driver mutations based on their

presence in mutational clusters (31–33), which are often called
“hotspot” regions. These mutational clusters are defined based
on the proximity of somatic mutations within the primary se-
quence (31, 33) or 3D structure of a given protein (34–38).
Linear sequence-based mutational cluster identification algo-
rithms (31, 33, 39) discover significantly mutated genes while
considering an appropriate background mutation model, tri-
nucleotide context, and distribution of silent mutations. How-
ever, sequence-based approaches miss many hotspot regions, as
they ignore spatial proximity between residues that may be far
apart in sequence but very close in 3D space (40, 41). In contrast,
despite being inherently limited due to incomplete structural
coverage of the proteome, 3D structure-based mutational cluster
definitions often provide physical intuition or mechanistic in-
sights into the roles of such clusters in cancer progression (29,
35–38, 40, 42). These structure-based methods compute residue
distances or generate residue–residue contact networks in the 3D
structures of proteins to identify a group of spatially proximal
residues. Furthermore, mutation shuffling is performed to identify
significantly mutated residue clusters or hotspots on protein
structures. However, current approaches under this framework
have failed to consider protein dynamics.

Significance

The identification of cancer drivers is essential for realizing the
goal of precision medicine in cancer. By integrating 3D protein
structures and dynamics, we describe a framework to identify
cancer driver genes using a sensitive search of mutational
hotspot communities in 3D structures. Our workflow identifies
previously identified driver genes as well as unidentified pu-
tative drivers.
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Proteins are inherently dynamic and sample large ensembles
of conformations (43–46). The energy landscape underlying the
distribution of structures in these ensembles are often altered
based on external (thermodynamic) (45, 47) or internal (allo-
steric) signals (46, 48–50). Previous biophysical studies have
clearly shown the crucial role of protein motions in conferring
protein functionality (51–55). Thus, prior structure-based driver-
detection methods that employ only static structures of proteins
are generally less sensitive when attempting to identify functional
residues under the mutation clustering framework.
In particular, a static crystal structure provides only 1 limited

snapshot of the protein, most likely close to (or at) the bottom of
the free-energy landscape. In contrast, motion-weighted com-
munity detection approaches more accurately reflect the physical
reality in which proteins undergo 2 general types of dynamics.
First, a protein can dynamically oscillate around the bottom of its
energetic well, and second, dynamics may arise when the un-
derlying free-energy landscape itself changes in distinct ways,
thereby shifting the protein conformation to an alternative
functional state. In each of these scenarios, communication be-
tween different communities plays a pivotal role in the proper
functioning of the protein. We posit that hotspot communities
exist in large part because certain select communities either play
essential roles in these functional dynamics or because their
contributions to such dynamics are especially sensitive to muta-
tions. Static representations of protein structures can fail to
sensitively define communities in light of the essential role of
dynamics in function. Furthermore, such static models poten-
tially miss many critical mutational clusters with a potential role
in cancer progression.
In the present work, we address this issue by explicitly in-

corporating protein dynamics into our framework to identify
mutational hotspot communities in protein structures. We ap-
plied this framework to the TCGA PanCancer Atlas catalog of
missense mutations to identify genes with significantly mutated
residue communities in protein structures. Our pan-cancer
analysis identifies 434 unique genes with at least 1 hotspot
community in the corresponding protein structure. The majority
of these genes are involved in critical biological processes and
pathways that play a vital role in cancer progression, including
DNA repair, signal transduction, apoptosis, and posttranslational
modifications. As expected, we observed higher cross-species
conservation scores and greater functional impact scores for mu-
tations within these hotspot communities. Furthermore, our pre-
diction includes previously characterized driver genes with hotspot
communities in corresponding protein structures. Additionally, we
also identified genes with at least 1 hotspot community that were
not detected by other mutation cluster algorithms lacking in-
formation on protein dynamics. Finally, we highlight some ex-
amples of driver genes containing hotspot communities that are
predicted to play vital roles in cancer progression.

Materials and Methods
SNV Dataset and Mapping to Protein Structures. We leveraged the MC3
(multiple-center mutation calling in multiple cancer) (56) somatic mutation
dataset generated as part of the TCGA PanCancer Atlas project. Briefly, the
MC3 call set was generated using ∼10,000 tumor/normal whole-exome se-
quences belonging to 33 different cancer types. Multiple callers, including
MuTect (57), RADIA (58), SomaticSniper (59), and VarScan (60) were applied
to obtain high-confidence variant calls. Subsequent filtering removed mu-
tations due to lack of coverage, potential germline contamination, and
other artifacts. We utilized v2.8 of the publicly accessible MC3 variant call set
(5). Furthermore, we only analyzed missense mutations that were desig-
nated as “PASS” based on the filtering criterion. Moreover, we only ana-
lyzed variants from samples that were included in the whitelist samples and
were not hypermutated. This subset comprises 2.85 million mutations from
8,937 samples in the PanCancer Atlas project. Approximately 2.75 million
mutations in this subset occupy the coding regions of the genome that

consists of 1.5 million missense mutations, 0.6 million silent mutations,
1.18 million nonsense mutations, and 3.7K splice mutations.

We applied the Variant Annotation Tool (VAT) (61) to map TCGA missense
mutations to protein structures. For each missense mutation, VAT provides
an annotation that includes the gene name, transcript name, and the position
of the affected residue in the translated protein sequence. Additionally, it
also provides the residue identities of both the wild-type and variant resi-
dues. Subsequently, we integrated VAT annotations with a BioMart-derived
identifier map (62), which consists of the gene identifier, transcript identi-
fier, and the corresponding PDB ID code, if available. We restricted our
analyses to mutations that map to crystal structures having resolutions that
are better than 3.0 Å. Overall, we mapped 0.329 million missense mutations
on ∼17,300 crystal structures in the present study.

Workflow to Identify 3D Hotspot Communities in Cancer. As discussed above,
our framework to predict driver genes by identifying hotspot communities is
distinct from previous methods in that we explicitly included protein dy-
namics in our workflow (Fig. 1). Briefly, we modeled large-scale conforma-
tional changes of each protein to identify nonoverlapping subregions (or
“communities”). The large-scale conformational changes are modeled using
anisotropic network models (48, 63). Subsequently, we modeled each pro-
tein structure as a residue-interaction network, wherein each residue con-
stitutes a node in the network, and edges (or connections between these
nodes, where connections are defined by close physical proximity) form the
physical interactions between these nodes. Furthermore, edges in a network
can be “weighted” using the extent to which contacting residues exhibit
correlated motions within the dynamic structure of the protein. Highly
correlated motions between 2 residues that are physically in contact (though
not necessarily covalently linked) suggest that knowledge of the motions for
one residue can provide a great deal of information regarding the motions
of the other residue. This mutual knowledge, in a sense, suggests a strong
degree of informational flow between residues. The weight for each edge in
the network corresponds to the “effective distance” of this edge, in which a
strong degree of correlated motion results in a short distance, and a weak
correlation in the motions results in a long distance. With this motion-
weighted protein network, communities of resides are defined with the
Girvan–Newman algorithm (64). A community constitutes a group of resi-
dues in which each residue is connected to other residues of the same
community, and only weakly connected (if at all) to residues outside the
immediate community. These network-weighted communities thus form
densely interconnected neighborhoods.

To identify mutational hotspot communities in a given structure, we first
mapped missense mutations from TCGA cohorts to 3D protein structures. We
then computed the frequency of mapped mutations for each community on
the pan-cancer level as well as in specific cancer cohorts. Furthermore, for
each community with mapped mutations, we performed Fisher’s exact test to
determine whether a given community is more frequently mutated than
what would be expected by chance. Fisher’s exact test assigns an empirical P
value to each community, which is corrected for multiple hypothesis testing
using the Benjamini–Hochberg method. Finally, these multiple hypothesis-
corrected P values are used to identify significantly mutated hotspot com-
munities encoded by a particular gene. We note that, for a substantial
number of genes, there are multiple PDB structures available. We removed
this structural redundancy using structural coverage (highest fraction of
residues covered in the structure) as a filter to provide 1-to-1 mapping be-
tween each PDB structure and its corresponding gene. The source code for
the workflow is available on the project’s Github page (https://github.com/
gersteinlab/HotCommics) (65).

Downstream Analyses. We performed a number of downstream analyses to
further validate our predictions. We extracted PhyloP (66) and CADD (67)
scores for each mutation mapped to a structure. Furthermore, we classified
mutations into hotspot and nonhotspot variants based on whether muta-
tions are mapped to residues belonging to hotspot communities or other-
wise. We then compared the phyloP score and CADD score distributions for
hotspot and nonhotspot mutations. We performed two-sided Kolmogorov–
Smirnov (KS) test to assess the significance of conservation score differences
between hotspot and nonhotspot mutations. We applied the same method
to quantify such disparities for the molecular functional impact (CADD) score
for hotspot and nonhotspot mutations. Here, our null hypothesis is that the
conservation or impact score for hotspot and nonhotspot mutations are not
(on average) different as they would be drawn from the same distribution.

We also performed gene ontology (GO) enrichment and pathway en-
richment analyses to further validate the role of our putative driver genes in
tumor progression. For the GO analysis, we calculated the enrichment based
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on biological processes available from the GO database (68), and we per-
formed pathway enrichment analysis using the Reactome (69) as well as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database (70). We visu-
alized the enrichment analysis result using the clusterProfiler (71) package
available in Bioconductor.

Additionally, we also compared our predicted driver gene list derived from
our hotspot community analysis with other cluster-based approaches (at the
level of both sequences and structures). One of the key differences between
our approach and other approaches is thatwe employ information on protein
dynamics (along with structural data) to determine hotspot communities. For
structure-based methods, we obtained the lists of predicted genes derived
from HotSpot3D (37), 3DHotSpot (36), and HotMap (38) algorithms. All 3 of
these algorithms were previously applied to TCGA PanCancer Atlas data (5),

which allows us to make direct comparisons with our work. However, we
also note small differences in our workflow compared to other structure-
based approaches. In contrast to many other methods that rely only of ex-
perimentally determined structures, HotMap also employs homology models
in order to expand structural coverage. Moreover, our method was applied
only on crystal structures of poorer resolution (in contrast to other methods
that included NMR as well as crystal structures of higher resolution). As part
of our comparisons, we also included predicted driver genes from a
sequence-based cluster analysis tool [OncodriverClust (33)] as well as pre-
viously curated driver genes in the Cancer Gene Census (CGC) database (72,
73). We note that we excluded driver genes in CGC that play roles in cancer
through INDELs, copy number aberrations, or other structural variations. We
used the UpsetR (74) package in R to visualize the multiway comparisons
among predicted driver genes from various tools and CGC database. In ad-
dition to these, we modified our original framework to identify putative
driver, where we don’t include motion-weighted edges to define commu-
nities on protein structures. We performed comparisons between the lists of
putative drivers for our weighted and unweighted approach.

Finally, we also performed gene-expression analysis to validate the role of
our putative driver genes in cancer at the transcriptome level. For this
analysis, we obtained the TCGA RNA-sequencing quantification available for
samples in the PanCancer Atlas Project (2). For each gene in our putative
driver gene list (based on hotspot community information), we compared
the gene-expression distribution for samples that harbor missense mutations
to those that are not mutated. We performed a 2-sided KS test to evaluate
the significance value for each gene in our putative gene list. These signif-
icance tests were carried out separately for each cancer type. However, we
combined the significance level (P value) for each gene across multiple
cancer types using the Fisher method. We visualized significantly differen-
tially expressed genes using a standard QQ plot.

Results
Pan-Cancer Analysis of Genes Containing Mutation Clusters. We ap-
plied our workflow to identify significantly mutated hotspot com-
munities for each cancer cohort as well as on the pan-cancer level.
As expected, we observed a relatively higher number of genes with
at least 1 hotspot community on the pan-cancer level compared to
cancer-specific analysis. Our pan-cancer analysis identifies hotspot
communities in protein structures of 434 unique genes (Fig. 2A
and Dataset S1). In contrast, a cancer-specific analysis revealed
56 potential driver genes with 186 significantly mutated hotspot
communities in the corresponding protein structure (Dataset S2).
Some of these genes (including TP53, PIK3CA, BRAF, SPOP,
KRAS, HRAS, and PTEN) have previously been shown to be
drivers for different cancer types. However, we also identified
numerous genes containing hotspot communities that might drive
cancer progression. Previous studies suggest that newly identified
driver genes, including RHOC, NCOA1, and KLHL12, are involved
in various signaling pathways. Similarly, PSPC1, FOXO3, and XRCC5
are known to be pivotal for immune response, apoptosis, and DNA
repair, respectively. Furthermore, among these 434 genes, 12 had
5 or more hotspot communities, whereas 352 genes had just
1 hotspot community. These results highlight the efficacy of our
approach in identifying novel and low-frequency putative driver
genes with hotspot communities.
Mutational cluster-based approaches assume that residues

constituting such clusters are essential for protein function. Thus,
a majority of cancer missense mutations occupying these hotspot
communities are very likely to disrupt the protein functionality.
In order to validate this assumption, we quantified the cross-
species conservation measure [PhyloP score (66)] for mutations in
hotspot as well as nonhotspot communities. As expected, we
observe higher average conservation scores for mutations asso-
ciated with residues in hotspot communities compared to those
outside of hotspots. Furthermore, the observed difference in
conservation was statically significant (2-sided KS test, P < 2e-5)
(Fig. 2B). Similarly, the putative molecular functional impact
[CADD score (67)] of mutations occupying hotspot communities
was significantly higher compared to those mapping to non-
hotspot communities (2-sided KS test, P < 2e-5) (Fig. 2C).

Fig. 1. Workflow of HotCommics to identify putative driver genes: This
integrative approach utilizes protein community information along with
mapped mutations to identify significantly mutated communities in protein
structures. Fisher’s method is employed to quantify the significance of var-
iant enrichment in each community with mapped mutations (thereby de-
fining the hotspot communities).
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We also preformed GO (71) and pathway enrichment analysis
to decipher the biological functions of genes with predicted
hotspot communities. The biological process-based GO enrich-
ment analysis implicates putative driver genes in diverse bi-
ological functions, including a role in the immune response, cell
differentiation, kinase activities, posttranslational modifications,
apoptosis, and DNA repair (Fig. 2D and Dataset S3). Similarly,
reactome (69) pathway-based enrichment analysis suggests that
putative driver genes with hotspot communities play roles in
various signaling pathways (Dataset S4), including NTRK signal-
ing, DAP12 signaling, EGFR signaling, and MAP kinase-associated
signaling. Additionally, these genes are also enriched among DNA
repair and nonhomologous end-joining–associated pathways (Fig.
2E). Furthermore, KEGG (75) pathway-based enrichment anal-
ysis indicates that our identified putative driver genes play roles in
various cancer subtypes (bladder, pancreatic, breast, chronic my-
eloid leukemia, melanoma, acute myeloid leukemia, glioma) (SI
Appendix, Fig. S1 and Dataset S5).

Comparisons of 3D Structure-Based Clustering Methods. We com-
pared our set of predicted drivers to the predicted drivers from
other methods, including the set of curated genes in the
COSMIC (72) database (Fig. 3A). Furthermore, we also performed
a comparison between putative driver genes identified using our
workflow and genes identified as drivers by other mutation
cluster detection algorithms that do not take protein dynamics
into account. The majority of these additional algorithms employ

the 3D structure of a protein to identify mutational clusters, with
the exception of OncoDriveClust (33), which searches for hotspot
mutations at the sequence level. Overall, our workflow identified
many additional genes (288 genes) with hotspot communities
compared to other mutation hotspot analysis tools (Fig. 3A). One
exception was the HOTMAP (38) algorithm, which utilizes protein
homology models in addition to protein structure. Thus, it iden-
tifies a significantly higher number of unique genes (620 genes)
with mutation clusters compared to any other tool. Furthermore,
our approach identified 146 genes (34% of our gene list) with
hotspot communities that are either curated as driver genes in
COSMIC or predicted to contain a mutation cluster by another
tool (Fig. 3A). Among these 146 genes, 89 genes overlapped
with putative driver genes identified by the HOTMAP algo-
rithm, whereas 63 genes overlapped with drivers in COSMIC.
As expected, we observed the lowest overlap (33 genes, 7% of
our putative driver gene list) with the sequence-based method
(OncoDriveClust) (Fig. 3A).
To evaluate the added predictive contribution of protein dy-

namics, we performed a controlled, comparative study in which
we identify driver genes under 2 schemes: first in which the edges
are weighted using the models of protein motions, and second in
which the edges are left unweighted (i.e., wherein all edges are
weighted the same, as in a static structure). We applied our
workflow on the same set of protein structures using these 2 ap-
proaches. Overall, we observed that, relative to the unweighted
static networks, we identified 49% more genes with 1 or more

Fig. 2. Pan-cancer analysis of putative driver genes with hotspot communities. (A) Pan-cancer QQ plot for genes with hotspot communities. (B) PhyloP
conservation score comparisons between mutations occupying hotspot communities against nonhotspot communities on protein structures. (C) CADD score
correlation between mutations occupying hotspot communities and nonhotspot communities on protein structures. (D) Biological process enrichment analysis
for putative driver genes with at least 1 hotspot. The x axis corresponds to the gene ratio quantifying the fraction of putative driver genes belonging to a
particular biological process. The color code and size correspond to corrected P value and number of genes involved in the biological process, respectively. (E)
Reactome-based pathway enrichment analysis. The color code and size quantify to corrected P value and number of genes involved in the biological process,
respectively.
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hotspot communities using the motion-weighted networks com-
pared to the unweighted approach (SI Appendix, Fig. S3). This
observation highlights the advantage of employing protein dynamics-
based community definitions. The motion-weighted network defini-
tion tends to result in larger sized (and thus fewer) communities
(SI Appendix, Fig. S4) relative to unweighted networks. The larger
community definitions provide higher statistical power to detect
low-frequency drivers. Additionally, we found that communities
identified using motion-weighted network edges performed better
at capturing biological annotations relative to unweighted net-
works (SI Appendix, Figs. S5 and S6).
Additionally, we analyzed TCGA expression data to obtain

further evidence corroborating the biological validity of putative
driver genes identified through our workflow. For each candi-
date gene, we quantified the statistical significance in expression
distribution differences using a 2-sided KS test. We performed
this test for individual cancer type, and the corresponding P
values were combined across cancer types using Fisher’s method
to provide a pan-cancer significance measure. Overall, our analysis
identified 60 genes, including TP53, SPTA1, PIK3CA, KRAS, and
EGFR that were differentially expressed across cancer types (Fig.
3B and Dataset S6). A subset of these differentially expressed
genes, such as MYH7, ROS1, TIAM1, PTPRD, and HUWE1 are
potentially novel driver genes with predicted hotspot communities
(Fig. 3B and Dataset S6). Moreover, we note that 76% of our pu-
tative driver gene list with significantly mutated hotspot communi-
ties were differentially expressed in at least 1 TCGA cancer cohort.
Finally, we also performed GO and pathway enrichment

analysis on genes that have not been previously reported to be
cancer driver but for which we identified mutational hotspot
communities. These genes are defined to be those that were

neither present in the COSMIC driver database nor were pre-
dicted to encompass mutation clusters using other hotspot iden-
tification tools. We observed significant enrichment of these genes
in crucial biological processes (Dataset S7), including DNA con-
formation change, regulation of immune response, regulation of
stem cell differentiation, nucleosome organization, and endothelial
cell apoptotic processes (SI Appendix, Fig. S2). Similarly,
pathway enrichment analysis implicates their role in DNA
repair, SUMOylation, RHO GTPase activity, telomere mainte-
nance, and various signaling pathways (Fig. 3C and Dataset S8).

Case Studies Highlighting the Roles of Hotspot Communities in
Deciphering Driver Mechanisms. Integrating knowledge of 3D
structures and protein dynamics to identify driver genes has a
clear advantage over other methods that do not leverage protein
structure or dynamics. Our method allows us to investigate dis-
ruption in protein structure and function induced by missense
mutations within predicted hotspot communities. We also note
that the majority of our hotspot communities encompass residues
that are pivotal for important protein functions, including allostery,
bimolecular signaling, protein binding, and posttranslation modi-
fications. The sensitive detection of functional sites on protein
structure helps to decipher the underlying biophysical mechanism
that plays a crucial role in cancer growth. Here, we highlight
3 examples to showcase the utility of our framework in gaining
biophysical insights into cancer progression through disruption
of predicted hotspot communities. These examples include an
oncogene (BRAF), a tumor suppressor (PIK3R1), and a previously
unreported putative driver (PTPRD), all of which are predicted to
contain multiple hotspot communities on their respective structures.
PTPRD is a transmembrane protein containing a cytoplasmic

Fig. 3. Comparison with other hotspot detection tools. (A) Comparison of multiple driver detection algorithms represented using the upset plot. We used
the most recent version of the CGC database for this analysis. All algorithms were run on the TCGA-MC3 variant call set. Numbers of identified driver genes
common to different sets of methods are shown in the bar chart (Upper), and those unique to specific methods in each set are indicated with solid points
below the bar chart. (B) QQ plot highlighting differentially expressed putative driver genes across multiple cancer types. (C) Pathway-level enrichment
analysis of those singleton genes identified by HotCommics that were novel (with respect to putative driver genes identified by other algorithms and/or the
CGC database).
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tyrosine phosphatase domain. PTPRD is absent in the COSMIC
driver gene database, and existing methods which ignore protein
dynamics do not identify this gene as a cancer driver. Besides, the
“static version” of our framework (i.e., wherein network com-
munities are identified without weighing the edges using dynamics)
failed to identify PTPRD as a driver. Thus, through this example,
we demonstrate that including dynamics constitutes an essential
feature in the search for novel drivers.
Missense hot spot communities in PIK3R1. The PI3KR1 gene encodes
the α-subunit of the enzyme Phosphatidylinositol 3-kinase, which
plays a crucial role in a variety of cellular processes, including
cell survival, regulation of gene expression, cell metabolism, and
cytoskeletal rearrangement (76). Mutations in PIK3KR1 (a tumor
suppressor gene) have previously been implicated in breast cancer.
Recent therapeutic studies have targeted PI3K inhibition resulting
in a decrease in cellular proliferation and reduced metastasis in
the mouse model. PI3Ks are obligate heterodimers composed of
a p110 subunit and a regulatory subunit. Previous studies have
identified 4 distinct domains belonging to the catalytic P110
α-subunit that harbor somatic mutations leading to an increase in
PI3K activity. We observed 2 distinct hotspot communities (Fig.
4A) on the cocrystal structure (PDB ID code 2V1Y) of the protein
complex that compromises the adaptor-binding domain (ABD) of
the P110 α-subunit and the iSH2 domain of the p85 α-regulatory
subunit (76). The 2 hotspot communities are composed of 28
(community 5) and 26 (community 7) residues, respectively (Fig.
4A). On the pan-cancer level, we observed 24 and 16 mutations
that map to community 5 and community 7 on the cocrystal
structure, respectively. These distinct hotspot communities are
adjacent to each other in the same helical structure. However, we
observed a small kink in this helical structure, which presumably
leads to distinct protein motions associated with these 2 different
hotspot communities. Additionally, both these communities oc-
cupy the iSH2 domain that plays an essential role in proper
binding to the ABD domain (76). Thus, the presence of these
mutational hotspot communities in the iSH2 domain is likely to
influence the ABD–iSH2 interaction in tumor samples. Further-
more, modification in this interaction might affect the binding
between ABD and the catalytic region of the p110 subunit. The

altered interaction may trigger hyperactivation of the PI3K path-
ways (77), which are often implicated in various types of cancer.
Missense hotspot communities in BRAF. The BRAF gene encodes a
protein belonging to the serine/threonine protein kinase family
that regulates MAP kinase and ERK signaling pathway (78). This
pathway is considered to be essential for a number of biological
functions, including cell differentiation, cellular growth, senes-
cence, and apoptosis. Somatic mutations in the BRAF gene are
often implicated in various cancer subtypes, including melanoma,
colorectal cancer, prostate cancer, nonsmall-cell lung cancer, and
papillary thyroid tumors (79). The BRAF protein comprises
3 distinct conserved regions: CR1, CR2, and CR3. The CR1 region
constitutes the RAS-binding domain and functions as an auto-
inhibitor. The BRAF kinase domain is encoded by the CR3 region
of the BRAF protein. The N terminus of the CR3 region contains
the P-loop region that stabilizes ATP binding. Additionally, the
CR3 region also comprises an αC-helix and the dimerization in-
terface, which maintains the inactive state of BRAF. Finally, the
C-terminal end of the CR3 region consists of a catalytic loop, the
DFG motif, and the activation loop. These elements in the CR3
region facilitate binding of substrate proteins to BRAF and
maintains the protein in the inactive state. It has been proposed
that mutations in BRAF induce dysregulation in the binding of
Ras to Raf and MEK proteins within the Ras/RAF/MEK/ERK
signaling cascade, thereby leading to overactivation of the signaling
pathway and subsequent oncogenesis (79). Multiple enzyme in-
hibitors have been designed to target BRAF kinase. One such
inhibitor (aminoisoquinoline) has been cocrystallized with the
BRafV600E kinase domain at a resolution of 2.7 Å (PDB ID code
3IDP) (80). In our study, we identified 1 hotspot community in this
cocrystal structure (Fig. 4B). This hotspot community is composed
of 52 residues that adopt a β-sheet of residues at the dimerization
interface, catalytic loop, and the DFG motifs in the CR3 region of
the BRAF protein. All of these elements of the CR3 region play
vital roles in maintaining the inactive state of the native BRAF
protein. Thus, recurrent cancer mutations can facilitate changes in
the conformation of BRAF from its inactive state to an active
state, thereby potentially driving tumor progression.
Missense hotspot community in PTPRD. The PTPRD gene encodes a
protein that belongs to the protein tyrosine phosphatase (PTP)
family. PTP proteins are considered to be essential for regulating
cellular proliferation, differentiation, and oncogenic trans-
formation. The PTPRD gene encodes a transmembrane protein
containing a cytoplasmic tyrosine phosphatase domain. Previous
studies have shown that PTPRD genes are frequently deleted in
various cancer types, including glioma, neuroblastoma, and lung
cancer (81). However, we note that PTPRD is not identified as
missense driver in COSMIC (82). Moreover, previous studies did
not identify mutational hotspot communities in the PTPRD gene.
In contrast, our analysis identifies 1 hotspot community in the
crystal structure (PDB ID code 2YD7) of the receptor protein
tyrosine phosphatase (RPTP) σ-subunit.
RPTPs are cell surface proteins with intracellular PTP activity

and extracellular domains that are sequentially homologous to
cell adhesion molecules. Moreover, the RPTP σ-subunit is con-
sidered necessary for nervous system development and function.
In our analysis, somatic mutations occur in 2 communities (com-
munities 2 and 4) on the crystal structure of the RPTP σ-subunit.
Our workflow predicts 1 hotspot community that comprises
47 residues in the crystal structure of PTPRD (Fig. 4C) and
constitutes a β-sheet conformation (83). This hotspot community
comprises residues primarily belonging to the Ig1 and Ig2 domains
of the RPTP σ-subunit, which facilitate binding to heparan-sulfate
glycosaminoglycans (HSGAGs) polysaccharides. HSGAGs mod-
ulate cell signaling and tumorigenesis by regulating autocrine
signaling loops (84). The presence of predicted hotspots in the
Ig1-2 domain of the RPTP σ-subunit is likely to alter its binding to
HSGAGs and may play role in tumor progression.

Fig. 4. Examples of a tumor-suppressor gene, an oncogene, and a putative
driver with hotspot communities. (A) Hotspot communities (shown in red) in
PIK3R1, as identified by our workflow. Previous studies have also identified
the PIK3R1 gene as a tumor-suppressor gene. (B) Hotspot communities in
BRAF, as identified by our workflow. Previous studies have identified
BRAF1 gene as an oncogene. (C) Hotspot communities in PTPRD, as identi-
fied by our workflow. PTPRD is an example of a novel putative driver gene.
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Discussion
The underlying heterogeneous nature of cancer (14) makes in-
terpretability of genomic alterations in a given cancer genome very
challenging. In particular, genomic heterogeneity poses a major
challenge in identifying key cancer-driver mutations. Large-scale
genome sequencing efforts have helped us to generate compre-
hensive catalogs of driver mutations (5) in various cancer types.
However, the canonical recurrence-based driver-detection algo-
rithms have failed to identify low-frequency or rare drivers. The
limited cohort size (11) and heterogeneity (14) in cancer genomes
provides limited power to identify low-frequency drivers using the
canonical position-level recurrence algorithms. A simplistic ap-
proach to address the issue of missing rare drivers would be to
sequence more patients for a given cancer type. However, this will
be particularly challenging for highly heterogeneous cancer co-
horts with multiple subtypes (85).
Moreover, this approach will not be practical for certain rare

cancers, such as neuroblastoma, angiosarcoma, Hodgkin’s lymphoma,
and various pediatric cancers. One potential remedy is to quantify
recurrence over functional elements, such as posttranslational
modification sites (27, 28) and protein interaction interfaces (30).
However, many rare and latent drivers (19) may not fall within
well-defined functional annotation sites. Thus, a suitable alterna-
tive is to measure recurrence of variants within entire subregions
of genes (86), thereby identifying mutational clusters or neighbor-
hoods (35–38, 40). Aggregating multiple variants into such clusters
can mitigate the issues posed by the limited statistical power of
quantifying position-level recurrence of individual variants.
In particular, many driver-detection algorithms search for the

presence of mutational hotspots in 3D-protein structures to
identify putative driver genes. Compared to sequence-based
driver-detection methods, using protein structural data can help
to decipher the underlying molecular mechanisms that influence
cancer progression. However, current approaches to identify such
hotspots and their corresponding host driver genes completely
ignore the role of protein dynamics, which are essential for protein
function. Thus, here we propose a framework that integrates pro-
tein dynamics and 3D-structures to identify missense hotspot
communities and their associated putative driver genes.
Overall, our workflow identified 802 hotspot communities on

crystal structures of proteins corresponding to 434 unique genes on
the pan-cancer level. We also compared our putative driver-gene list
with derived driver-gene lists generated in previous experimental and
prediction-based studies. Among our putative driver-gene list, we
found 36% of genes are either known or predicted to be driver genes
based on previous studies. We term the remaining 64% of genes
“novel drivers.” We performed many downstream analyses on our
putative driver genes to highlight their roles in cancer progression.
Our framework assumes that a residue community on a protein

structure represents a putative functional subunit of a protein. Thus,
high mutation densities in such communities (compared to a random
expectation) is very likely to alter protein function. One would expect
that mutations influencing residues in these communities will have a
high functional impact as they can drive cancer progression. Our
observation is consistent with this hypothesis, as we find that missense
mutations occupying hotspot communities in protein structures are
highly conserved across species and have a higher molecular func-
tional impact compared to those outside such hotspot communities.
Furthermore, we also observed significantly higher enrichment

of our putative driver genes with predicted hotspot communities
in vital biological processes and pathways that are relevant for
oncogenesis. For example, our ontological analysis indicates
enrichment of our putative driver genes in biological processes
associated with regulation and activation of the innate immune
response. This observation is consistent with the current notion
that dysfunction in the immune response (as a result of genomic
alterations) may allow tumor cells to evade immune detection.

Additionally, we also observed a significant enrichment of pu-
tative driver genes in cell differentiation and cell growth processes,
such as the regulation of hematopoiesis and myeloid cell differen-
tiation, which were previously implicated in tumor growth. More-
over, we observed a high enrichment of our putative driver genes in
the regulation of kinase activities, including protein serine/threo-
nine and MAP kinase activities. Additionally, these genes are also
enriched among ERK1/ERK2 signaling cascade, protein kinase B
signaling, PI3K/AKT signaling, FGFR1 signaling, NTRK1 signal-
ing, apoptosis signaling, and various other signaling pathways.
Aberrant signaling pathways constitute an essential hallmark of
cancer. Thus, the enrichment of our putative driver genes in critical
signaling pathways provides clear biological evidence for their role
in cancer. Moreover, these genes are enriched for DNA repair function
via nonhomologous end joining and other nonrecombination-
based repair mechanisms. Finally, we note that we observed the
same enrichment for the subset of novel genes that have not been
identified as driver genes in previous studies.
Genomic alterations that are consequential for tumor growth are

often manifested on the transcriptome level such that mutated driver
genes are often differentially expressed compared to a healthy
population or patients without any mutation in driver genes. We
leveraged the transcriptome data from TCGA to identify genes
among our list of putative driver genes that are also differentially
expressed. We identified 60 genes among our predicted driver genes
that were differentially expressed in tumor samples. These differ-
entially expressed putative driver genes include novel as well as pre-
viously established driver genes. As with genomic data, the amount
of transcriptomic data for each individual cohort is not sufficiently
large to provide enough statistical power for identifying differentially
expressed genes. However, we note that 76% of our putative driver
genes were differentially expressed in at least 1 TCGA cancer cohort.
These analyses further validate our hotspot community-based driver-
detection approach. Finally, we note that our current framework
identifies the hotspot communities in putative driver genes without
specifying putative driver mutations. However, a close inspection of
molecular functional impact score and residue-level annotation of
mutations in our putative hotspot communities can be utilized
to identify the putative driver mutations.
In the context of investigating the molecular mechanism un-

derlying tumor growth, protein structure-based driver-detection
methods offer significant advantages over approaches that are
limited to sequence space. However, structure-based methods
suffer from limited coverage of the human proteome. Thus, the
applicability of structure-based methods is, of course, limited
only to mutations that can be mapped to protein structures. A
prior study (38) has applied homology model-derived structures
to circumvent the issue of limited structural coverage. However,
the accuracy of homology-based models has shown to be limited
for various protein complexes and transmembrane proteins.
Moreover, modeling protein motions for homology-model–
derived protein structures would most likely be less accurate,
thereby affecting sensitivity. Nevertheless, significant technical im-
provements in crystallographic and cryo-EM techniques (87) are
expected to expand the current structurally resolved proteome. In
particular, cryo-EM technologies (87) now allow us to obtain a high-
resolution structure of large proteins and biomolecular complexes
that were previously elusive. Thus, we anticipate an essential role of
our approach in future studies aimed at discovering low-frequency
drivers in various cancer cohorts. Additionally, knowledge of protein
motions (along with structures) can potentially help uncover drug-
gable hotspot communities. Such studies are likely to open new
therapeutic avenues for various cancers and will help in realizing the
goal of precision medicine in cancer.
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