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Abstract
Purpose Cyclosporine A (Cs) has been used as effective top-
ical therapy for inflammatory dry eye disease since more than
a decade. However, due to its lipophilic character, Cs is for-
mulated as emulsions or oily solutions for topical application.
This experimental study aimed to test if the use of
semifluorinated alkanes (SFAs) as a preservative-free, well-
tolerated non-stinging or burning vehicle maintains or even
improves the benefits of Cs in the topical therapy of dry-eye
disease.
Methods Desiccating stress was applied to C57BL/6 mice for
14 consecutive days to induce experimental dry-eye. Cs dis-
solved in SFA (perfluorobutylpentane = F4H5with 0.5%
Ethanol), F4H5 with 0.5% ethanol only, 0.05% Cs
(Restasis®), and dexamethasone (Monodex®) were applied
three times daily beginning either at day 4 or day 11 of desic-
cating stress for up to 3 weeks after end of dry-eye induction.
Results In comparison to other groups, Cs/F4H5 demonstrat-
ed high efficacy and earlier reduction of corneal staining. In
this study, Cs/F4H5 had the ability to maintain conjunctival
goblet cell density once applied on day 4. Flow cytometry
analysis from cervical lymphnodes demonstrated a signifi-
cantly lower CD4+ and CD8+ T-cells in the Cs/F4H5 group
following 3 weeks of therapy than at baseline, but no

difference in regulatory T cells from regional lymphnodes
were seen.
Conclusions Overall, compared to a commercially available
Cs formulation (Restasis®) and dexamethasone, Cs/F4H5
was shown to be equally effective but with a significantly
faster therapeutic response in reducing signs of dry-eye dis-
ease in an experimental mouse model.
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Introduction

Dry-eye disease (DED) is one of the most common disorders
of the ocular surface, associated with dysfunction of the lac-
rimal functional unit, changes in tear fluid, corneal and con-
junctival epitheliopathy, and consecutive inflammation [1, 2].
Lighter cases of DED and consecutive ocular discomfort are
mainly managed with artificial tears, while therapeutic treat-
ment of more severe and chronic cases of dry eye and under-
lying inflammation include topical steroids or cyclosporine
(Cs), topical or oral antibiotics, topical autologous serum
drops, and even systemic immunosupressives. However,
some of these therapeutic strategies cause a wide range of
side-effects, e.g., cataract, glaucoma, or infections, but also a
strong burning sensation during topical application [3, 4].
With regard to the use of immunosuppressives, currently the
only FDA-approved (U.S. Food and Drug Administration)
medication for dry-eye disease is a 0.05% cyclosporine emul-
sion (Restasis®, Allergan Inc., Irvine, CA, USA), whereas in
Europe 0.1% cyclosporine has recently been approved by the
EMA (European Medicines Agency) for severe keratitis in
DED (Ikervis®, Santen).
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Cyclosporine is a calcineurin inhibitor, targeting spe-
cifically the T-cell response, and was described to increase
tear secretion, decrease epithelial damages, increase gob-
let cell density and visual acuity, but also to improve
subjective symptoms in dry-eye patients [5–7]. However,
in many countries Restasis® or Ikervis® are not available
or restricted to only severe cases, and alternatively Cs eye
drops have to be compounded by pharmacies using sev-
eral non-standardized formulations. Furthermore, as the
lipophilic Cs has to be formulated using oils and/or sur-
factants, e.g., castor oil or polysorbate 80, this often leads
to intolerance, burning sensation, or visual disturbance.
Therefore, application is frequently discontinued [4, 8].
As an alternative to existing formulations semifluorinated
alkanes (SFAs) were introduced as a new delivery plat-
form, enabling a simple and preservative-free formulation
of Cs.

SFAs (e.g., perfluorobutylpentane = F4H5) are linear
molecules composed of a hydrocarbon and a perfluoro-
carbon segment holding special features such as a certain
degree of lipophilicity, low surface and interface tension,
and high biocompatibility. They have the potential to dis-
solve water-insoluble substances, e.g., the lipophilic Cs
[9, 10]. Using an ex-vivo eye irritation test (EVEIT) it
was previously shown that the SFAs F4H5 and F6H8
are well tolerated and cause no toxic effects on enucleated
rabbit corneas [11]. Also, a recently conducted post-
marketing surveillance study using F6H8 as artificial tears
demonstrated the safety and tolerability of SFAs in clini-
cal treatment of hyperevaporative DED [12]. F6H8 is now
marketed as EvoTears® (Ursapharm Arzneimittel GmbH,
Saarbruecken, Germany) in Germany and Switzerland.

In this study, a mouse model of experimental dry eye
disease was used to investigate the effect of the
semifluorinated alkane F4H5 as a novel carrier for Cs as
topical treatment for DED during early and late therapeu-
tic applications.

Materials and methods

Induction of dry eye Experimental dry eye (EDE) was in-
duced in 10–12-week-old female C57BL/6 mice purchased
from Charles River (Sulzfeld, Germany) as previously pub-
lished [13]. Mice were placed in a controlled environment
chamber (humidity 30 ± 5%, constant airflow, temperature
25 ± 1 °C) for 14 days. Scopolamine was administered
(0.1 mg/day) by subcutaneous implanted osmotic pumps
(Alzet, model #1002). Pumps were explanted after 2 weeks
(day 14). After 14 days of desiccating stress, animals were
transferred to normal controlled housing conditions (humidity
45–55%, no airflow, temperature 24 ± 2 °C) for another
3 weeks. Climatic changes were hourly logged and checked
automatically (KlimaLogg-Pro, TFA Dostmann, Germany).

All animals were treated according to the German Animal
Protection Law (LANUV), the local regulations of the
University of Cologne and the ARVO statement for the use
of animals in ophthalmic research.

Topical therapy Two different therapeutic regimens were ap-
plied: Topical therapy (5 μl/eye, 3 times daily) was applied
from day 11 (late therapy/therapeutic) or from day 4 (early
therapy/prophylactic) of experimental dry eye (Fig. 1a, b).
Micewere distributed in four groups: (1) 0.05%Cs/F4H5with
0.5% ethanol as co-solvent (Novaliq GmbH, Heidelberg,
Germany), (2) carrier F4H5 with 0.5% ethanol (Novaliq
GmbH, Heidelberg, Germany), (3) Restasis® (Allergan Inc.,
Irvine, CA, USA) and (4) unpreserved Dexamethasone
(Monodex®1 mg/ml, TheaPharma, Berlin, Germany). A con-
trol group was left untreated and received no eye drops, but
was housed under the same desiccating stress and standard
housing conditions as the four therapy groups.

Readout parameters Clinical signs of dry eye )production of
tear fluid and corneal epitheliopathy) were measured once a
week as folllows: time point [TP] 1: baseline-day 0, TP 2: day

Fig. 1 Experimental set-up. a
Late therapy regimen
(therapeutic), b Early therapy
regimen (prophylactic): TP1 to
TP5—time points for clinical
scoring (tear production, corneal
staining)
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11, TP 3: day 18, TP 4: day 25, TP 5: day 32 (Fig. 1a and b).
For measurement of tear production, phenol red threads (Zone
Quick Thread, Oasis Medical, USA) were placed into the
inferior cul-de-sac for 30 s and recorded in millimeters.
Corneal damage was detected by fluoresceine staining: 5%
fluoresceine in normal saline solution was applied to the
eye, carefully wiped off after 30 s and graded under blue light
using a modified Oxford grading scheme with severities rang-
ing from grade 0 to grade 5 (Fig. 2a) [14].

At day 35, all mice were sacrificed and eyes including
conjunctiva were removed. For quantification of goblet cells
the lower lid was paraffin-embedded and sectioned, and gob-
let cells were stained with PAS (periodic acid-Schiff) dye.
Images were taken using a brightfield microscope (Olympus
BX53; Olympus Deutschland GmbH, Hamburg, Germany)
and a color camera (Olympus UC10, Olympus Deutschland
GmbH, Hamburg, Germany). Goblet cells were counted man-
ually from the lid border to the fornix, and stated as cells/
100 μm using ImageJ Software (National Institutes of
Health, Bethesda, MD, USA). One representative slide out
of the central region of the conjunctiva was analyzed from
seven to 12 eyes/group depending on the availability of exact-
ly aligned cross-sections (Fig. 2b).

Flow cytometry analysis (FACS) FACS analyses were per-
formed in one experiment following the late therapeutic regi-
men. Draining lymphnodes of three control mice and three
mice receiving F4H5 or Cs/F4H5 were collected at TP1,
TP3 and TP5. For T-cell and regulatory T-cell (Treg) analysis,
single cell suspensions were stained with FITC-conjugated
anti-CD8, APC-conjugated anti-CD4, PE-conjugated anti-
CD25 (all Biolegend, San Diego, CA, USA) and a FITC-
conjugated anti-FoxP3 (BD Biosciences, Heidelberg,

Germany) antibody according to the manufacturers’ instruc-
tions. Stained samples were examined on a Guava easyCyte™
HT (Merck Millipore, Darmstadt, Germany), and analyzed
using FlowJo Software (FlowJo LLC, Tree Star Inbc.,
Ashland, OR, USA).

Statistical analysis Results were presented as mean ± SD of
n = 10 eyes of five mice in each experiment (FACS analysis,
three mice/group). All experiments were performed two
times; data presented here are unpooled from a single exper-
iment. Since all data were positively tested for a Gaussian
distribution (Kolmogorov–Smirnov test), the statistical analy-
sis were performed by univariate ANOVAwith post hoc test
(LSD) using SPSS (Software version 21, IBM). P-values of
p ≤ 0.05 were considered to be significant.

Results

Late therapy regimen

Tear production

Tear production measured by phenol red threads demon-
strated a significant increase of tear production in all
groups after termination of desiccating stress and fol-
lowing 7 days of treatment all groups in comparison
to TP2. Overall levels of tear production were similar
to TP1 prior to EDE induction. Comparative group
analysis for TPs 3–5 demonstrated that Cs/F4H5-
treated mice had a significantly stronger increase of tear
production after EDE compared to F4H5, Restasis®,
dexamethasone and the untreated control. At TP5, the

Fig. 2 a Bright-field microscopy of paraffin embedded section of lower
lid with attached conjunctiva (Conj.) PAS-staining. Conjunctival goblet
cells (bright pink) are densely distributed in the conjunctiva in close
proximity to the fornix. Goblet cell counts were performed from the lid

margin to fornix (indicated by asterisks and dotted line). bRepresentative
in-vivo images from fluoresceine staining of themurine cornea. Epithelial
damage is stained in green. Grading ranged from 0 (no staining) to 5
(surface almost entirely covered with stained spots)
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effect of Cs/F4H5 compared to the control group was
less pronounced, although still measurable compared to
F4H5 alone and Restasis® (Fig. 3a).

Corneal fluoresceine staining

Analysis of corneal damage using fluoresceine staining
following late therapy demonstrated a significant in-
crease of the staining in all groups following EDE at
TP2. Following 1 week of therapy (TP3), a significant
decrease of the fluoresceine staining was observed only
in the Cs/F4H5 group (Fig. 3b). Restasis® and dexa-
methasone treatment resulted in decreased fluoresceine
staining at TP4 at the earliest, whereas the reduction

of staining in the Cs/F4H5 group increased further at
TP5. Only Cs/F4H5 demonstrated a remaining signifi-
cant decrease of corneal staining in comparison to TP2
(onset of therapy).

Goblet cell density

In the late therapeutic regimen, naïve mice demonstrated
a significant higher goblet cell (GC) density at TP5
compared to all groups (Fig. 3c + d). Dexamethasone-
treated mice had a significant lower number of GC
compared to all other groups after late therapy. Cs/
F4H5-treated mice also demonstrated a significant lower

Fig. 3 Tear production, fluoresceine staining, and goblet cell density
under late therapy regimen before (TP1: baseline), during EDE (TP2)
and a following topical treatment (TP3–TP5) of EDE: a Tear
production: data represent the tear production in mm of each group as
mean ± SD (n = 10 eyes/group). Late therapy with Cs/F4H5 led to a
higher increase of tear production compared between groups at every
time point. A comparative group analysis comparing the differences
between groups was performed at every evaluation time point (asterisks
in grey squares placed above). b Fluoresceine staining: data are
representing the fluoresceine staining score each group as mean ± SD
(n = 10 eyes/group) Late therapeutic treatment with Cs/F4H5 led to a

significant earlier improvement of epithelial staining at TP3. c Goblet
cell density: all groups showed decreased GC density compared to
naïve mice. Treatment with dexamethasone resulted in a lower number
of GC compared to F4H5, Cs/F4H5, and control group (mean ± SD, n =
number of investigated eyes). P-values ≤ 0.05 were considered to be
significant (* p ≤ 0.05, ** p ≤ 0.001, *** p ≤ 0.0001). Significances
refer to TP2 (a + b). d Representative images of conjunctival goblet
cell distribution (PAS-staining) in all treatment groups at TP5. All
treatment groups demonstrated reduced goblet cells in comparison to
the naïve untreated control
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goblet cell count than the naïve control, but no differ-
ence to any treatment group except dexamethasone.

Early therapy regimen

Tear production

In the early treatment regimen, all groups demonstrated a sig-
nificant decrease of tear production after EDE and 1 week of
concomitant therapy at TP2 compared to TP1. Thereafter, at
TP3 and 2 weeks of concomitant application of drugs and
carrier, tear production increased again significantly.
Comparative group analysis at TP3 demonstrated that tear
production was significantly greater in mice receiving F4H5
in comparison to dexamethasone. At TP4, mice receiving Cs/
F4H5 for 3 consecutive weeks had significantly higher tear

production than the Restasis® and dexamethasone groups. At
TP5, no differences between all groups were present, and tear
production levels were comparable to levels at TP1 (Fig. 4a).

Corneal fluoresceine staining

At TP2 following 2 weeks of desiccating stress and
1 week of concomitant therapy all groups, except the
Cs/F4H5 group, demonstrated a significant increase of
corneal fluoresceine staining. The between group compar-
ison revealed that corneal staining was significantly lower
in this group compared to all other groups. At TP3 and
TP4 only Restasis® demonstrated a significant decrease
of corneal staining compared to TP2, at TP5 only F4H5
had a significant reduced corneal staining in comparison
to TP2. In the Cs/F4H5 group no change of corneal

Fig. 4 Early therapy regimen a Tear production before (TP1: baseline),
during EDE (TP2) and a following topical treatment (TP3–TP5) of EDE:
data are representing the tear production in mm of each group as mean
± SD (n = 10 eyes/group). b Fluorescein staining grade before (TP1-
baseline), during EDE (TP2) and after a following topical treatment
(TP3–TP5) of EDE: Data are representing the fluorescein grading score
of each group as mean ± SD (n = 10 eyes/group). Early therapy resulted in
significant less epithelial staining in the Cs/F4H5 group already at TP2. c
Expression of goblet cells. After early treatment with Cs/F4H5 GC den-
sity remained comparable to naïve mice, whereas in untreated

control, F4H5, Restasis® and Dexamethasone number of GC was
decreased. P-values ≤ 0.05 were considered to be significant (* p ≤ 0.05,
** p ≤ 0.001, *** p ≤ 0.0001). Significances refer to TP2 (a + b). A
comparative group analysis (a and Fig. 3b) comparing the differences
between groups at every time point was performed, results are placed
above (asterisks in grey squares) evaluating. d Representative images
of conjunctival goblet cell distribution (PAS-staining) in all treatment
groups at TP5. Only in the group treated with Cs/F4H5 no goblet cell
loss was visible
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staining in comparison to baseline levels at TP1 at any
time point was detectable (Fig. 4b).

Goblet cell density

Analysis of the goblet cell (GC) density after early therapy in
the bulbar and palpebral conjunctiva of the lower lid resulted
in preservation of a normal GC density in Cs/F4H5-treated
animals (Fig. 4c, d), compared to naïve mice. Untreated con-
trols and groups receiving F4H5 and Restasis® showed a
significantly decreased number of GC compared to naïve
mice. Mice that received dexamethasone showed a difference
neither to naïve nor control mice.

FACS analysis

FACS analysis was performed in the late-treatment regimen
comparing controls with F4H5- and Cs/F4H5-treated groups
(Fig. 5). Analysis of CD4+ and CD8+ lymphocytes from
lymph nodes demonstrated no alterations between the groups
at TP3 and TP5. Furthermore, no differences were detectable
in the percentage of CD4+ T cells following 7 days of treat-
ment (TP3) with topical Cs/F4H5 in comparison to control
and baseline. At day 35 (TP5), compared to naïve mice, the
percentage of CD4+ T cells was significantly increased in the
control and F4H5 groups, but not in the Cs/F4H5 group
(Fig. 5b). In addition, the percentage of CD8+ T cells in cer-
vical lymph nodes was increased at TP5 in the control and
F4H5 group compared to naïve mice. On TP3 and TP5, the
CD4:CD8 T cell ratio was significantly less in all groups in
comparison to baseline (Fig. 5c). No differences between the
groups were detected.

FACS analysis of CD4+CD25+FoxP3+Tregs of draining
lymph nodes resulted in levels between 3 and 6% of cells in
draining lymph nodes, with no differences between groups or
time points (Fig. 6).

Discussion

Topical cyclosporine (Cs) is an established immunomodulato-
ry medication indicated for treatment of DED accompanied
with inflammation of the ocular surface. It is additionally used
in vernal and atopic conjunctivitis, blepharitis, andmeibomian
gland dysfunction, as well as in LASIK-associated dry eye
and ocular graft-versus-host disease [7]. Cs inhibits the acti-
vation of T cells and the apoptosis of epithelial cells and re-
duces proinflammatory cytokines like IL-6. Thereby, Cs clin-
ically decreases corneal staining, increases tearfilm break-up
time as well as tear production, and enables patients to de-
crease their frequency of artificial tear supplement [7].

Cs is a highly lipophilic substance that is typically formu-
lated as emulsions, which often result in side-effects such as
burning and stinging sensations [15, 16] in part attributable to
the vehicle used [17]. Since the introduction of SFAs, a novel
drug carrier system is available that allows to formulate Cs as
a preservative- and surfactant-free clear solution. For these
reasons, Cs formulated in SFA may be a better tolerable alter-
native to already available Cs formulations. Furthermore, a
solution in combination with the spreading properties of the
SFAs might lead to increased delivery of Cs to the site of
action.

In our study, scopolamine was steadily applied for 14 days
via subcutaneous pumps that together with controlled environ-
mental stress resulted in a reliably dry eye phenotype during

Fig. 5 FACS analysis of CD4+and CD8+Tcells of draining lymph nodes
after EDE following topical therapy at TP3 and TP5. a Representative
flow cytometry dot plot. b Percentages of CD4+ and CD8+ cells as
proportion of total live cells. At TP5, the total number of CD4+ and
CD8+ cells was increased in control and F4H5 group compared to

naïve mice. c Calculated CD4:CD8 ratio. CD4:CD8 ratio was
significantly reduced compared to baseline (naïve mice). Data
representing mean ± SD of n = 3 mice/group. Statistics were calculated
using ANOVA. P-values ≤ 0.05 were considered to be significant
(* p ≤ 0.05, *** p ≤ 0.0001)
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acute EDE, even after removal of desiccating stress. Previous
studies have shown that Th17 effector T cells maintain the
chronic phase of EDE with increased corneal epitheliopathy
lasting several weeks after an acute phase of EDE [18].
Therefore, the model used enabled the investigation of the
therapeutic effect of Cs/F4H5 in acute as well as in chronic
EDE for at least 3 weeks until control groups returned to
baseline parameters.

In this study, the therapeutic regimen of 0.05% Cs dis-
solved in the F4H5 was highly effective in reducing cor-
neal staining and increasing tear production. Compared to
the commercially available Cs (Restasis®), Cs/F4H5 dem-
onstrated at least a comparable therapeutic effect, but a
significant faster response. Notably, early therapy with
Cs/F4H5 starting at day 4 protected mice from developing
dry eye, whereas all other groups showed a significant
increase of staining compared to baseline. Consistently,
this treatment regime was the only one that maintained
the number of conjunctival goblet cells in EDE, clearly
demonstrating a prophylactic effect of solely Cs/F4H5.
No side-effects such as blepharitis, corneal vascularization,
etc., were noted in any of the experimental groups.

In a recent phase 1 study with 18 healthy volunteers, re-
peated applications of Cs/F4H5 (CyclASol®, Novaliq,
N C T 0 2 1 1 3 2 9 3 , h t t p : / / w w w . n o v a l i q .
de/fileadmin/Downloads/CYS-001_E_final.pdf) have been
well tolerated. Hereby, no stinging or burning sensation,
irritations, dryness, foreign-body sensation, and no further
discomfort of the mucosa or tearing were reported.

A loss of goblet cells (GC) after EDE was described
previously, although the level of GCs strongly varied in
these studies [13, 19, 20]. In the study presented, the
investigation of GC was performed only at the end of
the experiment at day 35. Topical Cs was already well
known to increase the goblet cell density in murine

models of dry eye [5] as well as in in patients [21]. As
stated above, early therapy with Cs/F4H5 resulted in a
prevention of goblet cell loss in comparison to untreated
controls, carrier F4H5, and Restasis®. An effect on goblet
cells in the late-treatment regimen was not observed,
probably due to a prolonged regeneration phase of goblet
cells after initial desiccating stress.

It is known that CD4+ T cells play a primary role in the
development and progression of dry-eye disease.
Desiccating stress leads to infiltration of activated T cells
into ocular surface tissues [1]. Such autoreactive CD4+

cells are sufficient to induce dry-eye phenotype once
adoptively transferred in T-cell-deficient but otherwise
healthy nude mice [20]. Since lymph nodes serve as a
reservoir for lymphoid cells and are essential for the
antigen-presenting cell (APC)-driven activation of
autoreactive CD4+ T cells [22], draining cervical
lymphnodes were investigated in this study. During dry-
eye disease, an increase of activated CD69+ and CD154+

T cells has been reported previously [22, 23]. In the study
presented, following 3 weeks of therapy only in the Cs/
F4H5 group compared to F4H5 and controls, no increase
of CD4+ and CD8+ T-cells was observed, which might
explain a potential therapeutic effect of Cs on the regional
lymphnode in the late phase of experimental dry-eye
disease.

Previous studies [20, 24] further demonstrated that the
numbers of CD4+CD25+FoxP3+Tregs play a crucial role
in the pathology of dry eye. Specifically, Tregs attenuate
effector T cell function and in this way dampen dry eye.
Experimentally, a depletion of Tregs led to an exacerba-
tion of adoptively transferred dry-eye disease, whereas the
reconstitution with Tregs in athymic mice resulted in a
protection against transfer of EDE [20, 24]. Furthermore,
it has been described that BALB/c mice, containing a

Fig. 6 FACS analysis of CD4+CD25+FoxP3+Treg cells of draining
lymph nodes after EDE following 7 days of topical therapy (TP3) and
after 3 weeks of therapy (TP5). a Gating scheme and representative
histogram and dot plot graph. b Treatment with Cs/F4H5 or F4H5

resulted in no significant differences in the percentage of
CD4+CD25+FoxP3+ cells compared to naïve and untreated control mice.
Data representing mean ± SD of n = 3 mice/group
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larger pool of Tregs, develop milder EDE than other mice
strains, for example C57BL/6 mice [25]. For this reason,
the number of Tregs was investigated in this study, but no
difference was detected in any of the groups and time
points investigated.

This study has some limitations due to its experimental
character:

(i) Desiccating stress was applied for 14 days; this rather
long duration might result in metaplasia of the conjunc-
tival and corneal epithelium and consequent impact on
the therapeutic effect and readouts, e.g., goblet cell count.
(ii) In contrast to earlier publications commercial Cs did
not show a strong therapeutic effect, which might be due
to differences in the experimental setup of desiccating
stress [20, 26–30].
iii. The very recently approved Cs product (Ikervis®)
could not be used a control drug, therefore no conclusions
can be drawn with this respect.

Therefore, future experiments will also include a shorter
desiccating stress period (e.g., 7–9 days) and further controls
such as the recently approved Cs product. As all experiments
were performed at least twice with sufficient numbers of ani-
mals and repeatedly stable clinical phenotypes the setup
established is thought to be applicable for further investiga-
tions. In addition, pharmacokinetics of F4H5 alone and of the
combined product Cs/F4H5 are currently tested in ex-vivo and
in-vivo models. These subsequent studies will be supplement-
ed by a phase II clinical trial currently being performed in
patients with DED, which tested efficacy and safety profiles
of 0.05 and 0.1% Cs/F4H5 in comparison to Restasis®
(NCT02617667).

In summary, this experimental study clearly demonstrated a
significantly faster and equally effective topical treatment of
experimental dry eye using Cs/F4H5 compared to Restasis®.
Due to the limitations stated, further experiments will include
comparison with other newly available Cs products using a
modified protocol of EDE.
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