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ABSTRACT

The rapid development of Chromosome Conforma-
tion Capture (3C-based techniques), as well as imag-
ing together with bioinformatics analyses, has been
fundamental for unveiling that chromosomes are or-
ganized into the so-called topologically associating
domains or TADs. While TADs appear as nested pat-
terns in the 3C-based interaction matrices, the vast
majority of available TAD callers are based on the
hypothesis that TADs are individual and unrelated
chromatin structures. Here we introduce TADpole, a
computational tool designed to identify and analyze
the entire hierarchy of TADs in intra-chromosomal in-
teraction matrices. TADpole combines principal com-
ponent analysis and constrained hierarchical cluster-
ing to provide a set of significant hierarchical chro-
matin levels in a genomic region of interest. TADpole
is robust to data resolution, normalization strategy
and sequencing depth. Domain borders defined by
TADpole are enriched in main architectural proteins
(CTCF and cohesin complex subunits) and in the hi-
stone mark H3K4me3, while their domain bodies, de-
pending on their activation-state, are enriched in ei-
ther H3K36me3 or H3K27me3, highlighting that TAD-
pole is able to distinguish functional TAD units. Addi-
tionally, we demonstrate that TADpole’s hierarchical
annotation, together with the new DiffT score, allows
for detecting significant topological differences on
Capture Hi-C maps between wild-type and genetically
engineered mouse.

INTRODUCTION

The organization of the genome in the nucleus has been
shown to play a prominent role in the function of the cell.
Increasing evidence indicates that genome architecture reg-
ulates gene transcription (1,2), with implications on cell-fate
decisions (3–5), development (6) and diseases such as de-
velopmental abnormalities (7,8) and neoplastic transforma-
tions (9–11).

Genome organization is characterized by complex and
hierarchical layers (1). For example, fluorescence in-situ hy-
bridization revealed that chromosomes are positioned in
preferential areas of the nucleus called chromosome ter-
ritories (12). This large-scale feature has been confirmed
by high-throughput Chromosome Conformation Capture
(Hi-C) experiments (13), that provide a genome-wide pic-
ture in which inter-chromosomal interactions are depleted
relative to intra-chromosomal ones. Analysis of Hi-C data
also revealed the segregation of the genome into multi-
megabase compartments characterized by different GC-
content, gene density and diverse chromatin marks (13–15).
Microscopy approaches, in spite of considerable variability,
have corroborated the spatial segregation of such compart-
ments at the single-cell level (16). At the sub-megabase level,
Hi-C experiments also revealed the presence, validated by
microscopy approaches (17–19), of self-interacting regions
termed topologically associating domains (TADs) (20,21).
TADs are composed of dense chromatin interactions that
promote 3D spatial proximity between genomic loci that
are distant in the linear genome sequence. Since many of
these interacting loci are cis-regulatory elements, TADs are
usually considered as the structural and functional units
of the genome that define the regulatory landscape (22,23)
conserved across cell types and species (20,24). Moreover,
TADs boundaries are often demarcated by housekeeping
genes, transcriptional start sites and specific chromatin in-
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sulators proteins, such as CCCTC-binding factor (CTCF)
and cohesin protein complex (20,25). TADs appear to be
further organized in a hierarchical fashion. For example,
in mammalian cells, concepts such as ‘metaTADs’ (26) or
‘sub-TADs’ (27) have been introduced. The former is used
to define a superior hierarchy of domains-within-domains
that are modulated during cell differentiation, while the lat-
ter is used to emphasize how and where the cis-regulatory
elements establish physical interactions that contribute to
gene regulation.

Several computational methods to identify and charac-
terize TADs from Hi-C interaction data have been com-
pared (28,29). Based on different assumptions about how
TADs are divided, these methods can be broadly classified
as disjointed or overlapping. The former methods consider
TADs as individual and unrelated structures with no possi-
ble mutual intersections (e.g. directionality index (DI) (20),
insulation score (IS) (30), ClusterTAD (31), ICFinder (32)).
The latter methods assume that TADs are overlapping and
related structures with shared content. However, only a few
algorithms (such as Arrowhead (33), Armatus (34), 3DNet-
Mod (35) TADtree (36), CaTCH (37), GMAP (38), Ma-
tryoshka (39) and PSYCHIC (40)) can identify nested do-
mains where each domain contains other sub-domains, pro-
filing a hierarchical chromatin architecture.

Here, we present TADpole, a bioinformatics tool to dis-
entangle the full structural chromatin hierarchy. Notably,
TADpole is robust both at technical and biological bench-
marks based on a published study (29) and does not rely on
mandatory parameters. We prove the effectiveness of TAD-
pole investigating the inherent chromatin hierarchy in Cap-
ture Hi-C data (cHi-C) (41), where chromosome topology is
altered with local genomic inversions that drive gene misex-
pression associated to congenital malformations in mouse
(42).

MATERIALS AND METHODS

The TADpole pipeline

TADpole performs three main steps (Figure 1): (i) prepro-
cessing of the input Hi-C dataset, (ii) constrained hierarchi-
cal clustering optimization and (iii) genome segmentation.
TADpole has been implemented as an R package available
at https://github.com/3DGenomes/TADpole.

Preprocessing of the input dataset. TADpole is designed to
process all-versus-all intra-chromosomal interactions ma-
trices representing an entire chromosome, or a continuous
chromosome region. The input is a generic tab-separated
file containing the interaction matrix (M) with N rows and
N columns, where N is the number of bins in which the chro-
mosome region is divided. Each position of the matrix (Mij)
contains the number of interactions (raw or normalized) be-
tween the corresponding pair of genomic bins i and j. An
additional filtering step can be applied to exclude columns
(and the corresponding rows) with a low number of inter-
actions (called as bad columns), which typically arise from
local biases (43). Specifically, the columns that contain an
empty cell at the main diagonal, and those whose cumula-
tive interactions are below the first (by default) percentile,

are excluded from the analysis. To enhance the signal-to-
noise ratio, the interaction matrix is transformed into its
Pearson correlation coefficient (PCC) matrix (13), and prin-
cipal component analysis (PCA) is performed on it using
the prcomp function from the stats R package (44). Only
the first 200 (by default) principal components (NPC) are
retained, which are enough to extract more than 85% of
the variance in the test datasets (Supplementary Figure S1).
To reduce memory usage and processing time, TADpole
has the option to divide the interaction matrix by the cen-
tromere (considered to be the longest contiguous stretch
of columns with no interactions in the Hi-C matrix) and
process each chromosomal arm separately. This option is
particularly recommended when working with matrices of
more than 15 000 bins.

Constrained hierarchical clustering optimization. Per each
set of first PCs, NPCs, the dimensionally-reduced matrix is
transformed into a Euclidean distance matrix. This distance
matrix is then partitioned into topological domains using
a constrained hierarchical clustering procedure as imple-
mented in the Constrained Incremental Sums of Squares
clustering method (coniss) of the rioja R package (45). This
analysis explicitly assumes the following two priors: first,
the genome is organized in a hierarchical manner, with
higher-order structures containing lower-order ones, and
second, every pair of contiguous genomic loci must either
belong to the same self-interacting domain or to the imme-
diately contiguous one. Thus, the constrained hierarchical
clustering results in a tree-like description of the genome
organization. Next, using the broken-stick model as imple-
mented in the bstick function from the rioja R package (45),
the dendrogram is cut at a maximum significant number
of levels (max(ND)). The Calinski-Harabasz (CH) index is
then computed for each dendrogram (from 1 to 200, corre-
sponding to each set of NPCs computed) and for each sig-
nificant level (from 2 to max(ND)) using the calinhara func-
tion from the fpc R package (46). The dendrogram with the
highest average CH index is selected, and the level with the
maximum CH index of that dendrogram is taken as the op-
timal. This analysis jointly identifies an optimal number of
first principal components (NPCs

*) and an optimal number
of TADs (ND

*).

Genome Segmentation. TADpole generates four main de-
scriptors that recapitulate the entire sets of results, namely:
(i) the optimal number of principal components (NPCs

*) (ii)
the cut dendrogram at the maximum significant number of
levels identified by the broken stick model (max(ND)); (iii)
the start and end coordinates of all the TADs identified for
each hierarchical level and the CH index associated to it;
(iv) and the optimal number of TADs (that is, the optimal
level plus 1). All the TADpole output is organized in a com-
prehensive R object.

TADpole benchmark analysis

Benchmark Hi-C dataset and scripts. A pre-existing
benchmark dataset, that comprises Hi-C interaction ma-
trices of the entire chromosome 6 in the human cell
line GM12878, was used for the analysis (29). A total

https://github.com/3DGenomes/TADpole
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Figure 1. General overview of TADpole tool. Schematic overview of the TADpole algorithm. (1) TADpole input is an all-versus-all tab-limited Hi-C
matrix. The matrix is checked for symmetry and low-quality columns (called as bad columns––BC) are removed. Large matrices of entire chromosomes are
optionally split at the centromere to create two smaller sub-matrices corresponding to the chromosomal arms. Next, matrix denoising and dimensionality
reduction take place by computing the corresponding PCC matrix, and by performing a PCA on it. (2) Per each number of first PCs retained (from 1 to
200), the corresponding PC matrix is transformed into its Euclidean distance matrix (EDM). The EDM serves as the input to perform the constrained
hierarchical clustering (CH-clust). The range of significant hierarchical levels is fixed from level 1 (corresponding to partitioning the region into 2 TADs)
up to an upper bound given by the broken-stick model (BS), then the Calinski-Harabasz (CH) index is used to select the optimal level. (3) As output,
TADpole returns the optimal number of first PCs (Npc

*) retained to obtain the optimal set of TADs, the dendrogram with the significant hierarchical
levels, the coordinates of the chromatin domains for each level with its associated CH index, and the optimal number of TADs. A real example of TADpole
tool applied to a 6Mb-region (chr18:9,000,000–15,000,000) of a human Hi-C dataset (HIC003; SRR1658572) at 30 kb resolution obtained from Rao etal.
(15). Two bad columns were detected and removed from the input data and then, the PCC and the PCA were computed (using the first 200 PCs). Using the
first 20 PCs, the EDM is computed and is used as the input for the CH-clust. A total of 16 hierarchical levels are retrieved according to the BS model and,
for each one, the CH index is computed (this process is repeated iteratively for each set of PCs analyzed). This step produces a matrix of CH indexes (with
the result of the 200 computed dendrograms) from which the highest average score is selected (highlighted with the blue square), in this case corresponding
to 12 TADs and the first 20 PCs (Npc

*). Taking these values, a complete dendrogram of the Hi-C matrix is retrieved, cut using the broken-stick model to
select significant levels (containing from 2 to 17 TADs, shown between black lines) and, from them, the highest-scoring level according to the CH index
is selected (blue line). On the right, the Hi-C contact map is presented showing the complete hierarchy of the significant levels selected by the BS model
(black lines) along with the optimal one in 12 specific TADs, as identified by the highest CH index (blue line).
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of 24 different conditions were tested: (i) twelve matri-
ces given by the combination of four different resolutions
(10, 50, 100 and 250 kb) and two normalization strate-
gies (Iterative Correction and Eigenvector decomposition
(ICE) (14) and parametric model of Local Genomic Fea-
ture (LGF) (47)) together with the raw data, and (ii)
twelve matrices obtained by down-sampling of the ICE
interaction matrix at 50 kb resolution (Figure 2A). The
scripts for benchmarking were downloaded and used as
released in the repository https://github.com/CSOgroup/
TAD-benchmarking-scripts (29) (‘Data Availability’ sec-
tion). The processed Hi-C dataset was shared by Zufferey
and colleagues, thus eliminating from the analysis possible
biases associated with the use of different pipelines for Hi-C
interaction data reconstruction (28). To compare on equal
footing with the other 22 TAD callers in the same bench-
mark, only hierarchical levels that comprise at least 10 chro-
matin domains were taken into consideration for the analy-
sis. Within these levels, the optimal one was identified using
the CH index as described before.

The technical benchmark. The optimal TAD divisions
given by TADpole were compared over different resolu-
tions, normalization strategies, and sequencing depths, as
previously described (29). To study the degree of TAD bor-
ders conservation, two different metrics were applied:

i. The overlap score (29) was used to compare chromatin
domains annotated across different resolutions. This is
the percentage of overlapping borders, with one bin of
tolerance. The statistical significance of each overlap
score was estimated by drawing 10 000 random chro-
matin partitions at the finer resolution (preserving the
optimal number of TADs annotated in the real case)
and computing their overlap with the subdivision at
the coarser resolution. The P-value of the real-case was
computed as the fraction of randomized partitions with
larger overlap.

ii. The Measure of Concordance (MoC) (29) was used to
quantitatively express the extension of the agreement
among two partitions in TADs across different resolu-
tions and normalization strategies. The MoC is defined
by:

MoC (P, Q)

=

⎧⎪⎨
⎪⎩

1 , i f NP = NQ = 1

1(√
NP NQ−1

)
(

NP∑
i=1

NQ∑
j=1

Fi j
2

Pi Q j
− 1

)
, otherwise

where, P and Q are the partitions under comparison con-
stituted by NP and NQ TADs, respectively. Pi and Qj are
two individual TADs within P and Q of size (in base-pairs)
||Pi|| and ||Qj||. At last, ||Fij|| is the size (in base-pairs) of the
overlapping between the two TADs Pi and Qj. The MoC
ranges from 0 for discordant partitions to 1 for completely
identical ones (48).

We also assessed the computational performance of
TADpole using two metrics: the execution time and the
maximum memory usage. The former was computed using
the microbenchmark R package (49) and the latter was cal-
culated using the memtest.sh script from https://github.com/

rcortini/sesame-manuscript repository. This performance
analysis was run on Intel (R) Xeon (R) CPU E5-2660 v2
@ 2.20GHZ with 512Gb of RAM.

The biological benchmark. To test the biological relevance
of the TADs identified by TADpole, we studied: (i) their
association with the main chromatin architectural proteins
(CTCF, SMC3 and RAD21) and two histone modifications
(H3K4me3 and H3K9me3) at TAD borders, and (ii) two
other histone modifications (H3K27me3 and H3K36me3)
in TAD bodies. The ChIP-seq data of these chromatin
features were downloaded from ENCODE (https://www.
encodeproject.org/) (50) (Supplementary Table S1). For ar-
chitectural protein with more than one replica (CTCF and
RAD21), we analyzed: (i) the profile of individual repli-
cas, (ii) the cumulative profile, which is the union of all
called peaks and (iii) the consensus profile, which is the in-
tersection of the peaks identified in all replicas as deter-
mined by the multiIntersectBed function of the BEDTools
suite (51). To analyze the co-occupancy of the architectural
proteins, we first computed a consensus cohesin complex
profile between the cumulative profile of RAD21 and the
individual experiment of SMC3. The resulting consensus
cohesin complex profile was intersected with the cumula-
tive profile of CTCF. For the analysis of the histone mod-
ification H3K4me3, we used the file containing the repli-
cated peaks. For H3K9me3, since such peaks were not avail-
able for download, we generated them by first pooling the
aligned reads of the different replicas, for both the target
and control samples, and subsequently running MACS2
(52) on the two resulting files with the option –broad set.
For H3K27me3 and H3K36me3, we used the fold change
over control pooled replicas as in Zufferey et al. (29).

Mirroring the approach in Zufferey et al. (29), four dif-
ferent metrics were computed:

i. Structural protein (or histone mark) profile from ChIP-
seq peaks around TAD boundaries. Per each ChIP-seq
experiment considered in the analysis, a structural pro-
tein profile (SPP) or a histone mark profile (HMP) was
calculated. The SPP or the HMP were defined as the
average number of peaks over 5 kb intervals inside a
1 Mb region around each TAD boundary (±500 kb). A
consistent enrichment at the TAD boundary results in
a SPP or HMP that peaks at around 0 kb (the location
of the TAD boundary). A SPP is shown, for instance, in
Figure 3A, and an HMP in Figure 3D and E.

ii. Fold change of a SPP at the TADs boundary. The fold
change was computed as the ratio between average SPP
in a region around the TAD boundaries (0 kb ±1 bin)
over the SPP in a region of 100 kb located 400 kb apart
from the TAD boundaries. This fold change is decreased
by one so that an absence of enrichment (ratio = 1) is
represented by zero.

iii. Ratio of TAD boundaries hosting a specific protein. The
ratio was computed as the number of TAD boundaries
that harbor at least one ChIP-seq peak (±1 bin) over
the total number of boundaries.

iv. Ratio of ChIP-seq signals in TAD bodies. The ChIP-seq
signal (fold change over control) was coarse-grained in

https://github.com/CSOgroup/TAD-benchmarking-scripts
https://github.com/rcortini/sesame-manuscript
https://github.com/rcortini/sesame-manuscript
https://www.encodeproject.org/
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Figure 2. Technical benchmarking of TADpole. (A) General overview of the dataset used for the technical benchmarking analysis from Zufferey et al.
(29). The dataset includes the Hi-C interaction matrix of chromosome 6 in GM12878 cells in 24 different forms (‘Materials and Methods’ section). (B–E)
Results of the technical benchmarking of TADpole considering the optimal level with its corresponding TADs in each case and comparing with the other
22 TAD callers considered in Zufferey et al. (29). (B) The number, and the size of TADs in kilobases (kb) and number of bins. Each gray line represents
each one of the other 22 TAD callers. (C) Percentage of conserved TADs boundaries over different resolutions across the 22 TAD callers. (D) The average
MoC values across normalization strategies against the average MoC values across resolutions. Colors group the different TAD callers according to their
specific mathematical approach. (E) MoC values for different down-sampling matrices from the ICE-normalized interaction matrix at 50kb of resolution.
Panels B–D have been adapted from Figures 2C, 1D-E and Supplementary S2B of Zufferey et al. (29) to include TADpole in the comparison of TAD
callers.

bins spanning the 10% of the average TADs size. In
each bin, the log10 ratio between the H3K27me3 and
H3K36me3 signals was calculated. A shuffle test was
used to compute an empirical P-value per bin. Next, the
Benjamini-Hochberg procedure was applied to adjust
the P-values in each bin of a TAD and to assign a false
discovery rate (FDR) per TAD. The fraction of TADs
having an FDR < 0.1 was reported in the final barplot
(see for instance Figure 3F).

Difference score between topological partitions (DiffT)

To compare pairs of topological partitions, P and Q, identi-
fied by TADpole at a fixed level of the hierarchy, we defined
a difference topology score (DiffT). Specifically, the parti-
tioned matrices were transformed into binary forms p for P,
and analogously q for Q, in which each entry pij (qij) is equal
to 1 if the bins i and j are in the same TAD and 0 otherwise.
Then, DiffT is computed as the normalized (from 0 to 1)

difference between the binarized matrices as a function of
the bin index b as:

Di f f T (b) =
∑b

i=1

∑N
j=1

∣∣pi j − qi j
∣∣∑N

i=1

∑N
j=1

∣∣pi j − qi j
∣∣

where N is the total number of bins. The calculation of DiffT
is illustrated in Supplementary Video S1.

To test whether the identified TADs partition in Q is
significantly different from P at each level of the chro-
matin hierarchy, a statistical analysis was introduced. This
analysis assesses the significance of DiffT at each bin of
the matrix. A total of 10 000 random partitions of the
locus were simulated, excluding the bad columns of the
Q matrix (see below). The DiffT score was computed
between simulated and P partitions (DiffTsimulated-p). At
each bin, the fraction of DiffTsimulated-p lower or equal
to the DiffTq-p score estimates the P-value. A P-value <
0.05 means that a significant amount of the total DiffT



e39 Nucleic Acids Research, 2020, Vol. 48, No. 7 PAGE 6 OF 12

D

A B

0

20

40

60

m
at

ry
os

hk
a

C
lu

st
er

TA
D

ar
m

at
us

sp
ec

tr
al

P
S

Y
C

H
IC

C
aT

C
H

3D
N

et
M

od IS
E

A
S

T
TA

D
b

it
TA

D
tr

ee
H

iC
se

g
G

M
A

P
IC

Fi
nd

er
To

p
D

om
C

H
D

F D
I

ar
ro

w
he

ad

%
 o

f T
A

D
 ta

g
g

ed
 b

ou
nd

ar
ie

s

CTCF
RAD21
SMC3

C

arrowhead
3DNetMod

GMAP
CHDF

HiCseg
TopDom
ICFinder

DI
IS

armatus
CaTCH

TADtree
matryoshka

EAST
ClusterTAD

PSYCHIC
spectral
TADbit

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fraction of TADs with significant 
K27/K36 ratio (FDR < 0.1)F

TADpole

0.
02

0.
06

0.
10

0.
14

chr6, resolution 10kb

Distance from TAD boundary

St
ru

ct
ur

al
 p

ro
te

in
 p

ro
fil

e 
(S

PP
)

−500 kb −250 kb 0 +250 kb +500 kb

CTCF
RAD21
SMC3

0

0.5

1

1.5

m
at

ry
os

hk
a

C
lu

st
er

TA
D

ar
m

at
us

sp
ec

tr
al

3D
N

et
M

od IS
P

S
Y

C
H

IC
TA

D
b

it
TA

D
tr

ee
C

aT
C

H
H

iC
se

g
G

M
A

P
IC

Fi
nd

er
C

H
D

F
E

A
S

T
To

p
D

om D
I

ar
ro

w
he

ad

Fo
ld

 c
ha

ng
e

 (
p

ea
k 

vs
. b

ac
kg

ro
un

d
) FC = 

peak

background
-1

CTCF RAD21 SMC3

2

T
A

D
p

o
le

T
A

D
p

o
le

0.
10

0.
15

0.
20

0.
25

chr6, resolution 10kb

Distance from TAD boundary

−500 kb −250 kb 0 +250 kb +500 kb

H3K4me3

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

chr6, resolution 10kb

E

H3K9me3

Distance from TAD boundary

−500 kb −250 kb 0 +250 kb +500 kb

peak bgbg

H
is

to
ne

 m
ar

k 
pr

of
ile

 (H
M

P)

H
is

to
ne

 m
ar

k 
pr

of
ile

 (H
M

P)

peak peak

Figure 3. Biological benchmarking of TADpole. TAD boundaries used in these analyzes are the result of the optimal TAD partition defined by TADpole
of the Hi-C matrix at 10 kb of resolution. (A) SPP around the TAD boundaries (peak region in red, background region in gray) are shown for the consensus
profile of CTCF, RAD21 and SMC3. (B) Fold-change of the SPP of CTCF, RAD21 and SMC3 at TAD boundaries for all the 22 TAD callers. (C) Percentage
of TAD boundaries hosting CTCF, RAD21 and SMC3 for all the TAD callers. (D and E) HMP computed around TAD boundaries for active promoter
mark (H3K4me3) and repressive histone mark (H3K9me3). (F) The fraction of TADs with significant log10 ratio between H3K27me3 and H3K36me3
obtained for TADpole and for other 22 TAD callers. Panels B, C and F have been adapted from Figure 5D, E, I from Zufferey et al. (29).

score is located in the genomic region starting at the bin
under consideration onward. Hence, the bin(s) with the
minimum P-value marks the starting point of the locus
where the most significant fraction of the DiffT score is
located.

The DiffT score analysis was used to compare the TAD-
pole partitions in two Capture Hi-C (cHi-C) experiments
designed by Kraft and colleagues over the genomic inter-
val chr1: 71 000 000–81 000 000 in embryonic day E11.5
mouse cells using mm9 as a reference mouse assembly (42).
Specifically, the two homozygous strains were considered
comprising the wild-type (WT) and the so-called inver-
sion1 (Inv1). The normalized cHi-C interaction maps were
downloaded from GEO (53) at the GSM3261968 (WT) and
GSM3261969 (Inv1) entries. Next, the gene-dense region
(chr1: 73 920 000–75 860 000) was extracted and used for
DiffT analysis.

To compare the TADpole results on this cHi-C data, the
DiffT score analysis was applied also on the TADs parti-
tions identified by other 8 hierarchical TAD callers on the
same targeted locus. The parameters used and the process
of selecting the hierarchical levels are specified in Supple-
mentary Table S2.

RESULTS

TADpole benchmark analysis

To quantitatively compare TADpole with other 22 TAD
callers, we applied the multiple conditions test proposed in
Zufferey et al. (29) on the same reference benchmark dataset
(Figure 2A and ‘Materials and Methods’ section).

Technical benchmarking. We assessed various technical as-
pects of TADpole as well as the robustness of TADpole in
identifying domains at different resolutions, normalization
strategies, and sequencing depths of the input matrix (Fig-
ure 2A). First, we examined the number and the size (in kilo-
bases and in bins) of the optimal number of TADs identified
in the ICE-normalized maps at different resolutions (Figure
2B). We found that, as the resolution of the Hi-C interaction
map decreased, the number of TADs and the mean TAD
size in bins decreased with a 4-fold reduction. TADpole fol-
lowed a similar trend (positive when TADs are measured in
kilobases and negative when TADs are measured in bins) as
the majority of the other TAD callers independently of the
applied normalization strategy (Supplementary Table S3).
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We also inspected if TADpole identified robust bound-
aries over different resolutions. To measure the degree of
conservation, we tested if a border detected in the ICE nor-
malized Hi-C matrix at a certain resolution was conserved
in the resolution immediately finer (Figure 2C and Supple-
mentary Figure S2). Overall, TADpole conservation test
ranked 6–7th over the 22 TAD callers. Specifically, at the
coarser resolutions, that is 250 kb versus 100 kb, we found a
high agreement (67%), that decreased only slightly to (59%)
at intermediate ones (100 versus 50 kb). Interestingly, we
found that even at the finer resolutions (50 kb versus 10 kb),
where the 48% of the borders were conserved, this analy-
sis was consistent with a statistically significant overlap (P-
value < 0.05).

Next, we used the MoC (‘Materials and Methods’ sec-
tion) to estimate if the number and the position of the bor-
ders of TADs identified by TADpole were affected by the
matrix resolution and by normalization strategy. Interest-
ingly, we found that the MoC over different matrix reso-
lutions had values in the [0.45,0.82] range with an average
MoC of 0.63, and ranked first when compared with the
other 22 TAD callers previously benchmarked (29). TAD-
pole was also robust over different normalization strate-
gies with an average MoC of 0.74, ranking ninth over the
22 TAD callers. Comparing the average of resolutions ver-
sus normalizations MoC values of TADpole with the rest
of TAD callers (Figure 2D), we found that TADpole ap-
peared in the top-right corner of the plot demonstrating its
overall high robustness and confidence to identify optimal
chromatin domains independently of the resolution and the
normalization strategy applied to the input Hi-C matrix. We
also tested the TADpole propensity to identify consistent
optimal chromatin domains independently of the sequenc-
ing depth (Figure 2E). We compared the TADs obtained by
doing 12 different sub-samplings of the ICE-normalized in-
teraction matrix at 50 kb of resolution against the full inter-
action matrix using the MoC. We found that TADs defined
by TADpole were clearly robust to down-sampling with a
MoC score of 0.79 with just 0.1% of the total data. This fea-
ture classified TADpole as the top TAD caller with respect
to the other 22 tools.

Computational performance. We also compared the exe-
cution time of TADpole with the other 22 TAD callers
across different resolutions (1000, 250, 100, 50, 10 kb).
TADpole performs as good as the bulk of the TAD callers.
(Supplementary Figure S3). The maximum memory usage
was computed for one normalization dataset (LGF) and is
mostly quadratic to the number of bins in the Hi-C matrix
(Supplementary Figure S3).

Biological benchmarking. Due to the lack of a gold stan-
dard to define TADs in Hi-C interaction maps (28,29), we
investigated the biological relevance of the domains iden-
tified by TADpole in terms of their association with bio-
logical features that have been shown to have an impor-
tant role in the formation and maintenance of TADs. Af-
ter computing the SPP for the intersection of the peaks in
CTCF and RAD21 replicate experiments, and SMC3 ex-
periment, we found an enrichment at TAD boundaries (Fig-

ure 3A). To compare TADpole with the other TAD callers,
we computed the fold change enrichments at the domain
borders with respect to the flanking regions (Figure 3B).
TADpole resulted in a fold change enrichment around 1
for each of the three main architectural proteins (1.18 in
CTCF, 1.06 in RAD21 and 0.97 in SMC3, respectively), that
was consistent with a significantly high peak at the border
compared with the background (P-value < 10−5). In this
analysis, TADpole ranked as the sixth TAD caller. Addi-
tionally, we quantified the percentage of boundaries that
are occupied by CTCF or cohesin complex subunits indi-
vidually, as well as the percentage of boundaries in which
these two architectural proteins co-occur. Notably, more
than 40% of the TADs boundaries contain at least one of
the three main architectural proteins analyzed, being CTCF
(42%) and SMC3 (42%) the most represented. In this analy-
sis, TADpole ranked third within the set of 22 TAD callers
(Figure 3C). Additionally, 36.6% of the TAD boundaries
analyzed had both major subunits of the cohesin complex;
while a 36.2% of them were occupied by both cohesin sub-
units in association with CTCF sites.

To assess how this validation can be affected by biological
variability over different experiments, we repeated the same
analysis on each individual replicate as well as their union
(‘Materials and Methods’ section) for CTCF and RAD21
(Supplementary Figure S4). In all the cases, a peak of the
SPP was consistently found at TAD boundaries (Supple-
mentary Figure S4A), with fold change values from 0.97
to 1.09 for individual replicates and 1.05 for the cumula-
tive profile of CTCF and from 0.87 to 0.97 for individual
replicates and 0.91 for the cumulative profile of RAD21
(Supplementary Figure S4B). The percentage of occupied
boundaries by CTCF varied from 47 to 51% for individ-
ual replicas and 54% for the union profile and from 41 to
48% for individual replicas and 49% for the union profile of
RAD21 (Supplementary Figure S4C). These results demon-
strate that biological variability over different experiments
only marginally impacts on the biological benchmarking of
TADpole.

We also studied whether the TADpole boundaries are en-
riched for active (H3K4me3) or inactive (H3K9me3) his-
tone marks by computing the respective HMP (see ‘Ma-
terials and Methods’ section). As expected, the HMP of
H3K4me3 was sharply peaked at the TAD boundaries (Fig-
ure 3D), while the HMP of H3K9me3 resulted in the ab-
sence of enrichment (Figure 3E) (15,20,54). As regulons,
TADs are expected to be either transcriptionally active
or inactive (15) with the TAD body enriched in active
or inactive histone mark. To assess whether the TADpole
TADs follow this observation, we considered the ChIP-
seq signals of two histone marks: H3K36me3 for transcrip-
tional activity, and H3K27me3 for repression; then we mea-
sured the fraction of TADs where the log10 of their ra-
tio (H3K27me3/H3K36me3) was significantly higher (en-
richment in repressive mark) or lower (enrichment in ac-
tive mark) than zero (‘Materials and Methods’ section). No-
tably, we found that the majority (57%) of the TADs identi-
fied by TADpole have a defined active or inactive state, po-
sitioning TADpole within the top four TAD callers based
on this criterion (Figure 3F).
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Applications to capture Hi-C datasets

The strength of TADpole is given by its capability to dis-
entangle the entire hierarchical TAD organization from an
interaction map. Here, to test its usability, we partitioned
into domains a series of high-resolution interaction maps
of embryonic day E11.5 mouse limb buds (42). The interac-
tion matrices from Capture Hi-C experiments focused on a
specific region (chr1:71 000 000–81 000 000) containing the
Epha locus and several developmentally important genes
such as Pax3, Epha4 and Pinc. A series of 4 inversions were
done in a specific gene-dense region, located between the
Epha4 and Pinc genes (chr1: 73 920 000–75 860 000). The
goal of the work was to investigate the pathogenic conse-
quences of balanced chromosomal rearrangements but the
interpretation of the gene-dense region, that did not show
a clear topological structure, had proven challenging (42)
(Figure 4A). To show the usability of TADpole in structural
comparative studies, here, we compare the WT strain (Fig-
ure 4A, left) with the sole inversion producing a homozy-
gous strain (hereafter called Inv1), that is located between
the telomeric site of Epha4 enhancer cluster and the pro-
moter of Resp18 (breakpoint at chr1:75 275 966–75 898 706)
(Figure 4A, right).

The hierarchical analysis of TADpole revealed the exis-
tence of 17 levels in WT (21 optimal PCs and 11 optimal
TADs) and 16 levels in Inv1 (25 optimal PCs and 2 opti-
mal TADs) (Figure 4A). After visual inspection, the TADs
defined in WT and Inv1 had several differences. These in-
volved many of the hierarchical levels and tended to accu-
mulate in the region where the inversion was produced. To
statistically quantify and localize the significant topologi-
cal differences between the WT and Inv1 matrices, we com-
puted their DiffT score profiles between the TAD at each
hierarchical level (‘Materials and Methods’ section, Figure
4B and Supplementary Figure S5). We found that the DiffT
profiles sharply increased close to the point of the inversion
(Figure 4C). Based on the P-value profiles (Figure 4D), we
identified two regions where the minimum P-values, calcu-
lated at each hierarchical level, accumulated. Notably, 70%
of minimum P-values were located within a region, span-
ning 50 kb, from the point where inversion was induced,
suggesting that the significant topological changes between
WT and Inv1 accumulated in the inverted region.

Next, we assessed if the significant topological differ-
ences detected by TADpole could also be retrieved with
other TAD callers providing hierarchical chromatin do-
mains. 8 different tools were used: Armatus, Arrowhead,
Matryoshka, TADtree, CaTCH, GMAP, PSYCHIC and
3DNetMod (Supplementary Table S2). Interestingly, TAD-
pole was the sole TAD caller to identify the insertion point
of the Inv1 mutation as the beginning of the most signifi-
cant topologically different region (Supplementary Figure
S5). Note that no panel is shown for PSYCHIC because it
did not return any significant bin.

DISCUSSION AND CONCLUSION

In this work, we introduced TADpole, a bioinformatics
tool to identify hierarchical topological domains from all-
versus-all interaction matrices. In line with previously in-
troduced concepts such as metaTADs (26) and sub-TADs

(27), we propose that, aside from an optimal number of
TAD, there is a range of meaningful hierarchical chromatin
subdivisions. TADpole characterizes the entire hierarchy of
TADs while assessing the significance at various levels of
organization, paving the way for accurate characterization
of the nested genome topology and its biological role.

The principles behind this nested structure are not yet
fully understood, and different probable scenarios need to
be considered. Indeed, this hierarchical organization may
arise from the variability of conformations observed within
a cell population (55). However, in individual cells, globu-
lar structures delimited by variable boundaries (which pref-
erentially reside at the CTCF and cohesin binding sites)
with a similar appearance to TADs and sub-TADs have
been observed (56). In fact, it has been determined that
the shared boundaries between individual cells have a direct
correspondence with TAD borders identified in cell popu-
lations (56,57) and after cohesin depletion, these TAD-like
structures are maintained with changes in their boundary
positions. Remarkably, in individual cells, these boundaries
can be present at multiple genomic positions with a non-
zero probability and, therefore, we cannot exclude the pos-
sibility that the hierarchical TAD organization is present as
well in single cells. One can speculate that this hierarchical
structure can act as a regulatory scaffold to tune a coordi-
nated communication between cis-regulatory elements (58).
We envisage that, in future studies, TADpole could be used
to assess the relationship between metaTADs, TADs and
sub-TADs, helping to untangle the complex genome topol-
ogy by analyzing and comparing the topological organiza-
tions of chromatin in various cell types.

Prompted by this debate, dozens of methods have been
developed to computationally define TADs (28,29) follow-
ing two main general assumptions: either TADs are dis-
jointed and unrelated, or overlaid/nested structures with
shared content. TADpole belongs to the latter category.
Other tools based on the same assumption, such as Arrow-
head, Armatus, CaTCH, Matryoshka, TADtree, GMAP,
PSYCHIC and 3DNetMod have been developed. However,
these tools are quite different from TADpole’s approach in
several aspects, including the algorithm applied, the number
of parameters required, and the output provided. Some of
these methods are based on a linear score associated to each
bin of the contact matrix (such as Arrowhead, Armatus,
CaTCH and Matryoshka), or rely on statistical models of
the distribution of Hi-C interaction data (such as TADtree,
GMAP and PSYCHIC), or on graph theory to character-
ize the hierarchical nature of the chromatin as intercon-
nected communities (such as 3DNetMod), while TADpole
is the only one to adopt a strategy based on hierarchical
clustering. Additionally, the majority of tools have multi-
ple mandatory parameters that users have to define a pri-
ori (as in Arrowhead, PSYCHIC, TADtree or 3DNetMod)
that can affect the results. A major advantage of TAD-
pole is that, as GMAP or CaTCH, it does not require any
mandatory parameters. Importantly, TADpole provides in
an unsupervised manner, statistical criterion to identify the
hierarchy of TADs (using the broken-stick model) as well
as the optimal level of TAD partition (using the Calinski-
Harabasz index). The output of other tools may require spe-
cific downstream analyses, from the manual selection of the
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TAD hierarchy, as in TADtree or 3DNetMod, to the tun-
ing of ad hoc parameters, as the gamma value in Armatus
and Matryoshka. At last, the majority of the TAD callers
shared the characteristic of being completely open-access,
however in some cases, a proprietary software is required
(e.g. Matlab).

Another advantage of TADpole over existing TAD
callers is its data preprocessing step. Indeed, the PCC trans-
formation and the PCA application regularize the input ma-
trix so that the specific normalization applied to the input
and the sparsity of the data have little effect on identifying
TADs. Previously, other architectural features of the chro-
matin have been already studied using PCA. The first prin-
cipal component is widely used to identify the chromatin
segregation into compartments (13). The second and the
third PCs have been associated instead to intra-arm features
mainly centromere-centromere and telomere–telomere in-
teractions enrichment (14). Moreover, the first PCs have
been used to assess the similarity between two interaction
maps (14) as well as to quantify their reproducibility (59).
Here we have demonstrated that there exists an optimal
set of PCs capable of identifying the hierarchical structure
of chromatin, extending the current application of PCA to
characterize genome topology.

Here, we compared TADpole’s performance with a set of
other 22 TAD callers following the benchmark analysis per-
formed by Zufferey et al. (29). TADpole identifies a num-
ber of TADs over different resolutions that are in agree-
ment with other TAD callers (Figure 2B). The identified
domains have an average size of 855kb, in agreement with
the reported average TADs size in mammalian cells (∼900–
1000 kb) (15). TADpole shows one of the largest consisten-
cies over different normalization strategies (including also
non-normalized data), resolutions and sequencing depths
(Figure 2D and Supplementary Table S3). These features
make TADpole potentially suitable for analyzing sparse
datasets. Furthermore, the TADs reported by TADpole
present a high enrichment of the main architectural pro-
teins such as CTCF and major cohesin complex sub-units
(i.e., SMC3 and RAD21) (Figure 3A–C) and active his-
tone mark (H3K4me3) at the TAD borders, as well a pro-
nounced decrease in repressive histone mark (H3K9me3)
(Figure 3D-E). These findings are in line with the close re-
lationship between active transcription and boundary for-
mation (15,20,54). The body of these TADs also shows
an enrichment in either active (H3K36me3) or repressive
(H3K27me3) histone marks (Figure 3F). This result is con-
sistent with the fact that these marks may act as differentia-
tors of active or repressive TADs, leading to the idea that
TADs are the functional chromatin units (13,20–21,33,60).
Overall, the benchmark analysis presented here (Figures 2
and 3) reveals that TADpole generally performs better than
all the other nested TAD callers.

In a case study, we also provide a proof of TADpole’s us-
ability on a gene-dense region analyzing Capture Hi-C data
in both a WT strain and a mutant one carrying a genomic
inversion (41) (Figure 4). Notably, we found that (i) the re-
gion of interest indeed had a topological structure, (ii) there
exist clear topological dissimilarities between the WT and
the mutant experiments and (iii) the region, where the ma-
jority of topological differences are accumulated, matches

the location of the inversion. Interestingly, TADpole is the
unique TAD caller (Supplementary Figure S5) that in com-
bination with the DiffT score is able to identify the inverted
region as the one with the highest difference in topological
partitions, proving that this strategy can isolate and localize
within the genomic region of interest statistically significant
topological dissimilarities.

In summary, TADpole combines straightforward bioin-
formatics analyses such as PCA and hierarchical clustering
to study continuous nested hierarchical segmentation of an
all-versus-all intra-chromosomal interactions matrix. Addi-
tionally, we demonstrated the technical and biological ro-
bustness of TADpole and its usability in identifying topo-
logical difference in high-resolution capture Hi-C experi-
ments. TADpole is released as a publicly-available, open-
source and numerically efficient R tool. As such, TADpole
represents a comprehensive tool that fulfils the needs of the
scientific community for an accurate TAD caller able to
comprehensively study the interplay between the hierarchi-
cal chromatin topology and genomic function.

DATA AVAILABILITY

The TADpole is freely available for download as an R
package at https://github.com/3DGenomes/TADpole. The
scripts for the technical and biological benchmarks were ob-
tained from the repository https://github.com/CSOgroup/
TADbenchmarking-scripts (28). Specifically, the script
fig2 fig3 fig4 fig5 moc calc.R was used for panels Figure
2B–E, the script StructProt EnrichBoundaries script.R for
panels Figure 3A–D, and the script HistMod script.sh for
the panel in Figure 3E. Default parameters were applied.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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