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Editorial on the Research Topic

Targeted Subcellular Delivery of Anti-cancer Agents

STRATEGIES FOR TARGETED CANCER THERAPY

One of the leading causes of death worldwide, cancer stems from accumulated and/or
inherited genetic abnormalities, leading to prolonged cell survival, resistance to normal cellular
death and an increased propensity for the cell to proliferate in uncontrolled fashion. Understanding
of the molecular mechanisms underpinning many cancers has progressed, but treatment remains
largely focused on eradicating tumor cells from the patient using a therapeutic agent(s)/procedure
which almost always causes the unwanted death of surrounding normal bystander cells (Wagstaff
and Jans, 2009; Stelma et al., 2016). Further, through the nature of the majority of the
drugs/strategies used, it is the highly proliferating normal cells of the body that tend to be most
susceptible to this effect, including cells within the bone marrow and the immune system, with the
end result being a severely immunocompromised patient who is highly susceptible to infection by
life-threatening pathogens (Stelma et al., 2016).

Since tumor cells derive from normal cells of the body, selectively killing tumor but not normal
cells by exploiting a tumor cell’s “unique” properties can be challenging. Tumor cells may be
particularly sensitive to a toxic agent (e.g., radioactive iodine in the case of differentiated thyroid
cancer–Luster et al., 2008), or “addicted” to elevated levels of a cellular activity such as that of
protein kinase CK2 (Franchin et al., 2017) or the nuclear transport molecule importin β1 (Kuusisto
and Jans, 2015), and hence more sensitive than normal cells to inhibitors of this activity. Finally,
tumor cells may express/overexpress particular cell surface components (e.g., EGF receptor),
enabling highly efficient delivery of highly toxic agents/treatments to tumor and not normal cells
through receptor-mediated delivery (e.g., Rosenkranz et al.). Combining multiple tumor-specific/-
enhanced moieties into a single modular multifaceted approach, such as modular nanotransporters
(MNTs)/modular nanocarriers, can enable the desired anticancer outcomes, without unwanted
effects on normal bystander cells (Glover et al., 2009; Wagstaff and Jans, 2009; Sobolev).

A variant on the theme of exploiting key tumor cell sensitivities is to deliver toxic agents to
particular hypersensitive subcellular compartments of the cell, such as the nucleus ormitochondria.
Clearly, DNA encoding a toxic gene product to be expressed in the target tumor cell, or agents
acting on the DNA of the tumor cell need to be delivered to the nucleus for toxic effects to be
exerted (Durymanov and Reineke); similar considerations apply to agents specifically targeted
at limiting mitochondrial respiratory or redox function (Battogtokh et al.). Antitumor agents
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generally capable of cytotoxic effects in any part of the cell
may have particular “subcellular tropisms” for hypersensitivity,
enabling lower doses of a drug to effect cell killing; examples
are photosensitizers, radionuclides emitting short-range particles
such as alpha-particle- or Auger-electron emitters (Bavelaar et al.;
Rosenkranz et al.; Sobolev).

In this Research Topic, leading experts in the area of drug
delivery present their most recent findings and summarize new
ideas to show the way forward in developing strategies to deliver
drugs efficiently to specific subcellular sites, with the aim to
kill cancer cells selectively. The articles summarize in various
ways the benefit of delivering certain groups of anti-cancer
agents/treatments into specific subcellular compartments, and
how to achieve this with respect to the nucleus, as well as different
cytoplasmic compartments, including the mitochondrion. The
antitumor agents discussed include theranostic radionuclides,
together with state-of-the-art techniques for detecting them in
situ (Bavelaar et al.), nucleic acids (Durymanov and Reineke),
Auger electron emitters (Rosenkranz et al.; Sobolev), therapeutic
antibodies (Slastnikova et al.), mitochondrial-targeting drugs
(Battogtokh et al.), and the mTORC1 complex targeting agent
rapamycin (Peddi et al.). Delivery vehicles showcased include
radiolabeled pharmacons (Bavelaar et al.), nanoparticles with
genetic payload (Durymanov and Reineke), MNTs (Rosenkranz
et al.; Sobolev; Glover et al., 2009), protein-transduction domains,
or liposome/vesicles (Slastnikova et al.), mitochondrial targeting
nanocarriers (Battogtokh et al.), and FKBP-elastin-like peptide
conjugates that are taken up by macropinocytosis (Peddi et al.).

NANOCARRIER-MEDIATED DRUG

DELIVERY INTO CELLULAR

SUBCOMPARTMENTS

Drug delivery to specific subcellular compartments requires
passage through a number of barriers that are impermeable to
most types of molecules. The first barrier is the lipid bilayer of the
cell membrane; whilst physical methods such as electroporation
and gold particle bombardment can be used, directed entry can
occur through protein transduction conferred by cell penetrating
peptide moieties (see Wagstaff and Jans, 2006; Slastnikova et al.)
leading to direct access to the cytoplasm. Receptor-mediated
endocytotic delivery can exploit the receptor repertoire of the
tumor cell surface, although exit from the endosome is then
a necessary step for cytoplasmic access, usually requiring an
endosomal escape mechanism (Durymanov and Reineke), e.g.,
through components such as diphtheria toxin (Rosenkranz et al.;
Sobolev). Agents delivered using liposomes/vesicles/virus-like
carriers (Slastnikova et al.) or macropinocytosis (Peddi et al.)
usually accumulate in intracellular vesicles/endosomes, again,
similarly requiring escape from the intracellular vesicle to access
the cytoplasm. Once the cytoplasm has been accessed, specific
targeting signals for delivery to the nucleus (see Pouton et al.,
2007; Durymanov and Reineke), mitochondrion (see Battogtokh
et al.), or other organelles confer ultimate delivery to the

appropriate subcellular compartment that is hypersensitive for
toxic action.

MODULAR NANOCARRIERS

MNTs/modular nanocarriers (Rosenkranz et al.; Sobolev; Glover
et al., 2009) include targeting modules/drug or DNA binding
domains/tracking labels to be able to mediate all of the steps
of cell entry, endosomal exit (if required), and subsequent
monitored targeting to the target organelle. MNT systems
(Slastnikova et al., 2012; Sobolev) have a number of important
advantages. Since they can achieve high local concentration
of therapeutic agents at a hypersensitive cellular site, the
therapeutic dose administered can be decreased to reduce
unwanted bystander effects/toxicity/immunogenicity; MNTs
have other advantages such as ease of production, uniformity
of physico-chemical properties, and nanoparticle size that
does not preclude translocation through nuclear pores etc.
Importantly, because of the modular design, the MNT platform
is an exciting prospect for personalized therapeutics, where
ligand and drugs delivered can be tailored to the individual
patient.

Theranostic agents combine treatment and diagnostics,
importantly enabling “real time” monitoring of therapeutic
efficacy, as well as tumor progression (Bavelaar et al.). Targeting
theranostic agents to specific subcellular sites within a tumor cell
affords many new avenues for the future, especially in an MNT
design.

Drug delivery using modular nanocarriers, and exploiting
cellular mechanisms for subcellular targeting is an important,
developing area in the anti-cancer arsenal. The articles in this
Research Topic give key insight into the many possibilities
currently employed to achieve targeted subcellular delivery in a
cancer context, and provide a strategic platform for endeavor in
this vibrant research area in the future.
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