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Cancer immunotherapy, as a novel treatment against cancer metastasis and recurrence,
has brought a significantly promising and effective therapy for cancer treatments. At
present, programmed death 1 (PD-1) and programmed cell death-Ligand 1 (PD-L1)
treatment for lung cancer is primarily recognized as an immune checkpoint inhibitor
(ICI) to play an anti-tumor effect; however, it remains uncertain regarding of its efficacy
though. Thereafter, tumor mutation burden (TMB) was recognized as a high-potential to
be a predictive marker for the immune therapy, but it is invasive and costly. Therefore,
discovering more immune-related biomarkers that have a guiding role in immunotherapy
is a crucial step in the development of immunotherapy. In our study, we proposed a
deep convolutional neural network (CNN)-based framework, DeepLRHE, which can
efficiently analyze immunological stained pathological images of lung cancer tissues,
as well as to identify and explore pathogenesis which can be used for immunological
treatment in clinical field. In this study, we used 180 whole slice images (WSIs) of lung
cancer downloaded from TCGA which was model training and validation. After two
cross-validation used for this model, we compared with the area under the curve (AUC)
of multiple mutant genes, TP53 had highest AUC, which reached 0.87, and EGFR,
DNMT3A, PBRM1, STK11 also reached ranged from 0.71 to 0.84. The study results
showed that the deep learning can used to assist health professionals for target-therapy
as well as immunotherapies, therefore to improve the disease prognosis.

Keywords: immunotherapy, lung cancer, convolutional neural network, biomarkers, DeepLRHE

INTRODUCTION

Lung cancer is currently one of the most common malignant tumors and the main cause of death
in the world. The Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries showed that the incidence and mortality of lung cancer
in my country are 11.6 and 18.4%, respectively, and both ranked first in the world (Bray et al., 2018).
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By 2020, The American Cancer Society reported that
approximately 228,820 lung cancer cases will be diagnosed
in the United States and 135,720 people would die from the
disease (American Cancer Society, 2020). Currently, surgical
treatment such as lobotomy and chemotherapy still remain the
first or optimal treatment plan for patients with lung cancer.
However, those types of treatments are invasive and have
intolerable complications which decrease the quality of life for
patients. Therefore, it is very important for health professionals
to develop a novel strategy to improve treatment outcomes and
improve patient survival time.

In recent years, the emergence of immunotherapy has brought
new hope for the cure of tumors. Immunotherapy can restore the
balance of the immune system by blocking immune checkpoints,
so that T cells can enhance or restore anti-tumor effects,
therefore, patients do not have to destroy their own cells with
normal cells together. The mechanism of immunotherapy is that
cancer growth and spread are not only dependent on tumor
cells alone, but also affected by the integrating with the body’s
immune system. The immunotherapy for malignant tumor is to
stimulate patients’ own immune system to recognize the specific
membrane molecules or gene mutation of malignant cells with
gene mutation, thereby to induce the tumor cell apoptosis and
remove from the body. As immunotherapy has been introduced
in clinical field for years, the 5 years survival rate of advanced lung
cancer has been improved from less than 5 to 16%, significantly.
Therefore, immunotherapy has been a potential candidate for the
cancer treatment in the clinical field.

Immunotherapy of lung cancer has been previously failed to
introduce on the clinical practice, since it is lack of sufficient
load of mutated tumor antigen, suppressed antigen presenting
cells (APC) traffic from the tumor, as well lack of the specific
biomarker signal for delivering CD4 T cells. Tumor can escape by
losing cell antigen or the antigen-presenting molecule MHC class
I. PD-L1 is a membrane ligand in lung cancer which is expressed
on tumor cells in approximately 50% of lung cancers, and its
expression may contribute to poor prognosis by suppressing
T-cell function and promoting tumor cell to escape from the
body immune response. After binging to cells APCs presenting at
tumor cells, the body activates immune response, by activin CD4
T helper cells, CD8 cytotoxic T, and to eliminate or apoptosis of
tumor cells (Lesterhuis et al., 2011).

Recently, immunotherapy for lung cancer has sufficiently
aroused people’s interest in checkpoint inhibitors, especially
PD-1/PD-L1 immune checkpoint inhibitors (ICI). ICI works
by regulating the integration of T cells and APC or tumor
cells to help suppress the immune response. Compared with
empirical therapy, it is more effective in treating patients
with complications (Jonathan et al., 2019). To date, most
immunological therapy is using antibody to PD/PD-L1, the
efficacy depends on the type of tumor, side effect and clinical stage
of tumors. FDA approved application PD-1/PD-L1 treatment
in advanced squamous and non-squamous. In fact, the PD-1
checkpoint blockade is associated with smoking status, DNA
repaired pathway and higher non-synonymous mutation burden,
overall, it works better for any types of tumors in advanced stage
(Zhang et al., 2018; Wang et al., 2019).

In the era of precision medicine, machine learning has
promoted the rapid development of computer-aided diagnosis,
and it significantly improved the accuracy and efficiency
of doctors in diagnosing patients (Zou et al., 2018; Zou
and Ma, 2020). In the lung cancer research, The School
of Medicine at New York University used deep learning
methods to train hematoxylin-eosin (H&E) slices of lung
cancer, and then identified the biomarker genes using for
the immunological therapy (Coudray et al., 2018). Immune
biomarkers could provide valuable prediction and disease
prognoses the process of immunotherapy (Gulley et al., 2017).
In addition, Agajanian et al. (2019) used random forests,
gradient boosted tree classifiers and deep convolutional neural
networks to predict driver gene mutation in the genome
data set. In the study, they conducted twice cross-validation,
and the results further prove the ability of CNN to extract
advanced features.

In order to better understanding the mechanism of the
body response to the surrounding microenvironment, it is
critical for early evaluation and development of surveillance
program by using potential effective biomarkers. In this study,
we proposed a novel immunotherapy model based on CNN
to predict mutant genes for immunotherapy by analyzing
histopathological images of lung cancer stained with H&E
images. The predicted biomarkers would play an important
role for clinical professionals with designing personalized
treatment plans.

MATERIALS AND METHODS

Data Preparation
In this study, we downloaded H&E tissue images of lung cancer
from TCGA1. The downloaded H&E images were converted to
the SVS format, professional pathologists identified the tumor
region and boundary. They discarded the furry and blurred
background, the unqualified images as well as the background
containing many macrovesicles, inflammatory cells and micro-
fibrils and other inferencing factors to ensure the relatively clear
images for training (Wang D. et al., 2016).

The cBioportal website2 is an open platform for interactive
exploration of multi-dimensional cancer genomics data,
which greatly facilitates the processing and analysis of data
by researchers (Cerami et al., 2012). We used cBioportal
website to analyze immune-related biomarkers, including TP53,
EGFR, STK11, polE, polD1, PBRM1, DNMT3A, and KRAS.
Furthermore, we marked the relevant biomarkers of H&E images
as 1, otherwise mark them as 0. We reviewed and counted the
clinical data of patients in the International Cancer Genome
Collaboration Group (ICGC).

DeepLRHE Framework
In this study, the DeepLRHE framework was proposed on
the basis of CNN, which can process H&E pathological slice

1https://portal.gdc.cancer.gov/
2http://www.cbioportal.org/
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FIGURE 1 | H&E tissue slices were processed and predicted immune-related biomarkers. (A) The WSI data from TCGA. (B) The selection and segmentation of the
tumor area of images. (C) The denoising of the background influencing factors (i), the normalization of image color (ii). (D) The model training. (E) The heat maps.

images of lung cancer, as shown in Figure 1. It included four
steps: annotate the tumor region in the image; standardize the
color images; classify the samples; and identify the potential
biomarkers in images.

The downloaded WSI was screened and the tumor area
was depicted as shown in Figure 1B. Since the information
contained in the complete tumor region is rich and complex,
in order to facilitate training, a non-overlapping 512 × 512
window was used to segment images, while the small tiles
containing tumor irrelevant features or unqualified images were
discarded, the remaining were prepared for the subsequent
processing. In addition, Python software and Gaussian
mixture model was used to denoise and normalize the
color of small tiles to ensure the quality of model training.
The process is shown in Figure 1C. Then, input small blocks
with immune-related biomarkers into the CNN+ResNet
model with residual blocks for training and classification, as
shown in Figure 1D. Finally, collect the results of all small
tiles after induction and classification to extract a complete
probability heat map.

Image Preprocessing
We used H&E stained images of 180 WSIs with lung cancer
downloaded from TCGA. H&E stained images were widely
used for tumor diagnosis (Dalton et al., 2000; Le et al., 2012).
Therefore, in order to be able to accurately predict the potential
biomarkers on the images, an experienced pathologist would
annotate the relatively accurate boundaries of the tumor region.
The boundaries were shown as the blue dashed line in Figure 1B.
In order to facilitate CNN training with images, a 512 × 512
window was used to scan and segment WSI, and small tiles with
a background area greater than 75% are discarded.

Denoising and Color Normalization
Background noise such as blank or flurry areas in the H&E
slices may cause unclear image features and false positives results,
which would significantly influence on model training. In order
to address this problem, we used the OpenCV package in Python
to remove image noise on H&E slices. We calculated the noise
ratio threshold, which is the ratio of the area of the blank and
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blurred areas in the H&E images to the total area. According
to this threshold, the false positive H&E slices were discarded,
while retaining the images without background noises. OpenCV
also performed edge expansion (filling), smoothing filtering and
segmentation processing on H&E images, as shown in Figure 1C.
Finally, all the processed image data is randomly divided into
training set and validation set at a ratio of 1:1 to prepare for
subsequent model training.

In addition, hematoxylin and eosin staining the nucleus and
cytoplasm of the slices, might cause the color difference between
each H&E slice, thereby to influence the model certain point
during training (Bejnordi et al., 2016). In order to standardize the
color of image slices without eliminating useful features, the Deep
Convolutional Gaussian Mixture Model (DCGMM) was used to
identify the color information of the nucleus, cytoplasm, and
image background in the input H&E tissue image, and convert
them into reference images the color (Zanjani et al., 2018). This
method would not transform or change the original features
in the image. The DCGMM model is a probability distribution
model formed after the linear superposition of N-dimensional
Gaussian mixture on the basis of the probabilistic Gaussian
mixture model (GMM). Its specific form is as follows:

P(x) =
N∑

n=1

WnE(x|Vn,Cn) (1)

Where the weight coefficient of the Gaussian mixture model
of data x is Wn, which needs to satisfy the condition 0 ≤
Wn ≤ 1,

∑N
n=1 Wn = 1 (Bishop, 2006).

E is a normal distribution, mean Vn and covariance matrix
Cn are its independent variables, then it satisfies the following
formula for random variable xK:

f(xk) =
1

(2π)
n
2 |Cn|(1/2)

exp
{
−1
2
(xk − Vn)

TC−1
n (xk − Vn)

}
(2)

Where Cn
−1 is the inverse matrix of Cn, and the subsets of xK

are uncorrelated.
When Wn is a priori condition, the generation probability of

the n-th model of xK is:

P(k, n) =
WnE(x|Vn,Cn)∑N
j=1 WjE(x|Vj,Cj)

(3)

Input image data x, the total pixel value of sub-model
xk(k = 1, 2, 3 · · · ) is E, according to formula (1), the (natural)
log likelihood function can be obtained as:

lnP(xk|W,V,C) =
k∑

k=1

lnP(x) (4)

Given CMM, the DCGMM model can be optimized by
maximizing the log-likelihood function (formula 4) through the
parameter (Wn,Vn,Cn).

This color normalization method is chosen in unsupervised
neural network. Unsupervised neural networks are the evolution
of more detailed and tighter neural networks obtained from

supervised learning. It pays more attention to the coordination
between the internal units of the network. This shows that the use
of the DCGMM model does not require any assumptions about
the content of H&E images or data labels from the outside world,
and the connection weight can be adjusted by itself (Sheng-chun
and Lin-Xiang, 2006; Wei et al., 2016).

As shown in Figure 2, the original pictures of the H&E slice are
in A. After applying DCGMM model, all the nuclei, cytoplasm,
and patch backgrounds in picture A were classified into one type
of pixel, so that images in B are obtained. This process would not
discard the original feature of the pre-processed image.

Convolutional Neural Network
Convolutional Neural Network (CNN) is a multilayer neural
network, which mainly includes input layer, convolutional layer,
pooling layer and fully connected layer. It is considered to
be the first choice for deep learning on the area of tumor
diagnosis. The complete data processing was explained as
followings: WSI enters the input layer, sequentially enters to the
multiple convolution layers, and output from the merge layer,
as shown in Figure 3. The activation function is commonly a
RELU layer, and then followed by the pooling layer which is
mainly to extract features for dimensional reduction through
excitation layer (LeCun et al., 1998). The pathological or atypical
features can be extracted and quantified through the CNN
model. Furthermore, CNN could also discard the background
noise and impurities from the pathological images, complete the
segmentation and classification for the tumor region (Weinstein
et al., 2009; Xu et al., 2014; Ertosun and Rubin, 2015). Therefore,
CNN plays an irreplaceable role in processing pathological
images, which is served as a convenient tool for the health
professionals to make diagnosis and design individualized
treatment (Song et al., 2015).

In order to accurately identify biomarkers of immunotherapy
in lung cancer, the H&E images must be classified and trained.
The preprocessed images with potential biomarkers were output
as the input layer of the deep convolutional neural network,
and then the feature extraction was performed through the
convolutional layer composed of 32 n× n convolution kernels.
In the excitation layer, we choose ReLU as the activation function,
which could increase the sparsity of the network to solve the
over-fitting problem, then the images passed through the pooling
layer to extract features (Shang et al., 2016). The input data to the
next hidden layer until the features in the image were completely
extracted, and finally classified in the fully connected layer and as
well as the output layer.

Residual Network
Generally, neural networks can obtain better functions, but
affected by the depth of the network layer. However, as the
network continues to deepen, the convergence of the network
would deteriorate due to the issue of vanishing gradient, and the
accuracy and performance of the network will decrease. With
improved convergence but not degraded network, we introduced
the ResNet block.

As a fairly deep network, ResNet has applied in image
feature classification, lesion segmentation, cell segmentation etc.
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FIGURE 2 | Color normalization. (A) H&E slice original images. (B) Color normalized images.

FIGURE 3 | CNN training flowchart.

(Russakovsky et al., 2015; Shin et al., 2016; Wang C.W. et al.,
2016). This method introduced ResNet on the basis of CNN. At
this time, a fast connection was formed between various layers
in the network, and they can accelerate the connection between
different layers, as shown in Figure 4. The two layers are treated
with shortcut connections as residual blocks (RB), and then the
input vector of the considered layer is set to x, while the output
vector is set to c. ResNet is equivalent to a special form of shortcut
connection with the identity mapping. The activation function
used in the network is the nonlinear function ReLu. The linear

function is LC+A, from this we get C[1+2]= σ(B[W + 2] + C[1])
between layers, where B[W + 2] = W[1 + 2] * C[1 + 1] + A[1 +
1], when W[1 + 2] and A[1 + 1] = 0 are establishedit is easy to see
that C[1 + 2] = σ(C[I]), when C[1]≥ 0, C[1 + 2] = σ(C[1]) is true.
At this point, the identity mapping was established. In addition,
we added BN technique to residual network, because the BN can
make the landscape of the entire loss function smoother, therefore
to optimize the predictability and stability of the network. The
addition of Resnet and BN techniques allowed our model to
deepen the network level and training speed, while improving the
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FIGURE 4 | ResNet flowchart.

classification accuracy, general ability, and expressive effect of the
network (He et al., 2015; Shen et al., 2017; Santurkar et al., 2018).

Adjustment of Hyperparameters
In order to optimize the performance of the model, we need to
adjust the hyperparameters which had a variety of combinations.
We choose to adjust the hyperparameters of the model under
twofold cross-validation and take its optimal value. The data was
further divided into a training set and a validation set. The model
was trained with the training set, while the validation set was
used to verify the performance of the model. Subsequently, we
defined a grid of four dimensions and the possible range of each
dimension. During the training process, the validation set and
the network model would generate a mapping in time, and each
mapping contained a hyperparameter, which indicated that the
validation set can be adjusted by parameters of the model. These
hyperparameters included the number of cores of the filter core,
the number of layers, the batch size and the loss function of the
convolutional neural network.

There were many types of hyperparameters and manual
adjustment were required. Therefore, a simple test was
required to determine the parameter adjustment range. Because
the learning rate was difficult to be determined when the
regularization term was introduced, the appropriate learning rate
threshold was obtained afterward. The coefficient of regular term
was recorded as 0, and a small number of samples can be obtained
according to this threshold. We can obtain the approximate range

of the hyper-parameters by adjusting the hyper-parameters in
this step. In a wide range, we adjusted the learning rate and the
regularization term coefficients to obtain the refinement, so as to
obtain the optimal parameter values.

RESULTS

Clinical Diagnosis Information
We downloaded 180 lung cancer WSIs from the TCGA database.
We counted clinical variables associated with lung cancer
incidence in Table 1, thereby to eliminate possible bias for
influencing the biomarkers for immunotherapy. Among them,
adenocarcinoma tends occur at older age, however, age of
occurring of squamous cell carcinoma tends to no difference,
the overall death is relatively younger, which indicated the
lung cancer occurs in middle-aged and elderly people and the
mortality rate is very high, especially in male.

Data Preprocessing
The 180 images of lung cancer H&E sample data were
downloaded from TCGA were all converted to SVS format, and
the tumor area was annotated by a professional pathologist. In
order to facilitate data training, each image was divided into small
tiles of 512 × 512 size, as shown in Figure 1B. The blank areas
and small areas with a background greater than 75% discarded,
and small tiles with high image quality are selected for subsequent
application, including imaging with uniform cytoplasm and
nucleus staining, no background noise and less interference
factors. We set the ratio of blank and blurred areas over the total
area in the H&E image as a threshold, and used Open CV to
process images with a threshold less than 75%. In the end, we left
1,800 qualified small tiles, and then used the DCGMM model to
normalize the colors of these small tiles. The process and results
were shown in Figure 5. After our image data was processed by
the DCGMM model, the color was standardized, and the image
features still remained in the original slice.

Performance Evaluation
By using twofold cross-validation, we divide the pre-processed
1,800 samples into a test set and a validation set, and then
the samples were classified and trained by the CNN + ResNet
model. After training, the probability heat map of the H&E image

TABLE 1 | Clinical characteristics of the patients in this study.

Clinic-pathologic variables Category Variables

Gender Male 99

Female 81

Age at diagnosis Mean 67

The types of the samples H&E 100%

Adenocarcinoma >67-year-old 59

≤67-year-old 46

Squamous carcinoma >67-year-old 42

≤67-year-old 33

Age of death Mean 68
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FIGURE 5 | Color normalization model of tissue slice image. (I) Original slice
image; (II) Reference image selected by professional pathologists. (III) Color
standardized slice image after model processing.

with potential biomarkers in lung cancer immunotherapy were
obtained, and then the average probability of each biomarker
on the H&E image and their AUC value were obtained. Among

them, TP53 obtained the highest AUC value, reaching 87%. The
AUC value of EGFR also reached 84%, and the AUC values of
DNMT3A, PBRM1, and STK11 were between 71 and 78%.

Evaluation of Immunotherapy
Biomarkers
As shown in Figure 6, taking the false positive rate (FPR) as the X
axis and the true positive rate (TPR) as the Y axis, the ROC curves
of these 5 biomarkers are drawn based on the AUC value.

Our results have reached a very high accuracy. Among them,
the AUC value of TP53 is 87%, which is the highest AUC value
among our predicted biomarkers. TP53 mutations occur in about
50% of NSCLC, mainly targeting lung epithelial cells (Bodner
et al., 1992). A large number of studies have shown that its
mutation is closely related to the occurrence and treatment of
lung cancer (Mogi and Kuwano, 2011). TP53 is an important
tumor suppressor gene encoded the p53 protein, it could
regulate cell proliferation, growth and repairing DNA damage.
When TP53 gene is mutated, cell division and replication and
proliferation, leading to tumor initiation.

The AUC value of epidermal growth factor receptor (EGFR)
is slightly lower than that of TP53, which is 84%. It occurs
mostly in female patients and non-smokers (Lai et al., 2013).
EGFR is a large transmembrane glycoprotein, which can regulate
the physiological processes of cell growth, proliferation and
differentiation by combining with epidermal growth factor (EGF)
in its extracellular domain. The overexpression, amplification and
mutation activation of EGFR can induce cancer. In lung cancer,

FIGURE 6 | Gene ROC curve.
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FIGURE 7 | Heat map generation. (A) Probability image of H&E slice after training. (B) A 512 × 512 size non-overlapping window for scanning slice images. (C) The
relationship between the average value of pixels and the color change of the heat map. (D) Generate a heat map.

most of the mutations of EGFR are caused by the rearrangement
and amplification of the EGFR gene or the selective splicing of
mRNA (Cheng et al., 2012; Cheng and Eble, 2013).

The AUCs of DNMT3A, PBRM1, and STK11 are shown in
Figure 6, which are 78.1%, 75.3%, and 71.6%, respectively. We
described their physiological function as followings.

DNMT3A mutation is actually the main cause of blood system
cancer, but recent studies have also proved its effect in lung cancer
(Yuejing et al., 2014). DNA methyltransferase 3A (DNMT3A) is
responsible for the methylation of human genes. DNMT3A gene
mutation would result in the inactivation of tumor suppressor
genes, and the damaged DNA cannot be restored in time,
resulting in normal cell abnormalities. This process is closely
related to the occurrence and development of tumors.

STK11 gene and the serine threonine kinase encoded by
it are tumor suppressors, which regulate cell metabolism and
growth through phosphorylation of adenosine monophosphate
activated protein kinase (AMPK) and 12 AMPK-related kinases
(Shackelford and Shaw, 2009). In animal studies of lung
adenocarcinoma, it has been found that the inactivation or
mutation of STK11 will be related to the change of the tumor
microenvironment and the decrease of cytotoxic CD8+ cell
infiltration, which will lead to the separation of the tumor from
the body’s immune monitoring.

PBRM1 and STK11 are often regarded as negative markers
because of their low expression rate, but in fact there
is still a correlation between them and immunotherapy
(Skoulidis et al., 2018).

Heat Map Generation
In order to extract the heat map, we generated a probability map
from the tumor region, then scanned the image with a 512× 512

window, and obtained the result in this window through the CNN
model, as shown in Figure 7. We applied the window result to
the pixels and average the sum of all pixels in each window. High
pixels indicated that the possibility of biomarkers on the image is
high with the color in the heat map show as red, otherwise it was
blue. Combined with AUC analysis, our model had a relatively
good effect in predicting immune-related biomarkers by using
H&E lung cancer slices.

DISCUSSION

With the continuous development of artificial intelligence in
the medical field, deep learning as an important method has
been able to effectively identify and analyze disease images. In
our study, five immune biomarkers TP53, EGFR, DNMT3A,
PBRM1, and STK11 were identified from the H&E slice images
of lung cancer. The AUC value is shown in Figure 6. Patients
with TP53 mutation relatively not response to target therapy.
Studies have confirmed that when patients with non-small
cell lung adenocarcinoma have TP53 gene mutations, also
accompanied by an increased PD-L1 expression, which often
indicates those patients are more likely sensitive to PD-1/PD-
L1 therapy (Dong et al., 2017). From the perspective of the
biological mechanism, TP53 deletion can cause an increase
immunogenicity of tumor, further increasing in cytotoxicity
of T lymphocytes (CD8+ T cell). Several recent clinical trials
found that TP53 mutation can predict (PFS) of progression-
free survival (Hellmann et al., 2018; Assoun et al., 2019).
Combining those biological mechanism, our studies confirmed
that TP53 could be a potential biomarker with for lung
cancer immunotherapy.

Frontiers in Genetics | www.frontiersin.org 8 February 2021 | Volume 12 | Article 642981

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-642981 February 4, 2021 Time: 17:20 # 9

Yang et al. Immunological Therapy for Lung Cancer

EGFR gene mutations are mostly caused by the deletion of
L858R and exogenous factor 19, which will change the specific
mutations of EGFR protein. It has been confirmed that patients
with EGFR mutant primarily benefit with from targeted therapy
with tyrosine kinase inhibitors (TKI) (Recondo et al., 2018; Yang
et al., 2019). Studies have showed that the use of ICI as an
adjuvant therapy in patients with drug-resistant, non-small cell
lung cancer after EGFR-TKI treatment, it can make the patients
increase patients’ survivals (Wu et al., 2017; Garassino et al.,
2020). Moreover, when EGFR21 exon combined with L858R
mutation and EGFR20 exon were treated with ICI, they all
response rate (International Association for the Study of Lung
Cancer, 2017). Therefore, this provides the possibility for the
application of immunotherapy in some EGFR mutations.

Mutations in the DNMT3A gene will result in the inactivation
of tumor suppressor genes, dysfunction in repairing DNA,
resulting in abnormal function of cell. DNMT3A has been proven
to be a risk factor for rectal cancer, blood cancer and ovarian
cancer etc. A recent study on the side effects of immunotherapy
found that EGFR and DNMT3A are associated with Hyper-
progressors (Champiat et al., 2017; Kato et al., 2017). The reason
may be inactivation of Janus kinase 1 (JAK1), which leads to
the decrease of PD-L1 expression, thereby tumor cells lack the
sensitivity to PD-1 antibody treatment, resulting in inherent drug
resistance. It may also be β-2 It is caused by a truncated mutation
in the gene encoding macroglobulin (B2M), but this reason is just
a guess, and the real reason has yet to be confirmed.

STK11 is the main driving gene for the primary resistance
of PD-1 inhibitors, and its deletion will promote the resistance
of PD-1/PD-L1 inhibitors (Papillon-Cavanagh et al., 2020).
The results also highly indicate the possibility of STK11 gene
mutation as a prognostic indicator of anti-PD-1/PD-L1 therapy
in lung adenocarcinoma.

PBRM1 is a promising biomarker for kidney cancer. When
CcRCC was treated by ICI, found that patients with PBRM1
mutation are more sensitive to PD-1 antibody (Braun et al., 2019).
However, lung cancer patients with mutant PBRM1 benefit less
from treatment-related survival. As shown in Figure 6, although
the AUC level is not high, it still has the potential to become a
negative biomarker.

Immunotherapy is a relatively new concept in cancer
treatment, since it advantages in less tolerated, high efficacy, it
has quickly become a research hotspot. At present, there are no
precise biomarkers for immunotherapy that can exert efficacy,

and the role of each biomarker in the process of immunotherapy
still needs clinical research. According to reports, numbers of
clinical trial studies have shown that the use of immunotherapy
in combination therapy has more advantages (Blumenthal et al.,
(2018); Jotte et al., 2020).

This study, we conduct deep learning CNN model, the
model performance is relatively good by two-cross-validation.
Therefore, it has important significance of immunotherapy in
clinical practice. However, our study still has some limitation,
there are still some images that contain features that are not
easily recognized by the training model, which makes it difficult
to classify, more due to the limited training data and the diversity
of lung carcinogenic factors, there are some mutation samples in
certain genes cause data unbalance. Moreover, we did not set an
independent set to verify the model, these factors have a certain
impact on the accuracy of our results.
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