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Abstract

With strong and valid predictions, grasping a message is easy, whereas more demanding processing is required in the
absence of robust expectations. We here demonstrate that brain correlates of the interplay between prediction and
perception mechanisms in the understanding of meaningful sentences. Sentence fragments that strongly predict
subsequent words induced anticipatory brain activity preceding the expected words; this potential was absent if context
did not strongly predict subsequent words. Subjective reports of certainty about upcoming words and objective
corpus-based measures correlated with the size of the anticipatory signal, thus establishing its status as a semantic
prediction potential (SPP). Crucially, there was an inverse correlation between the SPP and the N400 brain response. The
main cortical generators of SPP and N400 were found in inferior prefrontal cortex and posterior temporal cortex,
respectively. Interestingly, sentence meaning was reflected by both measures, with additional category-specific sources of
SPPs and N400s falling into parieto-temporo-occipital (visual) and frontocentral (sensorimotor) areas for animal- and
tool-related words, respectively. These results show that the well-known brain index of semantic comprehension, N400, has
an antecedent with different brain localization but similar semantic discriminatory function. We discuss whether N400
dynamics may causally depend on mechanisms underlying SPP size and sources.
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Introduction
Perceiving the world is not just mapping the sensory input.
When looking around or when encountering a meaningful sen-
tence, we typically use what we have perceived to guide and
predict subsequent observations. In language comprehension,
predictions about subsequent phonemes, words, and even com-
municative actions may play an important role for the high
speed with which we are able to understand (MacGregor et al.
2012; Shtyrov et al. 2014). However, some contexts do not give
rise to strong predictions and, therefore, in such contexts, the

unexpected stimulus will convey new, previously unpredicted
information (Enns and Lleras 2008). Notably, the first-discovered
and most well-known neurophysiological index of language
understanding, the N400, is a brain index strongly affected by
expectations, as it increases in size depending on how unex-
pected a critical word is within its sentence context (Kutas and
Hillyard 1984; Kutas and Federmeier 2011).

Modern theories of perception and cognition put a great
emphasis on the role of “prediction” and “prediction errors”
(Schultz and Dickinson 2000; Friston 2010), the error arising
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when a prediction is falsified. For assessing and testing these
theories, it is of utmost importance to have available a brain
indicator of both prediction and prediction error. The N400 has
been proposed to reflect prediction errors (Rabovsky and McRae
2014), although alternative interpretations exist (Pickering and
Gambi 2018). A direct measure of prediction was unavailable
until recently, when a brain potential building up in highly
predictable contexts was discovered (Grisoni et al. 2016; Grisoni
et al. 2017; León-Cabrera et al. 2017; Pulvermüller and Grisoni
2020). In some of these studies, sentence fragments such as
“I take the ice cream and I . . . ” were presented and a fast-
rising negative going potential was found, which preceded the
presentation of the expected sentence continuation “ . . . lick it.”
Sentences without predictable continuation did not give rise
to this “semantic prediction potential,” or SPP, and, crucially,
dependent on the meaning of the predicted word, different
brain activation topographies and different SPP cortical sources
were found. In particular, for words used to speak about mouth
actions, such as “lick,” prediction-related activation was present
in inferior sensorimotor cortex, where face muscles are rep-
resented, whereas sentence fragments predicting hand-related
action words (e.g., “I take the pen and I . . . write a letter”) led
to an anticipatory potential with sources in lateral sensorimotor
cortex controlling hand actions (Grisoni et al. 2017). The fact that
aspects of the meaning of the predictable word were revealed by
the anticipatory potential supports the SPP’s role as an index of
semantic predictions.

However, previous studies of semantic predictions probed
very specific types of semantic predictions, involving critical
words referring to body part-related actions, thus leaving the
possibility that either the potential’s localization or even the
results generally are specific to this subset of sentences and
lexical items along with their action-related meaning. Predic-
tions about other semantic types could either not be reflected
by this neurophysiological dependent measure at all, which
would question its status as a general index of prediction, or the
prediction-related activity could emerge from entirely different
parts of the brain (Grisoni et al. 2019).

One crucial implication of predictive coding approaches is
that, the stronger a prediction about future input is, the smaller
the prediction error signal will be when the expected item
indeed appears. We note that this prediction is only valid if
the expected item indeed appears, but not for the rare cases,
where highly predictive sentence fragments are completed by
an entirely unexpected item, as in the typical “N400 violations,”
for example, “Joe drinks his tea with . . . socks.” In contrast, a lack
of predictability (or a reduction of the “precision” of the predic-
tion) implies uncertainty about the future input and therefore
greater surprise and necessity to process novel, unexpected,
information (Friston 2005). Although one may argue that it is
trivial that a previously predicted and thus highly expected
item brings about no (or little) surprise, whereas an unexpected
item does, the brain correlates of this prediction–resolution
(or prediction–integration) interplay are still unknown. Thus, a
crucial predicted effect is an inverse correlation between the
brain potential reflecting the level of “predictive semantic con-
straint” of a sentence context and the brain index reflecting
the “semantic” prediction error immanent to the unexpected
critical word. In brief, predictive coding implies that, in natural
language use, an inverse correlation exists between the SPP
preceding the critical word and the N400 following it. We note
again that these considerations apply to common sentences
as they frequently appear in natural language use. Exceptional

“semantic violations” of highly predictable sentence contexts
would clearly violate this rule.

To test this main prediction, we generated sentence frag-
ments that either highly constrained the subsequent word or
left it more open, which lexical items would complete the frag-
ments. We call these the “high-” and “low-constraint conditions”
(HC, LC, see Fig. 1). Since our study targets semantic brain pro-
cesses in understanding sentence meaning, we used sentences
with different meanings so as to obtain brain signatures of
specific semantic predictions and meaning-specific prediction
errors (see Fig. 1a–d). To this end, we used two well-established
semantic categories, animals and tools, and created matched HC
and LC sentences with identical critical words from these two
categories. Previous research has shown that these categories
elicit semantically specific activity in different areas of cortex,
with animal nouns activating part of posterior cortical areas (i.e.,
inferior temporal, parietal, and occipital), possibly due to the
processing of visual object knowledge about their referents, and
tool nouns sparking posterior superior temporal and frontopari-
etal sensorimotor cortex, which may in part reflect knowledge
access about the use of tools (Martin et al. 1996; Kiefer 2001;
Martin 2007; Carota et al. 2012; Kiefer and Pulvermüller 2012;
Carota et al. 2017; Tomasello et al. 2017). Although the SPP has
previously been found to have its main sources in prefrontal
cortex (Grisoni et al. 2017), we expected a degree of specificity for
both semantic types, with animal sentences and words yielding
specific activity indicating semantic prediction (HC) and predic-
tion error (LC) in posterior brain areas and tool items relatively
stronger activity in frontoparietal areas.

Finally, predictive coding accounts typically consider predic-
tion and prediction error as being functionally detached along
the cortical hierarchy, so that each level in the hierarchical
network attempts to predict the activity at lower levels (Rao
and Ballard 1999). In this framework, prediction error responses
are usually thought to originate from the interaction of hier-
archically organized cortical areas. Accordingly, each level of
the hierarchy is engaged in predicting the pattern of activity of
the next level below and prediction error responses emerge at
that relatively lower level when the relatively higher one fails
to make a correct prediction (Garrido, Kilner, Stephan, et al.
2009). Notably, the frontoparietal, executive/motor, and posterior
perceptual/visual brain areas (Fuster 2009) are hierarchically
organized so that, as we move rostrally from the primary motor
(Badre and D’Esposito 2009) and anteriorly from primary visual
(Van Essen and Maunsell 1983) areas, the unimodal and multi-
modal association territories contain neurons whose responses
become progressively more sensible to complex, associative,
features (i.e., higher in the hierarchy). Therefore, a crucial expec-
tation, suggested by prediction error accounts, was to observe
dissociations of prediction and prediction error responses along
this functional hierarchy, with SPP sources (HC contexts) in
relatively higher modality preferential brain areas and N400’s
sources (LC contexts) in lower motor and visual areas.

Materials and Methods
Participants

Thirty healthy adults participated in this study. Participants
were monolingual German native speakers with normal hearing,
normal or corrected-to-normal visual acuity, and motor control.
None of the participants had a record of neurological or psy-
chiatric disease. Datasets from six participants were excluded
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Figure 1. Example sentences and cloze probability and certainty scores of all the sentences used in the EEG study. At the left example sentences: (a and c) examples of HC
sentences constraining the expectation of sentence-final animal (a) and tool (c) words. (b and d) Examples of LC sentences that do not strongly constrain expectations
of the final word. (e) Cloze probability judgments of the experimental sentences are shown (means and standard errors of the mean). (f ) “Certainty scores” of the
experimental sentences are shown (means and standard errors of the mean).

because too many trials rejected (i.e.,>30%) or because excessive
alpha noise. Therefore, electrophysiological (EEG) data from 24
participants (mean age 25.5 years, ±4.9 SD; 17 females), all of
them right handed, as determined by the Edinburgh Handedness
Inventory (Oldfield 1971) (mean laterality quotient 77.5 ± 20.8
SD), were included in the final analysis. All participants who
took part in this study provided written informed consent. Pro-
cedures were approved by the Ethics Committee of Charité Uni-
versitätsmedizin, Campus Benjamin Franklin, Berlin, Germany.
Furthermore, 13 participants (mean ± SD age, 24.5 ± 3. 9 years;
8 female), all of them right handed (mean laterality quotient
81.9 ± 17.9 SD), who did not take part in the EEG experiment,
were asked to listen to all sentence fragments (presented with-
out the final “critical” noun) and list the words they expect to
directly follow the fragments.

Stimuli and Experimental Design

We created sentences about animals and tools each including
a critical noun toward its end, which could easily be predicted
based on the preceding fragment (e.g., translated from German:
“The emblem of Germany is the eagle”). For each of these “highly
constrained (HC)” sentences, a matched “low-constraint (LC)”
control sentence was created that included the same critical
word. For the LC sentences, it was more difficult to predict

critical words from the context of the preceding sentence frag-
ments, as these fragments invited a range of possible contin-
uations. This resulted in 4 sentence categories (examples are
sentences from the experiment translated from German into
English):

HC animal: “The emblem of Germany is the eagle.”
LC animal: “The emblem of my family is the eagle.”
HC tool: “The logo of the German post office is a horn.”
LC tool: “The logo of the company is a horn.”
Figure 1a–d presents example acoustic signals. One hundred

sixteen German sentences were selected, 29 for each condi-
tion, from a larger sample based on ratings and after extensive
matching for psycholinguistic criteria as specified below.

All sentences were in active form, they were all in present
tense and untypical words and nonliteral usage were avoided.
HC and LC sentences were also matched for sentence length
and verb conjugations (see Supplementary Materials: Stimuli).
Furthermore, HC and LC sentences always included the same
main verb and they constrained critical words to be under-
stood always as nouns, as these different grammatical cate-
gories may elicit different event-related potentials (ERPs) (Nobre
and McCarthy 1995; Pulvermüller et al. 1999). Although the sen-
tences not always had the same subject, HC and LC sentences
were matched for the verb conjugation (either 1st or 3rd sin-
gular person). The critical nouns were always at the end of the
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sentences (i.e., separable particle verbs were avoided) and they
had been selected on the basis of a cloze test.

Critical words of the sentence stimuli finally used in the EEG
experiment were selected on the basis of a cloze probability
test performed by 13 German native speakers, who did not take
part in the subsequent EEG study. Sentence fragments were
randomly presented one by one; participants had to read the
sentences and write up to three possible completions.

Critical words were matched for mean word length (aver-
age ± SD of letters: animals 6.1 ± 2.6; tools, 6.5 ± 2.3; t = −0.7,
P = 0.5) and word frequency, computed as the number of
occurrences of a word form within the dlex Corpus (http://
www.dlexdb.de/, animals, 831.1 ± 1045.6; tools, 804.8 ± 727.5;
t = 0.11, P = 0.91). Furthermore, the critical words were all
singular and the grammatical feature case was matched
between the two contexts (i.e., similar numbers of nouns in
nominative, accusative, dative, and genitive case in HC and LC
conditions).

The EEG study was conducted in the electrically and
acoustically shielded chamber of the Brain Language Laboratory
at the Freie Universität Berlin. The EEG and cloze test studies
were programmed using E-prime 2.0.8.90 software (Psychology
Software Tools, Inc.). The study consisted of one experimental
block in which the 116 sentences were randomly presented to
the participants. The sentences order was randomized in three
separate lists, each EEG participant was randomly assigned
to one of these lists. The interval separating the end of the
sentence context and the final (expected or unexpected) word
onset was 1100 ms (Fig. 1a–d). This break was necessary to
avoid overlap between the neurophysiological responses elicited
by the sentence fragments and the SPPs preceding the final
critical word (Grisoni et al. 2017; Leon-Cabrera et al. 2019). The
interval between the sentences was 2000 ms; the entire EEG
recording lasted ∼20 min. All acoustic stimuli were presented
binaurally, through high-quality headphones (Ultrasone HFI-
450 S-LOGIC™), at a comfortable hearing level. To reduce the
possibility of anticipatory activity induced by second-order
thinking (e.g., imagery), participants were instructed to ignore
the sounds and to focus their attention on a silent movie
(“Journey to the edge of the Universe,” National Geographic
2008) free of humans, tools, and animals, which was presented
throughout the EEG recording. Participants were monitored
through a camera to ensure that they were not moving and
were watching the silent movie. Furthermore, participants were
presented with three unannounced control questions about
specific details of the movie at the end of the EEG recording.
All final EEG participants correctly answered at least two of
these questions. To reconfirm the status of the high- and low-
constrained sentences used as stimuli, another cloze probability
test was performed after the EEG recording with all participants
(for details, see Supplementary Materials: Cloze probability test
procedure).

Electrophysiological Recordings and Preprocessing
The EEG was recorded through 128 active electrodes (actiCAP
system, BrainProducts), with the following modifications: The
reference was moved from the FCz position to the nose tip, and
the electrode occupying the I1 position was moved to the empty
FCz position (see Supplementary Materials: Electrophysiological
recordings). Offline preprocessing followed standard procedure
for ERPs analysis (Luck 2014) (for a description of the steps and
their order, see Supplementary Materials: EEG preprocessing).

Data Analysis

Cloze Test and Co-occurrence Frequencies
The “critical word” was the word strongly predicted by a HC
sentence fragment, which was also used to complete a matched
LC fragment. Predictability (or cloze probability) was quantified
as the proportion of participants who named the critical word
when being presented with the sentence fragment. Further-
more, subjects were asked to rate how sure they were about each
sentence completion (“certainty scores”), which were quantified
as a score ranging from 0 (uncertain) to 100 (absolutely sure).
A 2 × 2 repeated measures ANOVA with the factors context
(HC and LC) and word (animals and tools) was performed on
both of these scores, predictability and certainty. Furthermore,
co-occurrence frequencies were used as an objective corpus-
based measure of the likelihood of fragments to be followed
by the critical words. To this end, co-occurrence frequencies
were computed as follow: first we extracted, from the “Deutsche
Referenzkorpus” (German Reference Corpus) of the Institut für
Deutsche Sprache (Institute of German Language) in Mannheim,
Germany (DeReKo corpus: https://www1.ids-mannheim.de/kl/
projekte/korpora/), the absolute frequencies of the critical word
(e.g., Adler) appearing after the main verb and noun of the
sentence fragments within one paragraph. Then we normalized
these absolute frequencies by dividing them by the joint fre-
quencies of the sentence context’s verb and noun appearing
together within one paragraph. Since, in this study, we were
mostly interested in semantic relationships between the sen-
tence fragments and the critical words, we considered both the
singular and plural forms of the critical and contextual nouns
along with all of the verbs’ singular present tense conjuga-
tions (i.e., first, second, and third; see Supplementary Materials:
Correlation analysis).

Prestimulus Anticipatory Activity
Any preparatory activity preceding a stimulus must be cal-
culated against a time interval where no or much less such
preparatory activity can be expected. Previous work indicates
that such anticipatory activity indeed develops a few hundred
milliseconds before a predictable critical word appears in
semantically highly constrained sentences and is maximal
when the expected item appears (Grisoni et al. 2017; Leon–
Cabrera et al. 2019). In the present paradigm, spoken sentences
were used and the silent interval before the critical word was
1100 ms. To obtain a baseline that included both little event-
related activity due to the previous, fragment-final word and, at
the same time, a minimum of preparatory activity, we defined
the baseline for calculating the preparatory activity between
−500 and −300 ms before critical word onset. Figures 2a–c
and 4a show that this strategy was successful. More or less
predictable contexts did not diverge in their ERP responses
during this baseline, whereas there was clear divergence after
and a maximal difference just before the critical word appeared.

To determine any ERP differences between HC and LC
sentences, a first statistical evaluation was performed using
(nonparametric) cluster-based permutation tests, as imple-
mented in the FieldTrip toolbox (Maris and Oostenveld 2007;
Sassenhagen and Draschkow 2019). Since predictive neural
markers during sentence processing were expected prior the
critical words, the cluster permutation test was run on the whole
epoch before word presentation (i.e., −300 to 0 ms) on a broad
frontoparietal region F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2, CP1, CPz,
CP2, P1, Pz, P2 (Grisoni et al. 2017; Leon-Cabrera et al. 2019). The
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Figure 2. Event-related responses (ERPs). At the top (a) electrophysiological

responses elicited by HC (magenta) and LC (green) sentences before (SPP time
window indicated in gray) and after (N400, in yellow) the onset (time 0) of critical
words. SPP before and N400 after animal (blue, central, b) and tool words (red,

bottom, c) are shown for HC and LC conditions. Current source density (CSD)
maps for the SPP (gray window) and N400 (yellow window) latencies are reported
along with their color scale. CSD maps provide an estimate of the cortical activity
after removal of volume-conduction effects.

cluster-based permutation test was computed by randomly
exchanging data between the two conditions (i.e., HC and LC)
and producing the maximal positive and negative cluster of
each permutation (5000 permutations). Clusters were defined as
significant only if their occurrence was below P = 0.05. Cluster-
based permutation test was followed by t-test and repeated
measures analysis of variances (ANOVA) to test for more fine-
grained temporal and topographical extent of the effects. Since
any predictive activity before critical word onset implies that the
N400 response, as normally calculated, is affected by variation in
its baseline, we focused our attention on the last 150 ms before
word onset. Indeed, a time window of 100 or 200 ms prior to
critical word onset is the most commonly used baseline interval
for calculating the N400 (Kutas and Federmeier 2011) (see below).
That the cluster-based permutation test revealed the most
significant cluster during the last 150 ms before critical word

onset (see Results) provided one more reason to focus further
investigation on this interval. Finally, previous works indicate
that the last 150 ms before word onset include the largest
amplitude and greatest signal-to-noise ratio of the anticipatory
activity (Grisoni et al. 2017; Leon-Cabrera et al. 2019).

The following analysis steps were taken to assess anticipa-
tory activity: First, the mean amplitude values were calculated
for the 150 ms interval at frontocentral electrodes (where this
response is typically largest) before critical word onset and the
presence of an anticipatory activity was assessed by means of t-
tests against zero. Second, these mean amplitudes were submit-
ted to a 2 × 2 repeated measures ANOVA with the factors word
(animals and tools) and context (HC and LC). Third, topographi-
cal differences between animal and tool words were investigated
comparing the mean amplitudes from the last 150 ms before
critical word onset from a large array of frontoparietal electrodes
(FT7, FC3, FC4, FT8; T7, C3, C4, T8; TP7, CP3, CP4, TP8; P7, P3, P4,
P8; PO9, O1, O2, PO10). These data were submitted to a four-way
repeated measures ANOVA with the following factors: critical
word (2 levels: animals and tools), context (2 levels: HC and LC),
gradient (anterior–posterior, five levels), and laterality (left–right,
four levels).

Word-Evoked, N400 Responses
Low-constraint sentences typically elicit larger postword,
N400, responses at midline electrodes as compared with
high-constraint sentences (Kutas and Federmeier 2011). To
test whether these previous observations hold true for the
present data set, a first statistical analysis was performed
using (nonparametric) cluster-based permutation test at midline
electrodes (FCz, Cz, CPz, Pz) from critical word onset to 500 ms.
Since the N400 latency is remarkably constant across studies
(Kutas and Federmeier 2011), further statistical evaluations
focused on the canonical 350–500 ms postword time window.
First, the N400 mean amplitudes were averaged at the four
midline electrodes (see above) and submitted to a 2 × 2 repeated
measures ANOVA with the following factors: word (animals,
tools) and context (HC, LC). The same time window (i.e., 350–
500 ms) was used to test for N400 topography modulations.
However, since it is well known (Kutas and Hillyard 1980) that
the N400 is characterized by a posterior, parietally maximal,
distribution, we restricted this analysis to centroparietal
electrodes including both the CP electrodes, placed above the
primary motor area, and occipital electrodes, placed above
visual areas (TP7, CP3, CP4, TP8; P7, P3, P4, P8; PO9, O1, O2, PO10).
Therefore, a 4-way repeated measures ANOVA with the factors:
critical word (animals and tools), context (HC and LC), gradient
(central-posterior, three levels), and laterality (left–right, four
levels) were performed.

Correlation Analysis
In order to test whether there is a systematic relationship
between any preparatory activity preceding the critical word,
such as the previously reported semantic prediction potential
or SPP, and the N400, we performed Pearson correlation analyses.
Please note again that the N400 is normally calculated relative
to a baseline just before the critical word and, in order to
assess a hypothesis about the behavior of the N400, it is
necessary to use such a canonical baseline. Furthermore, given
preparatory activity is present in some conditions, one may
argue that this preparatory activity is not strictly restricted to the
precritical word interval, but it could spread from this interval
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to after critical word onset and overlay the N100 and even N400
responses. Calculating both preparatory and postcritical word
responses against the same baseline (before the preparatory
wave) and then correlating the two responses would bear the
danger that any significant correlation between both measures
is entirely due to a lasting prediction potential overlaying N100
and N400. This consideration provides a second reason to
calculate the N400 relative to the established baseline before
the critical word (100 ms, see above).

However, in order to further investigate whether the
canonical N400 baseline, which may contain much anticipatory
activity, biased the correlation analysis, a control analysis was
carried out on the N100 response. Indeed, if use of the canonical
N400 baseline would lead to an erroneous correlation between
preparatory and N400 activity, for example, due to component
overlap, one would expect the same pattern of results for both
N100 and N400. Furthermore, this control calculation is crucial
also because it may allow to disentangle whether any potential
functional relationship between preparatory and N400 activity
is truly semantic. Note that the critical words were spoken items
and most of them included 2 syllables, so that their meaning can
be recognized not before ca. 300 ms after their onset. Therefore,
it is highly unlikely that at N100 latency (i.e., at 80–200 ms),
these critical words already produce a semantic brain correlate
of their meaning, which could relate to any semantically related
preparatory activity before the critical word. Therefore, if there is
a semantic prediction potential (SPP) before critical word onset,
one would expect a relationship between SPP and N400 but not
between SPP and N100.

For the control correlations, we defined the N100 latency
from the grand average response obtained by collapsing all crit-
ical words (i.e., animals and tools in both HC and LC conditions).
Then, the N100 was calculated as the mean amplitude of a 60 ms
time window centered at the local maximum observed at fron-
tocentral electrodes (i.e., at 80 ms). We computed Pearson corre-
lations between the N100 and the preparatory activity, defined
as the last 60 ms before word onset. Furthermore, in order
to exclude the possibility that different time window widths
affected the results, we recomputed new correlations (now with
60 ms time windows throughout) between the mean amplitudes
extracted during the last 60 ms before critical word onset and
the mean amplitudes extracted from the N400 latency (i.e., 395–
455). Finally, in order to reconfirm that the functional relation-
ship between the pre- and postword responses was selective
for the N400 and did not apply for the N100, we compared
the r coefficients observed at these two latencies (i.e., N100
and N400) by means of Fisher’s r to z transformation, which
permits assessment of statistical significance of any difference
between these (the z scores by determining the observed z test
statistic). Specifically, we tested whether the significant corre-
lations observed between SPP and N400 were still significant
after having subtracted the correlation coefficients observed at
N100 latency. In order to test whether the level of subjective
expectation predicted both the SPP and N400 responses, we
performed Pearson correlation analysis between the “certainty
scores” based on the Cloze test (see Supplementary Materials:
Cloze probability test procedure) and both brain responses (i.e.,
SPP: last 150 ms before critical word presentation and N400:
from 350 to 500 ms from critical word onset). Finally, we also
tested whether co-occurrence frequencies (see above) predicted
the emergence of the anticipatory activity.

Source Estimation
Minimum-norm source estimation was applied to ERP topogra-
phies following the standard procedure in SPM12 (Litvak and
Friston 2008). Minimum-norm estimation makes minimal
assumptions about brain generators underlying a surface
topography, and it assumes that all source elements can
contribute to the recorded data. The model uses a single
source covariance component that encodes identically and
independently distributed (IID) sources. This SPM12 method
provides a minimum energy solution, similar to the method
originally proposed (Hämäläinen and Ilmoniemi 1994), which
minimizes the total source power (minimal sum of squares of
all sources). For regularization, we did not preselect the signal
to noise ratio (SNR); the unexplained variance of the solutions
reported was about 10%, which represents a realistic estimate
in line with previous literature (Miozzo et al. 2015). We note
that, in principle, any surface topography cannot uniquely
define an underlying generator constellation, and, therefore,
the source localization problem is mathematically ill defined
(von Helmholtz 1853); therefore, this method, as any other,
cannot overcome the nonuniqueness of the inverse problem.
Nevertheless, minimum-norm estimation has the advantage to
not require a priori information about source generators (Hauk
2004) that could constraint solutions biasing the results. The
cortical mesh consisted of 8196 vertices and it was created
using the template structural MRI included in SPM12. The
EEG and MRI data were coregistered using three electrodes
as fiducials: Fpz, TP9, and TP10; for the forward model, we
selected the “EEG BEM” as the EEG head model. Therefore, the
average responses (i.e., SPP and N400) were inverted using the
IID, minimum-norm inversion type (see above). All the activation
maps were smoothed using the Gaussian kernel of full-width at
half-maximum (FWHM) of 20 mm.

Sources of Anticipatory Activity (SPP)
Source estimation was performed for each semantic context
(high and low constraint) and critical word type (animals and
tools), thus yielding 4 source images for each experimental
subject. First, the anticipatory activity including the last 150 ms
before critical word onset was compared between the HC and
LC conditions. To test whether the two sentence contexts (i.e.,
HC and LC) induced different patterns of activation, we aver-
aged the source images across critical word types (i.e., animals
and tools) for each context (i.e., HC and LC); then, these aver-
age images were compared voxel-by-voxel using paired t-test.
Comparisons were made with correction for multiple compar-
isons taking into account all voxels of the whole brain, and,
in addition, restricting the analysis to left hemispheric voxels
only—as language mechanisms can be expected to be left lat-
eralized (in right handers) and, therefore, predominantly man-
ifest in this hemisphere. Second, we focused the analysis on
both HC conditions, comparing contexts that strongly predicted
animal versus tool words and, therefore, may lead to reliable
predictive brain responses (see Results). Slow wave anticipatory
components (as, for example, the Readiness Potentials, RP) are
characterized by a gradual development and shift of cortical
generators, whereby activity typically moves from high associ-
ation cortex to modality-specific areas (e.g., from prefrontal to
motor cortex). To investigate a possible activation of modality
preferential areas just before critical word onset, we computed
sources for the last 60 ms prestimulus and contrasted HC animal

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa308#supplementary-data
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versus tool conditions by means of whole-brain voxelwise paired
t test. In addition, these sources were also compared using
small volume correction in predefined regions of interest (ROIs),
applying voxelwise paired t tests and FWE correction. As the
predictions addressed activity at different hierarchical levels,
ROIs were defined in motor and visual areas including both
the low (primary) and higher hierarchical levels. To this end,
we created a mask image that included primary motor (BA 4),
premotor and supplementary motor (BA 6), primary visual (BA
17), secondary visual (BA 18), associative visual (BA 19, BA 7),
and inferior temporal (BA 37) areas of the left hemisphere, using
the WFU_PickAtlas (Maldjian et al. 2003). These ROIs were then
combined in a unique mask image used as an explicit mask.

Sources of the N400
Similarly to the analysis of preparatory activity (see above), we
first tested whether the two sentence contexts (i.e., HC and LC)
also induced a different distribution of the underlying sources.
To this end, the N400 sources were extracted from the canonical
latency (i.e., from 350 to 500 ms) and collapsed across the two
word types by averaging the source images of the two postword
responses (i.e., animals and tools) within each context (i.e., HC
and LC). Then, we tested the hypothesis of semantic processing
facilitation induced by word preactivations. We focused solely
on the unequivocal semantic-like effect, neglecting the com-
parison between the two LC conditions (i.e., animals and tools)
whose interpretation would not be trivial due the possibility of
further predictive mechanisms at these relatively late latencies.
To this end, we contrasted the HC and LC N400 responses for
each word category (i.e., animals and tools). As before, we per-
formed an exploratory whole-brain comparison first and then
the hypothesis-driven ROI contrasts. Since we intended to test
lower visual and motor areas, the hypothesis-driven ROIs were
restricted to the primary and adjacent visual areas (i.e., BA 17
and 18) for the paired t-tests comparing HC and LC animal word
conditions and to the primary motor area (i.e., BA 4) for the HC
versus LC tool word conditions (see Fig. 4e,h).

For both the SPP and N400 whole-brain exploratory contrasts,
P values were thresholded at P < 0.005 (uncorrected), while for
the SPP and N400 ROIs analysis, P values were thresholded
at P < 0.05 corrected for multiple comparisons using the FWE
procedure; significant clusters had to be at least 20 voxels larger
to be considered.

Results
Stimulus Ratings

Cloze probability data from participants who did not take part
in the EEG experiment confirmed that HC sentences were
more predictable than LC fragments, as revealed by the main
effect of the two-level factor context (F(1,28) = 201.226, P < 0.001,
ηp2 = 0.88). The very same result was also observed with EEG
participants (see Fig. 1e,f ). For the latter, repeated measures
ANOVAs revealed a main effect of context for both “cloze
probability,” that is, the probability with which the critical
word was used to complete the sentence fragment: main effect
of context (F(1,28) = 336.01, P < 0.001, ηp2 = 0.92) (Fig. 1e) and
the “certainty scores” indexing how sure participants were
about their completion, scores ranged from 0—very uncertain—
to 100—entirely sure: main effect of context (F(1,28) = 286.93,
P < 0.001, ηp2 = 0.91) (Fig. 1f ). Finally, the repeated measures
ANOVA on distributional co-occurrence frequencies of the

critical words in context revealed a main effect of context
(F(1,28) = 21.05, P < 0.001, ηp2 = 0.43) due to higher co-occurrence
frequencies in HC compared with LC sentences.

Semantic Prediction Potentials

The two HC conditions, but not LC sentences, elicited a slow
negative-going potential before critical word onset (Fig. 2a–c)
whose smoothly growing shape is consistent with previous
reports (Grisoni et al. 2016; Grisoni et al. 2017; León-Cabrera
et al. 2017; Leon-Cabrera et al. 2019). The cluster-based
(nonparametric) permutation tests performed in the time range
prior to word onset revealed two highly significant clusters
where significant differences between HC and LC conditions
were present. Whereas the first cluster was about 100 ms
long (i.e., from about 280 to 180 ms before the critical word)
(P = 0.01), the second cluster covered the last 150 ms before
critical word onset (P = 0.004), in both cases HC sentences
induced larger negativity compare to LC sentences at all channel
locations tested. During the last 150 ms before critical word
onset, only the two HC conditions (i.e., animals and tools)
elicited a reliable anticipatory activity (t-test against zero:
animals HC: mean amplitude = −1.39 μV, t(23) = −3.28, P = 0.01
Bonferroni corrected; animals LC: mean amplitude = −0.05 μV,
t(23) = −0.11, P = 0.92, n.s.; tools HC: mean amplitude = −1.48 μV,
t(23) = −2.78, P = 0.04 Bonferroni corrected; tools LC: mean
amplitude = −0.22 μV, t(23) = −0.48, P = 0.63, n.s.). HC sentences
elicited larger anticipatory activity compared with LC contexts
during the last 150 ms before word onset (main effect of context:
F(1,23) = 8.87, P = 0.007, ηp2 = 0.28). Furthermore, the expectation
of different word categories (i.e., animals and tools) elicited
anticipatory activity with a different topographical distribution
as documented by a significant critical word, gradient, and
laterality interaction (F(12,276) = 2.4, ε = 0.41, adjusted P = 0.04,
ηp2 = 0.09). Planned comparisons revealed that animal word
expectations elicited larger SPP responses at frontal left as
compared with frontal right (Bonferroni corrected P = 0.001) and
larger ERPs at left and right posterior parieto-occipital electrodes
as compared with frontal right (Bonferroni corrected P = 0.02 and
P = 0.0018, respectively) electrodes, whereas the expectation of
tool nouns was more clearly reflected at central as compared
with posterior electrodes (Bonferroni corrected P = 0.02).

N400

Responses to the critical words consisted of the typical N100
response peaking at about 100 ms, followed by a positive-going
response maximal at about 190 ms and a subsequent negative-
going deflection resembling the N400 (see Fig. 2a–c). Postword
analyses focused on the latter response because, upon visual
inspection of grand average ERPs, the earlier responses did not
give evidence of substantial between-condition differences and
previous research using spoken sentences has demonstrated
the effectiveness of the N400 as a measure for semantic
expectancy violations (Kutas and Federmeier 2011). The cluster-
based permutation test run after critical word onset (i.e., from
voice onset to 500 ms) revealed one significant cluster with
larger negativity for LC compared with HC words at 400–
500 ms interval (P = 0.04). Repeated measures ANOVA on data
recorded from canonical sites (i.e., average of FCz, Cz, CPz, Pz)
and latency (i.e., 350–500 ms) confirmed a more pronounced
N400 responses in LC as compared with HC sentences (main
effect of context: F(1,23) = 4.7, P = 0.04, ηp2 = 0.17). The repeated
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Figure 3. Correlation analyses. Electrodes used for correlation analysis are shown at the top left. All correlations have been computed at sentence level by averaging

the electrophysiological responses elicited by all the sentences across all participants. Negative correlation between the co-occurrence frequency and SPP responses
at left-frontal electrodes is shown in panel (a) (bottom left). Negative correlation between the certainty scores (see Materials and Methods) and SPP responses at left-
frontal electrodes is shown in panel (b). Positive correlation between the certainty scores and the N400 responses at left-parietal electrodes (i.e., the standard electrodes
for N400 responses) is shown in panel (c). Negative correlations between SPP and N400 responses at left- and right-frontal and -parietal recording sites are shown,

clockwise, in panel (d).

measures ANOVA performed on data from a larger array of
centroparietal electrodes revealed significant main effects of
gradient (F(2,46) = 9.12, ε = 0.64, adjusted P = 0.003, ηp2 = 0.28) and
laterality (F(3,69) = 24.77, ε = 0.65, adjusted P < 0.001, ηp2 = 0.52)
and a gradient by laterality interaction (F(6,138) = 4.71, ε = 0.61,
adjusted P = 0.002, ηp2 = 0.17). The N400 was modulated in its
topographical distribution by both the word type (i.e., animals
and tools) and context as revealed by a significant interaction
of the factors critical word context and laterality (F(3,69) = 3.73,
ε = 0.73, adjusted P = 0. 03, ηp2 = 0.14).

Correlation Analyses

Certainty scores. Consistent with the SPP frontocentral distri-
bution (Grisoni et al. 2016; Grisoni et al. 2017; León-Cabrera
et al. 2017; Leon-Cabrera et al. 2019), the anticipatory activity
and the “certainty scores” of the word expectancy showed
a significant negative linear relationship, due to the SPP’s
negative polarity, at left-frontal electrodes (r = −0.31, P < 0.002
Bonferroni corrected) (Fig. 3b), while the other electrode location
showed a weaker, nonsignificant, correlation (frontal-right:
r = −0.16, P = 0.17 Bonferroni corrected). Notably, the N400 and
the “certainty scores” showed a significant positive correlation
at parietal-left electrodes (r = 0.22, P = 0.03 Bonferroni corrected)
and a nonsignificant trend at the parietal-right electrodes
(r = 0.18, P = 0.09 Bonferroni corrected) (Fig. 3c). Thus, whereas
the size of the (negative-going) SPP increased with “certainty
scores” of the critical word, the (likewise negative-going) N400
shrank.

Co-occurrence frequency. To assess whether, similar to certainty
scores, statistical regularities in language use as they are
manifest in large text corpora are reflected by SPP responses, we
tested the linear relationship between the SPP amplitudes with
the co-occurrence frequencies of content words in the sentence
fragments and the critical, SPP-eliciting words (see section
Data Analysis: Correlation analysis, and Supplementary Mate-
rials: Correlation analysis). We observed a significant negative

correlation at frontal-left (r = −0.23, P = 0.04 Bonferroni corrected)
but not at frontal-right (r = −0.19, P = 0.1 Bonferroni corrected)
electrodes. The same analysis performed for all sentences (i.e.,
including those 14 out of 116 [see Supplementary Materials]
where the co-occurrence frequency was 0) yielded similar
results (frontal-left: r = −0.26, P = 0.01 Bonferroni corrected;
frontal-right: r = −0.16, P = 0.15 Bonferroni corrected).

SPP and N400. The previously reported correlations between
SPP, N400, and the measures of contextual predictability
(“certainty scores” and co-occurrence in texts) suggest that,
as SPP increases, the N400 decreases and vice versa, and
thus a negative correlation between the measures of semantic
prediction and semantic integration was expected. Consistent
with this hypothesis, the SPP (last 150 ms before critical word
onset) and the N400 (from 350 to 500 ms after critical word
onset) showed significant negative correlations at frontal-
left (r = −0.37, P < 0.001 Bonferroni corrected), frontal-right
(r = −0.27, P = 0.012 Bonferroni corrected), parietal-left (r = −0.48,
P < 0.001 Bonferroni corrected), parietal-right (r = −0.50, P < 0.001
Bonferroni corrected) (Fig. 3d), and centro-occipital (r = −0.4850,
P < 0.001) locations (Fig. 4b). The same analyses performed with
the shorter time window (i.e., 60 ms) confirmed these significant
correlations (frontal left: r = −0.42 Bonferroni corrected P < 0.001;
frontal right: r = −0.31 Bonferroni corrected P < 0.004; parietal
left: r = −0.49 Bonferroni corrected P < 0.001; parietal right:
r = −0.52 Bonferroni corrected P < 0.001) and at the broad
centro-occipital regions (r = −0.50, P < 0.001).

To test whether these linear relationships reflected semantic
processes (or are possibly an artifact of the inclusion of the
precritical word interval into the baseline of the N400), we also
performed the Pearson correlations between the SPP and the
N100 responses which, due to its early latency (i.e., 80 ms), can-
not, in the present experiment, index lexical access or semantic
integration (for discussion, see Materials and Methods). Consis-
tent with our expectations, the SPP and the N100 did not show
significant correlations, neither at the four preselected electrode
locations (frontal left: r = −0.09 n.s.; frontal right: r = +0.03 n.s.;

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa308#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa308#supplementary-data
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Figure 4. Source analysis results. The top panels summarize main results of this study, SPP (relevant time window indicated by gray shading) and N400 (yellow shading)
responses in HC and LC conditions (a) and the significant negative correlation between SPP and N400 responses (here averaged across centro-occipital recording sites)
in (b). Below the top panels, the left column of panels reports sources of SPP contrasts (gray background), whereas the right column gives N400 contrasts (yellow

background). (c) SPP latency: HC > LC contrast (magenta), P < 0.005 uncorrected, whole brain analysis. (d) SPP latency: HC animals > HC tools (blue) and HC tools > HC
animals (red), P < 0.005 uncorrected, whole brain analysis. (e) SPP latency, Regions of interest (ROIs) analysis: HC animals > HC tools (blue) and HC tools > HC animals
(red) P < 0.05 FWE corrected. (f ) N400 latency: LC > HC contrast, (green), P < 0.005 uncorrected, whole brain analysis. (g) N400 latency: animals LC > HC (blue) and tools
LC > HC (red) P < 0.005 uncorrected, whole brain analysis. (h) N400 latency, ROIs analysis: animals LC > HC (blue) and tools LC > HC (red) P < 0.05 FWE corrected.
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parietal left: r = −0.13 n.s.; parietal right: r = −0.19 n.s.) nor at
the broad centro-occipital regions (r = −0.15 n.s.). Finally, we also
compared the r coefficients observed at N100 and N400 latencies
to further test whether the correlations between SPP and N400
were significantly greater than the r coefficients obtained
between SPP and N100. The results confirmed significantly
stronger SPP–N400 correlations at both the four ROIs (two-tailed
results: frontal left: Bonferroni corrected P = 0.028; frontal right:
Bonferroni corrected P = 0.036; parietal left: Bonferroni corrected
P < 0.01; parietal right: Bonferroni corrected P = 0.016) and in
the broad centro-occipital region (two-tailed result: P = 0.003).
Overall, these results confirmed a relationship between SPP and
N400, but not the N100.

Source Localization

SPP
Consistent with previously reported scalp topographies of
anticipatory brain activity (i.e., frontally maximal) (Grisoni et al.
2017; Leon-Cabrera et al. 2019), SPP-eliciting (i.e., HC) sentences
induced greater activity in left prefrontal areas, compared
with LC sentences (HC > LC whole brain analysis, P < 0.005
uncorrected; left hemisphere P < 0.05 FWE corrected) (see Fig. 4c
and Table 1). Exploratory whole brain paired t-test comparisons
revealed word-related sources in posterior parieto-occipital
areas in strong anticipation of animal word presentations as
compared with the predictable tool word conditions. The reverse
contrast showed relatively greater activation in prefrontal and
premotor areas (HC animals > HC tools and HC tools > HC
animals, respectively, whole brain P < 0.005 uncorrected) (see
Fig. 4d and Table 1). Hypothesis-driven ROIs in primary and
secondary motor and visual areas (see Materials and Methods)
confirmed these results (P < 0.05, FWE corrected) (see Fig. 4e and
Table 1).

N400
Consistent with the N400’s well-known posterior distribution
(Kutas and Federmeier 2011), N400-eliciting LC sentences
showed greater activations in temporo-occipital areas compared
with HC sentences at the canonical N400 latency (i.e., 350–
500 ms) (LC > HC whole brain analysis, P < 0.005 uncorrected;
left hemisphere P < 0.05 FWE corrected) (see Fig. 4f and Table 1).
Dependent on the semantic content of the unexpected critical
words, sources were relatively more prominent in posterior
visual areas, in proximity of primary visual area (V1), for animal
words (animals LC > animals HC) but in the motor system, in
proximity of primary motor cortex (M1), for tool words (tools
LC > tools HC) (whole brain analysis, P < 0.005 uncorrected)
(see Fig. 4g and Table 1). The same contrasts carried out in
hypothesis-driven ROIs (see Materials and Methods) confirmed
these results (P < 0.05 FWE corrected) (see Fig. 4h and Table 1).

Discussion
Sentence contexts constraining the expectation of critical words
with visually (i.e., animals) or action- and visually related (i.e.,
tools) semantic meaning induced larger semantic prediction
potentials (SPP) (Grisoni et al. 2019; Pulvermüller and Grisoni
2020) before critical word presentation, as compared with low-
constraint sentences (see Fig. 2a–c). That the SPP is genuinely
related to semantics was shown by significant correlations
between its amplitude with both subjective reports of the words’
predictability in their semantic context (“certainty scores”)

and objective corpus-based measures (i.e.,co-occurrence
frequencies of the critical words in context, see Fig. 3a,b).
The same critical words presented in low-constraint sentence
contexts elicited substantially larger postword N400 responses
compared with their presentation in high-constraint contexts,
thus confirming a well-known observation in N400 research
(Kutas and Federmeier 2011) (see Figs 2a–c and 4a). One crucial
expectation was to observe a correlative relationship between
activations observed before and after the critical words. Notably,
the N400 linearly decreased with larger anticipatory activity as
documented by the significant negative correlations between
these two brain signatures (see Fig. 3d and 4b), thus suggesting
a functional relationship between pre- and postword brain
activations (see Discussion below). The correlation between
SPP and N400 was specific, as correlations between the SPP
and the N100 were not statistically significant, thus arguing
against the possibility that the observed correlations of the
N400 might have been due to the canonical preword baseline,
which contained some of the anticipatory activity. Furthermore,
the difference test on the correlation coefficients confirmed
that the correlations observed between SPP and N400 was
significantly greater than that between SPP and N100. These
results raise the possibility that the specific correlation between
the brain indexes of anticipation and integration of the critical
words may result from a causal relationship between semantic
prediction and subsequent N400-relevant processes such as
prediction error computation, verbal memory access, and/or
context integration (see also section on SPP-N400 relationship).

Consistent with previous reports (Lau et al. 2008; Alexander
and Brown 2018), the main brain generators underlying the
SPP and the N400 responses were located in inferior prefrontal
cortex (Fig. 4c) and in posterior temporal cortex (Fig. 4f ), respec-
tively. Furthermore, similar to previous reports about word-
evoked potentials following the critical item at different laten-
cies (Kiefer 2001; Carota et al. 2012; Carota et al. 2017), the
expectation of animal nouns produced additional anticipatory
activation in posterior visually cortical areas, possibly due to
the processing of visually related object knowledge about their
referents; in contrast, tool noun expectations were reflected
by additional prefrontal and motor area activity, which may in
part reflect knowledge about the action-related function and
use of tools (see Fig. 4d,e). Consistently, the sources underlying
the enlarged N400 responses to not-predicted animal and tool
words lay adjacent to the same modality preferential brain
areas, in higher visual- and action-related areas, respectively
(see Fig. 4g,h). Overall, these results show that the SPP has similar
semantic discriminatory function as the N400.

Function and Cortical Sources of the Semantic
Prediction Potential

Previous research established that predictable stimuli elicit
slow anticipatory activity before they appear (Kilner et al.
2004; Grisoni et al. 2016; Grisoni et al. 2019) and, consistently,
sentence fragments constraining the expectation of specific
subsequent words give rise to similar responses with prominent
frontocentral distribution (Grisoni et al. 2017; Leon-Cabrera et al.
2019) (Fig. 2a–c). Event-related potentials (ERPs) are traditionally
classified taking into consideration the cognitive process they
index, hence the choice of the term “semantic prediction”
potential, SPP. The data here presented show that semantic
predictability is the psychological variable reflected by the
SPP: high- but not low-constraint sentence fragments gave rise

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa308#supplementary-data
i.e., co
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to anticipatory waves (Fig. 2a–c), and there was a correlation
between ratings in the cloze test and the magnitude of the SPP
(Fig. 3b). The cloze test is an established estimate of semantic
expectancy also applied in many N400 studies, and it has
previously been shown that the N400 is inversely related to
this variable (Kutas and Hillyard 1984). In addition, the SPP’s
amplitude correlated with an objective corpus-based measure
of semantic predictability, the co-occurrence frequency of the
critical word in the context of key content words in the sentence
fragment (Fig. 3a). Whereas the former observation provides
evidence from a psycholinguistic perspective, the latter draws
on distributional semantic information and suggests a role
of statistical regularities in establishing semantic memory
representations with predictive properties (Keysers and Gazzola
2014). After seeing a cow, for example, we may not be surprised
to hear its typical sound and a sentence about it will likely
mention related features or things, such as a cow’s properties,
its typical activities, or the names of other farm animals, and
it is generally accepted that the brain is able to internalize
such statistical regularities relevant to distributional semantics
(Kuhl 2004; Pulvermüller 2018). Therefore, the correlative link
between word co-occurrence frequency and SPP would suggests
that predictive coding might emerge as a consequence of
associative learning of word co-occurrences (Pulvermüller 2018).
It is possible that a word is anticipated in a given context based
on the listener’s previous experiences of occurrences of the word
in that context, although other possible learning mechanisms
including generalization should also be considered.

As mentioned, we already documented a semantic predic-
tion potential in a previous study also using a paradigm with
sentence fragments constraining target words (Grisoni et al.
2017). In that work, sentence fragments either predicted specific
action verbs or, similar to the typical N400 experiment, these
same predictions were crudely violated. It can be criticized that
these data do not allow for deciding whether the predictions
made by the neurocognitive system are word specific or rather
address a semantic group of semantically very similar words
(Pickering and Gambi 2018). Therefore, in the present study, we
chose sentences in such a way that the predictions induced by
the fragments, for example, “The emblem of Germany is the
. . . ,” were rather specific, only allowing one critical word, “eagle”
(note that semantically close items such as “hawk,” “buzzard,” or
“vulture” would constitute clear expectance violations). There-
fore, we believe that the above criticism cannot be brought up
against the current results: Predictions and prediction errors
were item specific. Still, our present study focused on contexts
with narrowly predictable and unpredictable critical words, with
intermediate cases still calling for further research. Further-
more, by contrasting fragments strongly and weakly predictive
of specific words, we cannot address whether predictions at dif-
ferent linguistic levels (of whole semantic categories, syntactic
classes, or phonological features) can be equally manifest in pre-
dictive brain activity. The absence of any SPP in the present low-
constraint condition suggests that a very unspecific prediction
of, for example, any member of a broad semantic class does not
become manifest as an SPP. Whether this is an indication of
absence of prediction remains to be investigated. Our present
data broaden the previously reported results (including Grisoni
et al. 2017) by showing that not only predictions on action-
related verbs but also those on nouns from variable and rich
semantic categories, that is, animal and tool nouns, are corti-
cally manifest as specific anticipatory activity with well-defined
cortical origin.

A further key issue assesses the SPP’s generators in the brain.
Consistent with the frontal distribution of the SPP (Grisoni et al.
2017; Leon-Cabrera et al. 2019), we here showed that its most
prominent source is located in inferior prefrontal cortex (see
Fig. 4c). Overall, this result is consistent with previous reports
showing an involvement of lateral prefrontal areas in anticipat-
ing predictable stimuli (Grisoni et al. 2019). Further converging
evidence comes from intracranial cortical recordings in human
surgical patients revealing negative slow wave responses in
anticipation of repetitive, hence predictable, acoustic stimuli
(i.e., tones) in lateral prefrontal cortex (Durschmid et al. 2019).
The SPP’s prefrontal distribution is also consistent with the most
well-known slow negative potential emerging before motor
movement (e.g., button presses), the readiness potential (RP)
(Deecke et al. 1969), which typically originates from prefrontal
territories (Haggard 2008; Kappenman and Luck 2012).

Whereas the RP’s sources are confined to the frontal lobes,
SPP sources changed significantly depending on what kind of
meaning was expected. Our previous observations had indicated
this already (Grisoni et al. 2017), although they had been limited
to sentences in which the predictable critical words referred to
body part–specific actions, in particular face (e.g., “lick”) and
hand-related (e.g., “write”) action verbs. Therefore, these previ-
ous results still left it open to a degree whether the observed
SPP sources in frontal and motor cortices were due to specific
semantic features of the expected critical words. Our results
now show that the frontal sources are also present for words,
which are not used to speak about actions, but to objects instead,
and even to objects not related to action (animal nouns). As
in the previous study, the present topographical distributions
of and sources underlying the SPP were significantly modu-
lated by the semantic type of predicted critical words (Fig. 4d,e).
Contexts predicting animal words elicited additional parieto-
occipital activations before critical word presentation (Fig. 4d,e),
possibly due to visual object knowledge about their referents,
whereas tool noun expectations became manifest as premotor
area activation, which may in part reflect knowledge about the
use of tools. These results are consistent with previous reports
on the brain correlates of animal and tool words following unex-
pected critical words (Kiefer 2001; Carota et al. 2012; Carota et al.
2017), which can be interpreted as correlates of the understand-
ing and context integration of aspects of the referential semantic
meaning of these symbols (Martin 2007; Pulvermüller 2018).

Our present results show that local dissociations in neu-
rometabolic activation similar to those observed as correlates
of the meaning of words in response to these items can appear
before these same words appear in contexts strongly predict
them. The four bottom panels of Figure 4 illustrate the similarity
of these dissociations: Relatively stronger motor/premotor/pre-
frontal area activations are present for tool words, but relatively
stronger parietal/occipital visual area activations for animal
words, as revealed by both SPP and N400. It can be seen that
these prediction-related (SPP sources) and the comprehension-
and context integration–related (N400 sources) brain responses
are in the same cortical systems (action vs visual) for both
semantic types, although there are local differences. This corre-
spondence is consistent with the position that semantic disso-
ciations are similarly manifest in cortex during prediction and
understanding of a meaningful symbol. (We discuss possible
reasons for the activation differences below.)

Considering the similarities between SPP and RP, in terms
of topographies and main sources, one may suggest that these
components are related to each other, although the SPP has
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a much broader scope than the RP. Whereas the RP is always
seen before overt action, with sources restricted to frontocentral
cortex “predicting” the body part with which a movement will
be carried out, the SPP indexes expectations of both action- and
perception-related information and, correspondingly, includes
additional cortical generators in motor or sensory (auditory or
visual) areas, dependent on the nature of the predicted items.
Note again that, apart from semantic word-related expectations,
previous studies have reported similar anticipatory activity
before predictable nonaction-related sounds (e.g., tones, water
drops) (Durschmid et al. 2019; Grisoni et al. 2019), action-related
visual stimuli (Kilner et al. 2004), and action sounds (i.e., whistle,
hand clap, and footstep) (Grisoni et al. 2016; Grisoni et al.
2019). These anticipatory responses showed predictive sources
located within the relevant modality preferential (e.g., motor,
auditory) brain areas, thus suggesting that the SPP is a brain
signature of the preactivation of specific memory circuits storing
information about the expected stimulus.

The Relationship between SPP and N400 Responses

Here, we also investigated postword responses, in particular
N100 and N400, and their relationships to predictive brain
activity. It is well known that N400 amplitudes are larger for
semantically unpredictable than to predictable sentences (Kutas
and Hillyard 1984) and, consistently, we here report that SPP-
eliciting predictive (HC) sentence fragments showed weaker
N400s to the critical words as compared with unpredictive
(LC) ones, which, in turn, did not show any reliable SPP
before the critical word (Fig. 2a–c). Furthermore, the correlation
between subjective reports of word expectancy, quantified as the
certainty with which critical words could be predicted and as co-
occurrence probability in texts, and N400 amplitudes confirmed
that expectancy was systematically related to N400 amplitude
(Fig. 3c). Pickering has, recently, stressed how difficult it is to
determine with certainty whether brain indexes such as the
N400 uniquely index prediction and the resultant preactivation
of lexicosemantic items, or rather other processes related
to the integration of a word in a context. Note that, rather
than prediction and preactivation of a given word, or group
of words, it could also be that N400 size indicates the ease or
difficulty in matching a (preactivated or not-preactivated) lexical
item with its context, the shared semantic features between
context and target or other psycholinguistic features, which
also may relate to predictability (Pickering and Gambi 2018).
Indeed, some colleagues have argued that the enlarged N400
to unpredictable words would not index prediction error but,
rather, the processing load required to integrate the critical
word in its semantic context and, notably, this interpretation
is quite well established in the literature (Brown and Hagoort
1993; Kutas and Federmeier 2011). To show that the N400 is a
possible prediction error signal, it is of utmost importance to
have available a brain signature of prediction emerging before
word presentation and, therefore, independent of integration.
Therefore, the negative correlations between the N400 and the
SPP responses here reported—but not between the prelexical
N100 and the SPP—(Figs 3d and 4b) are important to establish
the possible role of the N400 as a genuine prediction error signal.
In this respect, the N400 resembles other neurophysiological
measures, most notably the mismatch negativity, or MMN,
(Näätänen et al. 2001), for which we reported in a previous study
linear relationships with predictive brain activity (Grisoni et al.
2019). However, in contrast to the MMN, which may indicate

prediction errors at different perceptual and cognitive levels
(Garrido et al. 2008; Grisoni et al. 2019), the N400 specifically
indicates failures in predicting symbols at the semantic level.

This study compared high-constraint, HC, conditions, in
which a strongly predicted word appears in sentence-final
position, to low-constraint, LC, conditions, which lacks any
strong prediction on sentence final words and, consequently,
the final target word is to a degree unexpected. For sentences
of these types, which are common in everyday language use,
we found a negative correlation between predictive and N400
responses. This observation is consistent with a theoretical
proposal according to which linguistic predictions are cortically
manifest as preactivation of the neuronal circuits for words or
groups of lexical items. The more a circuit is preactivated, the
less additional activation will be needed to fully activate this
same circuit in response to the occurrence of the critical word.
This putative mechanism provides a possible explanation of the
negative correlation between SPP—the presumed index of preac-
tivation—and the N400—the established indicator of (difficulties
in) context integration and/or verbal memory access. This model
further suggests that the cortical mechanisms reflected by SPP
and N400 (and other prediction-error indexes such as the MMN)
are causally related to each other: The preactivation of the
lexical trace facilitates its full ignition and further processing in
the language network. However, we note that, what we observed
and report are correlations between brain responses. Any firm
conclusions on causality must, therefore, remain tentative until
further evidence is available.

One may argue that the observed correlation between SPP
and N400 may depend on the selection of conditions in the
present experiment and that the inclusion of further conditions
may remove (or substantially weaken) this correlation. A possi-
bility already mentioned in the Introduction would have been
to present typical “N400 violations” with critical words violating
strong semantic expectations raised by HC sentence fragments
(e.g., “The emblem of Germany is the . . . vulture”). For these
items, strong semantic predictions come with maximal unex-
pectedness of the critical word. According to the current results,
this would imply large SPPs along with large N400s, thus working
against a significant negative correlation of these measures.
Such a condition had been included in one of our previous stud-
ies (Grisoni et al. 2017), where the N400 indeed varied with the
predictability of target words, although equally large predictive
activity was seen across HC conditions. Therefore, the negative
correlation reported here depends on the absence, or rareness, of
HC fragments followed by notpredicted items. However, as this
type of event is, by definition, very rare in real life (as it has low
probability and thus is unlikely to occur), it may not be able to
reduce regression coefficients substantially. In an N400 experi-
ment including only HC contexts half of which are followed by
very high and low-cloze target words, respectively, no correlation
between SPP and N400 is expected. Note however, that such
lack of correlation is once again consistent with the causal
model according to which, in the N400 violation condition, the
predictable item(s) would be strongly preactivated (thus yielding
a large SPP) and an unprimed, not-preactivated circuit would be
ignited by the low-cloze critical word (resulting in a large N400).

Given the correlative relationship between SPP and N400 in
the present experiment, it is now necessary to consider whether
the sources underlying the pre- and postword responses are con-
sistent with a partly shared mechanism. In partial agreement
with the typical posterior distribution (Kutas and Federmeier
2011) and with previous reports on N400 source estimations
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(Helenius et al. 1998; Lau et al. 2008), the main N400 gener-
ator was located in posterior temporal and anterior occipital
cortex (Fig. 4f ), one of the areas traditionally associated with
semantic memory access and processing (Hickok and Poeppel
2007; Lau et al. 2008; Price 2012; Pulvermüller 2013). In contrast,
the main source of the SPP was found in prefrontal cortex,
thus suggesting that processing in substantially different brain
regions supports the generation of predictions and prediction
error processing. However, we found additional sources depen-
dent on semantic word categories. The enlarged N400 responses
to unpredictable as compared with predictable sentences lay
within modality preferential brain areas, with unpredicted ani-
mal nouns showing additional activity in posterior ventral tem-
poral areas as compared with predictable nouns (Fig. 4g,h), and
unpredictable as compared with predictable tool nouns origi-
nating in part in or close to motor areas (Fig. 4g,h). Crucially, as
pointed out above, these results about the sources of semantic
word category differences are similar to those observed at pre-
word (SPP) latency (Fig. 4d,e), thus confirming a partial resem-
blance between these two brain responses (see also Discussion
below). Overall, these results indicate that the N400 has an
antecedent, the SPP, with similar semantic discriminatory func-
tion and sources. We, therefore, suggest that overlapping or
closely adjacent semantic memory circuits were involved in
predictive and integration-related activations.

Hierarchical Predictive Coding

Although pre- and postword source estimations revealed
clusters of activity within the same modality preferential
brain areas (i.e., the wider visual and motor systems), their
exact localization was different (Fig. 4d–h). Indeed, the pre- and
postword sources differed in relation to the level of the cortical
hierarchy, in which activations specific to semantic types
(i.e., symbols referring to animals vs tools) emerged. Whereas
semantic expectations were indexed by relatively greater
activation further away from primary cortices (Fuster 2004), in
dorsal-parietal visual and posterior-prefrontal areas, postword
processing of previously unexpected words differentially
activated the corresponding modality preferential territories
close to, or overlapping with, primary fields and therefore at
“lower” hierarchical levels (Fig. 4d–h). Although this pattern of
results is difficult to explain and may in part be due to the
different control conditions used for subtraction (see the 4
bottom panels of Fig. 4), this pattern of results is consistent with
hierarchical predictive coding, a neurobiologically informed
theory of brain function (Felleman and Van Essen 1991; Rao
and Ballard 1999; Friston 2010; Bastos et al. 2012). According
to this framework, each level in the hierarchical network
attempts to predict the activity at lower levels and, therefore,
in “lower areas” (Huang and Rao 2011), in order to aid the
suppression of any ascending neuronal activity that could be
anticipated. Whereas some PC accounts focus on the columnar
organization of cortical layers and attribute relatively higher
hierarchical levels of processing to deeper layers (Friston 2010),
other accounts (Rao and Ballard 1999) suggest a functional
hierarchal organization across cortical areas (Felleman and
Van Essen 1991; Badre and D’Esposito 2009). Our data can
obviously not speak to the layer level but appear to be consistent
with increasingly higher levels of processing when moving
away from primary toward multimodal association cortex. For
example, it has been suggested that auditory prediction error
responses, such as the mismatch negativity or MMN, emerge

from a feedforward–feedback cascade, in which higher-order
frontal areas generate top-down predictions reaching lower
perceptual areas (including superior temporal gyrus), where
prediction error signals are computed based on the match
or mismatch between top-down prediction and the stimulus
information reaching primary auditory cortex (Garrido, Kilner,
Kiebel, et al. 2009). Recent results indicate that the classical MMN
prediction error signal originates from a hierarchy of predictive
coding mechanisms, both in nonhuman mammals (i.e., rats and
mice) (Parras et al. 2017) and humans (Dürschmid et al. 2016).
Consistent with this, Parras and colleagues (Parras et al. 2017)
reported largest prediction error signals in superior temporal
lobe, close to auditory cortex. Overall, our results are consistent
with this theoretical approach and recent experimental
evidences, as prediction potentials emerged in areas further
away from sensorimotor fields as compared with poststimulus
error signals, which emerged in and close to primary areas.

In conclusion, our results show physiological correlates of the
interplay between semantic prediction and integration process-
ing in sentence understanding. These correlates of prediction
and integration were manifest in signal and source space. In
signal space, larger preword predictive responses, that is, SPPs,
were followed by smaller postword N400 activations, which
can be interpreted as prediction error related, because there
is now physiological evidence for the presence of predictions
revealed by the SPP. Vice versa, the absence of a (strong and
reliable) prediction, as signified by the absence of the SPP, results
in a large N400, now interpretable as an error signal. These
results reveal a putative neurobiological correlate of the inter-
play between predictive coding and prediction resolution in
language understanding. In source space, the main generators
underlying prediction and resolution were markedly different,
lying, respectively, in prefrontal and posterior temporal cortex,
but there were additional sources indicated semantic differ-
ences between semantic word categories, and these differen-
tial sources were similar and adjacent across prediction and
resolution. In showing the interplay between brain correlates
of prediction and prediction error and resolution in semantic
understanding, the present results may be of relevance to future
work in linguistics, neuroscience, and cognitive science.
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Supplementary material can be found at Cerebral Cortex online.
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