5052 measured reflections

 $R_{\rm int} = 0.086$

3274 independent reflections

2683 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-2-(Furan-2-ylmethylidene)-2,3dihydro-1*H*-inden-1-one

Abdullah M. Asiri,^{a,b}‡ Hassan M. Faidallah,^a Khulud F. Al-Nemari,^a Seik Weng Ng^{c,a} and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 5 March 2012; accepted 9 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.081; wR factor = 0.251; data-to-parameter ratio = 22.4.

In the title compound, $C_{14}H_{10}O_2$, the five-membered ring of the inden-1-one residue is almost planar (r.m.s. deviation = 0.035 Å). A twist about the single bond linking the two residues is evident [C-C-C-C torsion angle = -13.2 (5)°]. The three-dimensional architecture is stabilized by C-H···O (involving the trifurcated carbonyl O atom), C-H··· π and π - π interactions [between the five- and six-membered rings of inden-1-one residues; ring centroid-centroid distance = 3.7983 (17) Å]. The sample studied was a non-merohedral twin; the minor component refined to approximately 36%.

Related literature

For the biological activity of related species, see: Vera-DiVaio *et al.* (2009). For related structures, see: Asiri *et al.* (2012*a*,*b*). For the treatment of twinned data, see: Spek (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{10}O_2\\ M_r = 210.22\\ \text{Monoclinic, } P2_1/c\\ a = 5.9333 \ (8) \ \text{\AA}\\ b = 7.6605 \ (6) \ \text{\AA}\\ c = 22.386 \ (3) \ \text{\AA}\\ \beta = 91.582 \ (14)^\circ \end{array}$

 $V = 1017.1 (2) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K 0.25 \times 0.25 \times 0.05 mm

Data collection

```
Agilent SuperNova Dual
diffractometer with an Atlas
detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
T_{\rm min} = 0.978, T_{\rm max} = 0.995
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.081$ 146 parameters $wR(F^2) = 0.251$ H-atom parameters constrainedS = 1.10 $\Delta \rho_{max} = 0.49$ e Å $^{-3}$ 3274 reflections $\Delta \rho_{min} = -0.38$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C2-C7 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots O1^{i}$	0.95	2.56	3.414 (4)	149
$C8-H8A\cdots O1^{ii}$	0.99	2.37	3.343 (4)	166
C14−H14···O1 ⁱⁱⁱ	0.95	2.45	3.372 (4)	164
$C8-H8B\cdots Cg1^{iv}$	0.99	2.70	3.517 (3)	140

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x - 1, y, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5838).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T.

(2012a). Acta Cryst. E68, 0755. Asiri, A. M., Faidallah, H. M., Al-Nemari, K. F., Ng, S. W. & Tiekink, E. R. T.

(2012b). Acta Cryst. E68, 0814. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vera-DiVaio, M. A. F., Freitas, A. C. C., Castro, F. H. C., de Albuquerque, S., Cabral, L. M., Rodrigues, C. R., Albuquerque, M. G., Martins, R. C. A., Henriques, M. G. M. O. & Dias, L. R. S. (2009). *Bioorg. Med. Chem.* 17, 295– 302.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

supplementary materials

Acta Cryst. (2012). E68, o1065 [doi:10.1107/S1600536812010501]

(2E)-2-(Furan-2-ylmethylidene)-2,3-dihydro-1H-inden-1-one

Abdullah M. Asiri, Hassan M. Faidallah, Khulud F. Al-Nemari, Seik Weng Ng and Edward R. T. Tiekink

Comment

The title compound, 2-furan-2-ylmethylene-indan-1-one (I), has been investigated crystallographically in connection with recent structural studies on related derivatives (Asiri *et al.*, 2012*a*; Asiri *et al.*, 2012*b*). The motivation for the original synthesis of (I) is its relationship to biologically active compounds (Vera-DiVaio *et al.*, 2009).

In the molecule of (I), Fig. 1, the five-membered ring of the inden-1-one residue is planar with the r.m.s. deviation for the five atoms = 0.035 Å [maximum deviations = 0.031 (2) for the C9 atom and -0.026 (3) for the C8 atom]. A twist in the molecule about the C10—C11 bond is evident with the C9—C10—C11—C12 torsion angle being -13.2 (5)°. The configuration about the C9=C10 bond [1.346 (4) Å] is *E*.

The carbonyl-O1 atom is tri-furcated, forming three C—H···O interactions which lead to a three-dimensional architecture. Additional interactions in the crystal packing include C—H··· π interactions, Table 1, as well as π - π contacts between the five- and six-membered rings of inden-1-one residue [ring centroid···centroid distance = 3.7983 (17) Å, angle of inclination = 1.02 (14)° for symmetry operation 1 - *x*, -*y*, 1 - *z*], Fig. 2.

Experimental

A solution of the furan-2-carboxaldehyde (0.95 g, 0.01 *M*) in ethanol (20 ml) was added to a stirred solution of 1indanone (1.3 g, 0.01 *M*) in (20%) ethanolic KOH (20 ml), and stirring was maintained at room temperature for 6 h. The reaction mixture was then poured into water (200 ml) and set aside overnight. The precipitated solid product was collected by filtration, washed with water, dried and recrystallized from ethanol. Yield: 92%. *M*.pt: 393–395 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The studied sample was a non-merohedral twin (the twin law is 1 0 0.015, 0 $\overline{1}$ 0, 0 0 $\overline{1}$). The twin domains were separated by using the *TwinRotMat* routine in PLATON (Spek, 2009) and the minor component refined to 0.362 (3).

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view in projection down the *a* axis of the unit-cell contents of (I). The C—H···O, C—H··· π and π - π interactions are shown as orange, brown and purple dashed lines, respectively.

(2E)-2-(Furan-2-ylmethylidene)-2,3-dihydro-1H-inden-1-one

Crystal data	
$C_{14}H_{10}O_2$	F(000) = 440
$M_r = 210.22$	$D_{\rm x} = 1.373 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1169 reflections
a = 5.9333 (8) Å	$\theta = 2.7 - 27.5^{\circ}$
b = 7.6605 (6) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 22.386 (3) Å	T = 100 K
$\beta = 91.582 \ (14)^{\circ}$	Plate, light-brown
V = 1017.1 (2) Å ³	$0.25 \times 0.25 \times 0.05 \text{ mm}$
Z = 4	

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.978, T_{\max} = 0.995$
diffractometer with an Atlas detector	5052 measured reflections
Radiation source: SuperNova (Mo) X-ray	3274 independent reflections
Source	2683 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\text{int}} = 0.086$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^{\circ}, \theta_{\text{min}} = 2.8^{\circ}$
ω scan	$h = -7 \rightarrow 7$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(<i>CrysAlis PRO</i> ; Agilent, 2011)	$l = -28 \rightarrow 29$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.081$	Hydrogen site location: inferred from
$wR(F^2) = 0.251$	neighbouring sites
S = 1.10	H-atom parameters constrained
3274 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1697P)^2 + 0.358P]$
146 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.49$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.38$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8036 (3)	0.1044 (3)	0.41473 (10)	0.0225 (5)	
O2	0.3114 (4)	0.3830(3)	0.25105 (10)	0.0247 (6)	
C1	0.6426 (5)	0.1749 (3)	0.43739 (13)	0.0158 (6)	
C2	0.6084 (5)	0.2043 (3)	0.50122 (13)	0.0165 (6)	
C3	0.7489 (5)	0.1602 (4)	0.55034 (14)	0.0198 (6)	
Н3	0.8888	0.1028	0.5449	0.024*	
C4	0.6783 (5)	0.2028 (4)	0.60685 (14)	0.0248 (7)	
H4	0.7724	0.1762	0.6406	0.030*	
C5	0.4707 (6)	0.2842 (4)	0.61507 (14)	0.0249 (7)	
Н5	0.4248	0.3100	0.6544	0.030*	
C6	0.3307 (5)	0.3279 (4)	0.56689 (14)	0.0217 (7)	
H6	0.1902	0.3840	0.5727	0.026*	
C7	0.4012 (5)	0.2875 (3)	0.50936 (14)	0.0174 (6)	
C8	0.2794 (5)	0.3192 (4)	0.44983 (13)	0.0173 (6)	
H8A	0.1365	0.2526	0.4469	0.021*	
H8B	0.2464	0.4448	0.4439	0.021*	
C9	0.4447 (5)	0.2549 (3)	0.40530 (14)	0.0171 (6)	
C10	0.4384 (5)	0.2705 (4)	0.34539 (14)	0.0176 (6)	
H10	0.5628	0.2246	0.3247	0.021*	
C11	0.2621 (5)	0.3496 (4)	0.31001 (14)	0.0195 (6)	
C12	0.0463 (5)	0.4025 (4)	0.31992 (15)	0.0237 (7)	
H12	-0.0304	0.3951	0.3565	0.028*	
C13	-0.0413 (6)	0.4706 (4)	0.26501 (16)	0.0274 (8)	
H13	-0.1881	0.5165	0.2576	0.033*	
C14	0.1252 (5)	0.4571 (4)	0.22545 (15)	0.0248 (7)	
H14	0.1135	0.4946	0.1850	0.030*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0194 (11)	0.0244 (11)	0.0235 (12)	0.0027 (9)	-0.0027 (9)	-0.0039 (9)
O2	0.0255 (12)	0.0295 (11)	0.0186 (11)	-0.0028 (10)	-0.0054 (9)	0.0042 (9)
C1	0.0176 (14)	0.0118 (12)	0.0178 (14)	-0.0041 (11)	-0.0043 (11)	0.0015 (11)
C2	0.0193 (15)	0.0099 (12)	0.0200 (15)	-0.0036 (11)	-0.0035 (11)	0.0008 (11)
C3	0.0190 (14)	0.0170 (13)	0.0229 (15)	-0.0047 (12)	-0.0074 (11)	0.0033 (12)
C4	0.0303 (18)	0.0219 (15)	0.0217 (16)	-0.0050 (13)	-0.0100 (13)	0.0099 (12)
C5	0.0370 (19)	0.0245 (15)	0.0131 (14)	-0.0084 (14)	0.0009 (13)	0.0016 (12)
C6	0.0230 (16)	0.0201 (14)	0.0221 (15)	-0.0078 (13)	0.0014 (12)	0.0004 (12)
C7	0.0208 (15)	0.0106 (11)	0.0205 (15)	-0.0046 (11)	-0.0030 (11)	-0.0005 (11)
C8	0.0172 (15)	0.0148 (12)	0.0197 (14)	-0.0006 (11)	-0.0011 (11)	-0.0028 (11)
C9	0.0149 (14)	0.0127 (12)	0.0233 (15)	-0.0041 (11)	-0.0037 (11)	-0.0002 (12)
C10	0.0151 (14)	0.0166 (13)	0.0211 (15)	-0.0026 (11)	-0.0029 (11)	-0.0033 (11)
C11	0.0256 (15)	0.0161 (13)	0.0166 (15)	0.0000 (12)	-0.0046 (12)	-0.0015 (11)
C12	0.0223 (16)	0.0281 (15)	0.0204 (16)	0.0048 (13)	-0.0033 (11)	-0.0011 (13)
C13	0.032 (2)	0.0290 (16)	0.0210 (16)	0.0024 (15)	-0.0080 (12)	0.0009 (14)
C14	0.0253 (18)	0.0261 (15)	0.0224 (17)	-0.0044 (13)	-0.0097 (12)	0.0065 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

01—C1	1.220 (4)	С6—Н6	0.9500
O2—C14	1.355 (4)	C7—C8	1.518 (4)
O2—C11	1.384 (4)	C8—C9	1.501 (4)
C1—C2	1.466 (4)	C8—H8A	0.9900
C1—C9	1.491 (4)	C8—H8B	0.9900
C2—C7	1.401 (4)	C9—C10	1.346 (4)
C2—C3	1.403 (4)	C10—C11	1.429 (4)
C3—C4	1.383 (5)	C10—H10	0.9500
С3—Н3	0.9500	C11—C12	1.367 (4)
C4—C5	1.398 (5)	C12—C13	1.420 (4)
C4—H4	0.9500	C12—H12	0.9500
C5—C6	1.384 (4)	C13—C14	1.349 (5)
С5—Н5	0.9500	C13—H13	0.9500
C6—C7	1.400 (5)	C14—H14	0.9500
C14—O2—C11	106.8 (2)	C9—C8—H8A	111.2
01—C1—C2	127.2 (3)	C7—C8—H8A	111.2
01—C1—C9	126.6 (3)	C9—C8—H8B	111.2
C2—C1—C9	106.1 (2)	C7—C8—H8B	111.2
С7—С2—С3	120.8 (3)	H8A—C8—H8B	109.1
C7—C2—C1	110.0 (3)	C10—C9—C1	121.1 (3)
C3—C2—C1	129.2 (3)	C10—C9—C8	129.2 (3)
C4—C3—C2	118.2 (3)	C1—C9—C8	109.6 (2)
С4—С3—Н3	120.9	C9—C10—C11	126.1 (3)
С2—С3—Н3	120.9	C9—C10—H10	116.9
C3—C4—C5	121.1 (3)	C11—C10—H10	116.9
С3—С4—Н4	119.5	C12—C11—O2	108.9 (3)
С5—С4—Н4	119.5	C12—C11—C10	135.2 (3)

C6—C5—C4	121.2 (3)	O2—C11—C10	115.9 (3)
С6—С5—Н5	119.4	C11—C12—C13	106.9 (3)
С4—С5—Н5	119.4	C11—C12—H12	126.6
C5—C6—C7	118.4 (3)	C13—C12—H12	126.6
С5—С6—Н6	120.8	C14—C13—C12	106.4 (3)
С7—С6—Н6	120.8	C14—C13—H13	126.8
C6—C7—C2	120.4 (3)	С12—С13—Н13	126.8
C6—C7—C8	128.7 (3)	C13—C14—O2	111.0 (3)
C2—C7—C8	110.9 (3)	C13—C14—H14	124.5
C9—C8—C7	103.1 (2)	O2—C14—H14	124.5
O1—C1—C2—C7	-179.3 (3)	O1—C1—C9—C10	-6.6 (4)
C9—C1—C2—C7	2.9 (3)	C2-C1-C9-C10	171.3 (3)
O1—C1—C2—C3	0.2 (5)	O1—C1—C9—C8	177.2 (3)
C9—C1—C2—C3	-177.6 (3)	C2-C1-C9-C8	-5.0 (3)
C7—C2—C3—C4	-0.6 (4)	C7—C8—C9—C10	-170.9 (3)
C1—C2—C3—C4	179.9 (3)	C7—C8—C9—C1	5.0 (3)
C2—C3—C4—C5	1.3 (4)	C1—C9—C10—C11	-177.8 (3)
C3—C4—C5—C6	-1.2 (5)	C8—C9—C10—C11	-2.4 (5)
C4—C5—C6—C7	0.4 (4)	C14—O2—C11—C12	0.4 (3)
C5—C6—C7—C2	0.2 (4)	C14—O2—C11—C10	180.0 (2)
C5—C6—C7—C8	179.2 (3)	C9—C10—C11—C12	-13.2 (5)
C3—C2—C7—C6	-0.1 (4)	C9—C10—C11—O2	167.3 (3)
C1—C2—C7—C6	179.5 (2)	O2—C11—C12—C13	0.2 (3)
C3—C2—C7—C8	-179.3 (2)	C10-C11-C12-C13	-179.4 (3)
C1—C2—C7—C8	0.3 (3)	C11—C12—C13—C14	-0.6 (4)
C6—C7—C8—C9	177.6 (3)	C12—C13—C14—O2	0.9 (4)
C2—C7—C8—C9	-3.3 (3)	C11—O2—C14—C13	-0.8 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H···A	D—H	H···A	D··· A	D—H··· A
C3—H3…O1 ⁱ	0.95	2.56	3.414 (4)	149
C8—H8A····O1 ⁱⁱ	0.99	2.37	3.343 (4)	166
C14—H14····O1 ⁱⁱⁱ	0.95	2.45	3.372 (4)	164
C8—H8 B ···· $Cg1^{iv}$	0.99	2.70	3.517 (3)	140

Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, -y+1, -z+1.