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Abstract

Atrial fibrillation (AF) is a typical category of arrhythmia. Clinical diagnosis of AF is based on

the detection of abnormal R-R intervals (RRIs) with an electrocardiogram (ECG). Previous

studies considered this detection problem as a classification problem and focused on

extracting a number of features. In this study we demonstrate that instead of using any spe-

cific numerical characteristic as the input feature, the probability density of RRIs from ECG

conserves comprehensive statistical information; hence, is a natural and efficient input fea-

ture for AF detection. Incorporated with a support vector machine as the classifier, results

on the MIT-BIH database indicates that the proposed method is a simple and accurate

approach for AF detection in terms of accuracy, sensitivity, and specificity.

1 Introduction

Atrial fibrillation (AF or AFIB) is a type of abnormal heart rhythm (arrhythmia) characterized

by the rapid, irregular beating of the heart’s upper chambers, resulting in the pooling and clot-

ting of blood inside the heart, thereby increasing the risk of heart attack, failure, and stroke [1].

The symptoms of AF frequently begin with short periods of arrhythmia, such as abnormal

beating or atrial flutter, followed by longer arrhythmia periods, sometimes even lasting for

hours, accompanied occasionally with heart palpitations, fainting, lightheadedness, shortness

of breath, or chest pain [2].

The clinical diagnosis of AF is based on the surface electrocardiogram (ECG), and because

of the disorganized electrical activity, AF is characterised by the absence of a P wave. However,

because the amplitude of the P wave is relatively low (also a heavy baseline), making its detec-

tion difficult, the R-R interval (RRI), which reflects the ventricular interbeat, was proposed as a

significant biomarker for AF detection [3]. Compared with RRI in regular rhythm segments,

consecutive RRIs during AF episodes exhibit low averages and high fluctuations, reflecting

rapid and irregular heart beating. Fig 1 illustrates a typical ECG record (04043) from the MIT-

BIH atrial fibrillation database (AFDB) [4, 5], which demonstrates the different patterns of

RRIs (red line) in and off AF segments. Since AF episodes duration may change from a few

seconds to hours, the chance of AF detection depends heavily on the monitoring period of the
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ECG. To maximize the probability of AF detection, long-term monitoring of the ECG is

required, for example, the use of a Holter. However, the visual inspection of twenty-four-

hour-long ECG records is time consuming for clinicians. Hence, an automated AF detection

method is required. Another issue to be addressed is the distortion in the long-term record

introduced by physical activities; therefore, an accurate AF detection method is needed. With

the rapid development of wearable and smart devices, memory-efficient, real-time, automatic,

and accurate AF detection methods have become possible [6–8].

As illustrated in Fig 2, the histogram of the RRI of AF events (panel (a)) exhibits a lower

mean, longer tail, and is left-skewed, compared with that of normal events (panel (b)). These

findings are evident from Fig 1(b). Based on these findings, mathematical expectation, vari-

ance/deviation, skewness, difference of RRIs, and other higher-order statistics were proposed

as features for classification.

Fig 1. Demonstration of signals and annotations of AFDB (record 04043). Blue solid and green dashed lines indicate

the ECG signals of two channels, red circled line is the RRI, and black thick line is the AF label (1 and 0 indicate AF and

normal, respectively). It can be easily observed that the RRIs of AF and non-AF segments exhibit different patterns.

https://doi.org/10.1371/journal.pone.0271596.g001

Fig 2. The average histogram of RRIs. (a) represents AF records of AFDB, and (b) represents normal records from

NSRDB.

https://doi.org/10.1371/journal.pone.0271596.g002
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Table 1 lists 35 published studies that have been conducted to develop efficient AF detection

methods. Tateno and Glass [3] first noticed the increase in the variation on AF episodes and

hence proposed the coefficient of variation as a feature of RRI and ΔRRI (the first-order differ-

ence of RRI). Subsequently, they used statistical hypothesis testing to verify the existence of AF

Table 1. List of published methods (in chronological order).

reference feature classifier database ACC SEN SPE PRE

[3] RRI and ΔRRI K-S test AFDB,MITDB NA 86.60 84.30 NA

[14] RRI(variance) thresholding AFDB NA 96.00 89.00 NA

[26] RRI and ΔRRI fixed rule AFDB NA 93.00 97.00 NA

[18] RRI(Markov scores) thresholding Holter ECGs,MITDB 95.43 93 98 98.01�

[27] RRI thresholding AFDB,MITDB 99.1 94.4 95.1 106.5�

[28] RRI and ΔRRI thresholding AFDB,NSRDB NA 96.1 98.1 NA

[9] RRI(SampEn) logistic regression AFDB 97.75 91.00 98.00 63.00

[29] RRI(map) thresholding AFDB,MITDB,NSRDB NA 95.90 95.40 NA

[19] RRI(entropys, statistical characteristics), HR SVM AFDB,NSRDB,MITDB 98.84 99.07 99.72 98.27

[30] ΔRRI (maximum), F wave thresholding AFDB,MITDB,NSRDB 94.62 94.13 95.58� 97.67

[31] RRI(ShEn) thresholding LTAFDB,AFDB,MITDB,NSRDB 96.05 96.72 95.07 96.61

[32] P wave (morphology and statistical features) thresholding AFDB 97.88 98.09 91.66 79.17

[15] HR(variance) SVM MITDB 97.50 95.81 98.44 97.16�

[33] RRI(irregularity, Bigeminy suppression) thresholding AFDB,NSRDB NA 98.00 98.20 NA

[34] TQI(RWE) NA AFDB,synthesized ECG recordings 93.32 91.21 94.53 90.53�

[35] RRI(entropy) thresholding AFDB,MITDB 96.38 96.39 96.38 0�

[10] RRI(CoSEn, CV, RMSSD, MAD) RF + KNN MITDB,AFDB,LTAFDB,NSRDB,. . . 97.33 92.80 98.30 92.10

[36] RRI(ShEn) ANN(BP) AFDB 89.79 91.04 89.01 83.79�

[11] RRI(ShEn, SampEn, CoSEn, . . .) SVM AFDB NA 94.27 98.84 NA

[37] RRI(dissimilarity index) ensemble classifier AFDB,NSRDB 97.78 97.04 97.96 92.05�

[38] ΔRRI(entropy, probability density distribution) LSVM AFDB,MITDB,NSRDB,LTAFDB 95.90 95.30 96.30 94.10

[21] RRI(windowed sequence) RNN+LSTM AFDB 98.67 98.51 98.32 100.79�

[12] ECG(log energy entropy, permutation entropy) RF AFDB 96.84 95.80 97.60 96.69�

[16] HR(statistical characteristics) fixed rule AFDB 95.62 95.42 96.12 94.97

[39] RRI(RCV, SKP, Lempel-Ziv) SVM AFDB 96.09 95.81 96.48 97.43�

[22] RRI(windowed sequence) CNN+RNN+LSTM AFDB,MITDB,NSRDB 97.8 98.98 96.95 95.90�

[23] RRI(sequences) CNN+RNN+LSTM private dateset 89.67 94.2 93.13 110.56�

[40] RRI(entropy, power spectrum . . .) SVM AFDB 90.00 100.00 80.00 83.33�

[41] RRI(statistical characteristics) SVCm AFDB,MITDB 94.99 96.34 92.8 95.6�

[24] ECG(fractional norm) H-ELM AFDB,MITDB 99.93 99.86 100 100.07�

[13] RRI(frequency-domain) decision tree AFDB 98.9 97.93 99.63 98.32�

[42] HR(ShEn) thresholding MITDB 98.10 99.20 97.30 96.39�

[25] ECG(original wave) BiRNN AFDB 82.41 90.53 79.54 61�

[17] HR(irregularity) SVM AFDB 98.66 98.94 98.36 98.86

[20] ΔRRI, RRI, morphology CatBoost AFDB 99.62 99.61 99.64 99.82�

Asterisk (�) indicates that this value is deduced from the other three criteria with formulates in S1 File. Abbreviations: AFDB (atrial fibrillation database), ANN (artificial

neural network), BiRNN (bidirectional recurrent neural networks), BP (back propagation), CNN (convolutional neural network), CoSEn (coefficient of sample

entropy), CV (coefficient of variance), H-ELM (hierarchical extreme learning machine), HR (heart rate), K-S (Kolmogorov-Smirnov), KNN (k-nearest neighbor), LSTM

(long short-term memory), LSVM (linear support vector machine), LTAFDB (long term atrial fibrillation database), MAD (median absolute deviation), MITDB

(MIT-BIH arrhythmia database), NA (not applicable), NSRDB (normal sinus rhythm database), RCV (robust coefficient of variation), RF (random forest), RMSSD

(root mean square of the successive differences), RNN (recurrent neural network), RRI (R-R interval), SampEn (sample entropy), ShEn (Shannon entropy), SKP

(skewness parameter), SVCm (supervised contractive map), SVM (support vector machine), TQI (T-Q interval).

https://doi.org/10.1371/journal.pone.0271596.t001
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events. They also proposed the use of the Kolmogorov-Smirnov test to compare the histograms

of AF RRIs and normal one. Many subsequent studies considered this detection problem as a

classification problem and focused on the extraction of various features and the design of clas-

sifiers. These features include entropy [9–13], mean and/or median (with or without normali-

zation), root mean square and/or variance [14–16], quantiles [16, 17], median absolute

deviation [10, 16, 17], coefficients of wavelet transformation [12, 13], Markov score [18] of

RRI and/or ΔRRI, or a combination of several features [10, 11, 16, 19, 20]. In recent studies,

deep learning algorithms such as long short-term memory (LSTM) [21, 22], and others [20,

23–25] have been used to process original signals without feature extraction.

In this study, from a statistical perspective, we consider that instead of employing any

numerical characteristic (i.e., mean, variance, skewness, etc.) as a specific feature, the probability

density function conserves comprehensive information and hence enables high-performance

classification. Consequently, we propose the use of a histogram of the RRI from an ECG as a

natural and general feature and the widely used support vector machine (SVM) as the classifier.

2 Materials and methods

2.1 Databases

This study employed the MIT-BIH atrial fibrillation database (AFDB) [4, 5], which is widely

used in arrhythmia studies. This database includes 25 records of human subjects with AF, and

each record includes two-channel ECG signals with a sample frequency of 250 Hz and a 12-bit

A/D resolution. Furthermore, this database contains clinical annotations and QRS calls, and

supports online retrieval with the easy-to-use toolbox waveform database (WFDB) [43, 44].

Note that R waves were already called by WFDB, so this paper do not cover the detection of R

waves from an ECG signal. Researchers interested in this topic are referred to fruitful literature

[45–48].

Fig 1 illustrates a typical record (ID 04043) of the AFDB, including two ECG channels (blue

and green lines), the RRI (red line), and AF label (black line).

The MIT-BIH long-term atrial fibrillation database (LTAFDB) [49, 50] was also employed

as a positive test dataset, which includes 84 long-term (24 hours) ECG recordings, with the

same sampling parameters as the AFDB.

As in normal control cases, to evaluate the specificity, this study also employed the MIT-

BIH normal sinus rhythm database (NSRDB) [51, 52], which includes long-term ECG records

of 18 human subjects who exhibited no significant signs of arrhythmia.

All 127 (25 + 18 + 84) records were downloaded using MATLAB (the pseudo code is listed

in S2 File).

2.2 Performance criteria

Three widely used criteria were employed to quantify AF detection performance: accuracy

(ACC), sensitivity (SEN), and specificity (SPE).

SEN is referred to as the true positive rate, which is used to measure how well a method can

identify real patients, and is defined as the proportion of true positives among all positive subjects.

SPE is referred to as the true negative rate, which is used to measure how well a method can

identify a normal person and is defined as the proportion of true negatives among all negative

subjects.

For diagnosis and screening, there exists a trade-off between SEN and SPE; therefore, ACC

is commonly used to consider SEN and SPE integrally. ACC is defined as the proportion of the

sum of true positives and true negatives among all the samples.
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Notably, precision (PRE), also known as positive predictive value (PPV), is frequently

employed in several studies and is defined as the proportion of true positives among all

detected positive cases. However, among these four criteria (ACC, SEN, SPE, and PRE) only

three are independent, and the fourth can be calculated depending on the other three (see S1

File). Therefore in our study, only ACC, SEN, and SPE were evaluated, and PRE was not con-

sidered. Among the studies listed in Table 1, a few studies provided PRE, while others provided

ACC; hence, we used the formulas mentioned in S1 File to convert among them, and the resul-

tant values have been labelled with asterisks.

2.3 Method

2.3.1 Data pre-processing. After 127 records were downloaded, the following pre-pro-

cessing steps were followed:

1. RRI values were re-scaled from the sample index to milliseconds by dividing with the sam-

pling frequency;

2. Annotations and comments of AFDB and LTAFDB were resolved, and RRI regions with

the string ‘(AFIB’ were selected as positive regions;

3. All RRI regions of NSRDB were selected as negative regions;

4. Both positive and negative regions were cut to segments, each including 30 PPIs;

5. A histogram with M bins of each RRI segment was calculated, and stored in a row vector of

size M;

6. The N0 row vectors from NSRDB were cascaded vertically to form the negative sample

matrix X0, and the same method was employed for vectors from AFDB and LTAFDB, yield-

ing matrices X1 and X2 of height N1 and N2, respectively.

After pre-processing, we obtained three sample matrices X0, X1, and X2, with width M, and

height N0 = 58742, N1 = 16817, and N2 = 101376, respectively.

2.3.2 Classifier. Soft-margin support vector machine (SVM) [53, 54] was trained as the

classifier, which is formally defined as the following optimization problem (the Lagrangian

dual form):

max
α

sumðαÞ �
1

2
ðα � yÞTKXðα � yÞ

� �

;

s:t: αTy ¼ 0; 0 � α � c;
ð1Þ

where X ¼ ½x1; x2; . . . ; xN � 2 R
N�M stores the N training samples, each sample xi 2 R

1�M is a

row vector of length M; y 2 RN�1
stores the labels of samples (1 for AF, and -1 for normal);

α 2 RN�1
is an unknown weight vector to be optimized; sum(α) is the sum of all elements in

α;� is the point-wise multiplication (the Khatri-Rao product); c is a box constraint parameter,

which controls the strength of regularization; KX ¼ ½kij� 2 R
N�N is the kernel matrix of X, with

element kij = κ(xi, xj) is the Gaussian kernel (or radial basis function):

kðxi; xjÞ ¼ exp �
kxi � xjk

2

2

s2

 !

; ð2Þ

where σ is a scale parameter.
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To optimize problem (1), sequential minimal optimization (SMO) [55] was utilized as the

solver. Once α is obtained, the bias parameter b can be calculated as:

b ¼ meanðy � KXðα � yÞÞ: ð3Þ

For a test PPI vector t, the predicting function read:

pðtÞ ¼
XN

i¼1

aikðxi; tÞ þ b; ð4Þ

and if p(t)> 0, an AF event is detected.

3 Results

3.1 Kernel function

First, we compared the performance of the Gaussian kernel function (2) with that of the linear

kernel function klðxi; xjÞ ¼ xixTj =s
2, and the third-order polynomial kernel function

kpðxi; xjÞ ¼ ð1þ xixTj =s
2Þ

3
. At this step, all other parameters were set to default values (scale

parameter σ = 1, box constraint parameter c = 1, and number of bins M = 10).

The SVM classifier was trained with the positive and negative sample matrices X1 and X0 by

constructing a kernel matrix KX of size (N1 + N0) × (N1 + N0), and a training label y with N1

ones and N0 negative ones. The optimize problem (1) was solved with SMO solver to train the

weight vector α; then, the bias parameter b was calculated based on Eq (3). Subsequently, the

same samples were tested with the trained SVM, and the performance criteria were evaluated.

Fig 3 illustrates the performance with different kernel functions. It was demonstrated that

the radial basis function was the best, and this kernel was chosen in the sequel.

Fig 3. The performance with different kernel functions.

https://doi.org/10.1371/journal.pone.0271596.g003
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3.2 Number of histogram bins

Subsequently, we tested the impact of the histogram bin number M on detection performance.

Because approximately 99% of the RRI values lie within the region of 50 ms and 2e3 ms, the

centres of the first and last bins were set to 50 ms and 2e3 ms, respectively. Other M − 2 bin

centres were located linearly within this region. RRI values beyond this region were assigned

to either the first or the last bin.

The training of SVM and performance evaluation were the same as in the previous experi-

ment. Fig 4 demonstrates the results, which indicate that the detection performance increases

with an increase in M and reaches the ceiling at 30. Therefore, in the following experiments, M
was fixed at 30.

3.3 Cross-validation with scale and box constraint parameters

The scale parameter σ and box constraint parameter impacted the training significantly;

hence, we used ten-fold cross-validation to optimize these two parameters. Both σ and c were

sampled on a two-dimensional logarithmic grid. The training of SVM, performance evalua-

tion, and training dateset were the same as in the previous experiment. Fig 5 demonstrates the

results in which panel (b) indicates that a high SEN performance requires large-scale and

box constraint parameters, and panel (c) indicates that a high SPE performance requires

small-scale and box constraint parameters. As mentioned, ACC considers both SEN and SPE,

and the best performance was achieved at σ = 3.2, and c = 1 (the yellow star in panel (a)).

Table 2 lists the ten-fold cross-validation performance in this setting.

Fig 4. The performance with different histogram bin numbers.

https://doi.org/10.1371/journal.pone.0271596.g004

PLOS ONE Accurate detection of atrial fibrillation events

PLOS ONE | https://doi.org/10.1371/journal.pone.0271596 August 4, 2022 7 / 12

https://doi.org/10.1371/journal.pone.0271596.g004
https://doi.org/10.1371/journal.pone.0271596


3.4 Independent dataset testing

In the last experiment, the SVM model was trained with AFDB (N1 = 16817) and NSRDB

(N0 = 58742) as positive and negative samples, respectively. Model parameters were set accord-

ing to the results of previous experiments. Subsequently, LTAFDB (N2 = 101376) was used as

the independent positive testing dataset. The confusion matrix is shown in Table 3, and detec-

tion results for ACC, SEN, and SPE were 0.9697, 0.9524, and 0.9994, respectively, thus indicat-

ing a good generalization performance.

4 Conclusion and discussion

We conclude that an accurate detection method for atrial fibrillation events based on the RR

interval measured from an ECG signal was proposed in this paper. The advantage of the pro-

posed method over the methods described in literature is that: instead of using any specific

numerical characteristic (e.g., entropy, mean, median, root mean square, variance, quantiles,

etc. or a combination of several characteristics) as the input feature, the probability density

Table 2. Performance of ten-fold cross validation at yellow star point in Fig 5.

CV ID ACC SEN SPE

1 0.9876 0.9878 0.9875

2 0.9839 0.9862 0.9823

3 0.9859 0.9896 0.9832

4 0.9849 0.9812 0.9878

5 0.9847 0.9865 0.9833

6 0.9837 0.9853 0.9826

7 0.9839 0.9828 0.9848

8 0.9854 0.9852 0.9856

9 0.9827 0.9836 0.9821

10 0.9805 0.9801 0.9808

average 0.9843±0.0019 0.9848±0.0029 0.9840±0.0024

https://doi.org/10.1371/journal.pone.0271596.t002

Fig 5. Ten-fold cross validation performance with different scale and box constraint parameters.

https://doi.org/10.1371/journal.pone.0271596.g005

Table 3. Confusion matrix of independent dataset testing.

predicted AF predicted normal

AF 96553 4823

normal 34 58708

https://doi.org/10.1371/journal.pone.0271596.t003
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conserves all statistical information; hence, is natural, comprehensive, easy-computing and

efficient as the input features. On the MIT-BIH databases, the proposed method achieved

0.9843±0.0019, 0.9848±0.0029, and 0.9840±0.0024, in terms of ACC, SEN, and SPE, respec-

tively, for a ten-fold cross-validation, and 0.9697, 0.9524, and 0.9994, respectively, for an inde-

pendent testing, indicating that the proposed method is effective in AF detection.

Note that some studies highlighted the difference between the histograms of PPIs of AF and

normal one, and proposed the use of a histogram to detect AF, but the manner in which they

utilize histograms is quite different from that in this study. For example, Tateno and Glass [3]

observed an increase in variation in AF episodes, and proposed using the Kolmogorov-Smir-

nov test to compare the histogram of AF RRI and normal RRI; Petrucci et al. [26] calculated

several statistics, such as the distribution width based on the histogram of RRI prematurity

and ΔRRI, and used a geometric test to detect AF. Alternatively, this study proposes using the

histogram as the feature vector and an input to the support vector machine for classification,

which is the main contribution of this study.
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S1 File. Relations between accuracy (ACC), sensitivity (SEN), specificity (SPE), and preci-

sion (PRE).

(PDF)

S2 File. Dataset downloading.

(PDF)
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