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Abstract

Background: Low cellular level of BID is critical for viability of numerous cancer cells. Sensitization of cells to
anticancer agents by BID overexpression from adenovirus or pcDNA vectors is a proposed strategy for cancer
therapy; however it does not provide any stringent control of cellular level of BID. The aim of this work was to examine
whether a fusion of BID with TAT cell penetrating peptide (TAT-BID) may be used for controlled sensitization of cancer
cells to anticancer agents acting through death receptors (TRAIL) or DNA damage (camptothecin). Prostate cancer PC3
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and LNCaP, non-small human lung cancer A549, and cervix carcinoma Hela cells were used in the study.

Methods: Uptake of TAT-BID protein by cells was studied by quantitative Western blot analysis of cells extracts. Cells
viability was monitored by MTT test. Apoptosis was detected by flow cytometry and cytochrome c release assay.

Results: TAT-BID was delivered to all cancer cells in amounts depending on time, dose and the cell line. Recombinant
BID sensitized PC3 cells to TRAIL or, to lesser extent, to camptothecin. Out of remaining cells, TAT-BID sensitized A549,
and only slightly Hela cells to TRAIL. None of the latter cell lines were sensitized to camptothecin. In all cases the

was similarly efficient in sensitization as the wild type TAT-BID.

Conclusions: TAT-BID may be delivered to cancer cells in controlled manner and efficiently sensitizes PC3 and A549
cells to TRAIL. Therefore, it may be considered as a potential therapeutic agent that enhances the efficacy of TRAIL for
the treatment of prostate and non-small human lung cancer.
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Background

Susceptibility to apoptosis is impaired in majority of cancer
cells. A common reason is reduction of the “functional
dose” of apoptotic proteins [1], i.e. decrease of effective
concentration of active proteins below a critical level
necessary to carry out the process. The main causes of
the reduction are: (i) lowered expression of apoptotic
proteins, e.g. caspases [2]; (ii) elevated expression of
inhibitors of apoptosis proteins (IAPs) that reduce the level
of the initiator and effector caspases [3], and (iii) phosphor-
ylation of apoptotic proteins [4,5] that makes them in-
accessible to signaling and eventually prevents apoptosis in
cancer cells. Reconstruction of the physiological functional
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dose of apoptotic protein in protein-deficient cells is a sug-
gested strategy for cancer therapy.

BID (BH3-interacting domain death agonist) protein is
situated in extrinsic apoptotic signaling between death
receptors and mitochondria [6], and acts as an inductor
of permeabilization of the outer mitochondrial mem-
brane in type II cells [7]. The level of BID is critical for
viability of numerous cells because its silencing makes
them resistant to apoptosis induced by death receptors
ligands, e.g. TNF-related apoptosis-inducing ligand
(TRAIL) [8,9]. Moreover, it has been demonstrated
that the level of BID is below the functional dose in
cells of several lines because they may be sensitized to
TRAIL by overexpression of BID [8,10,11]. Due to the
above, BID has been considered to be therapeutically
exploited [8]. However, to define a way to administer
BID several significant issues should be solved. The
main one is a control of the level of BID delivered to
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the cell. Although a full-length BID has been shown to
participate in apoptotic signaling [12], efficient activation
of apoptosis needs a specific cleavage of BID by caspase 8
and production of an active truncated form (tBID) [13].
tBID expressed in cells directly induces apoptosis [10].
Therefore, to exploit selectivity for cancer cells exhibited
by some anticancer agents [14,15] sensitization of cells by
full-length BID is a preferred strategy. To sensitize cells,
overexpressing systems based on the adenovirus [11] or
pcDNA vectors [8,16,17] have been commonly used. How-
ever, they do not provide a stringent control of the level of
BID expression in the cell. As a result, the level of BID
in transfected cells exceeded several fold that of the
endogenous protein and in some cases a direct activa-
tion of apoptosis was observed instead of sensitization
of cells to apoptotic stimuli [10,11,16]. In according to
the above, tBID appears in cells treated with adenovirus
vector expressing the full-length BID [11,16].

Another question to be answered is whether there is a
critical level of endogenous BID that would be prediction
for BID-based therapy. Estimated levels of endogenous
BID vary from one cell type to another by a factor of about
one hundred [18]. However, efficient use of cellular BID
may be hampered due to at least two reasons. Firstly,
active tBID is sequestered by Bcl-2 proteins [19]. As a
consequence, higher level of BID is necessary to support
signaling in cells overexpressing Bcl-2. Next, the level of
available BID may be reduced by phosphorylation of the
protein by CK2 kinase. The cleavage of BID by caspase 8
that produces tBID has been suggested to be dependent
on phosphorylation status of BID regulated by CK2 [5,20].
Although BID is a poor substrate for CK2 [21], phosphor-
ylation of BID by CK2 in HeLa cells protects it partially
from cleavage by caspase 8 [22]. Therefore, as the level of
endogenous BID [18], functioning of TRAIL-induced
signaling [23], and activity of CK2 [24] differ in parti-
cular cancer cells, some cells may be expected not to
respond on elevation of cellular concentration of BID
whereas other ones may be sensitized by BID.

An issue to be clarified is also which apoptosis inducing
agents could be combined with BID to achieve an antican-
cer effect. Due to the role of BID in the extrinsic apoptotic
signaling sensitization with BID is usually followed by a
treatment of cells with death receptors ligands [8,9].
From among them soluble human TRAIL (Dulanermin)
is considered as a potential anticancer drug. It exhibits
cancer-selective effects [14,15]. Clinical evidence shows
that TRAIL is relatively safe and well tolerated [25],
and several treatment strategies based on recombinant
soluble TRAIL have been recently built and tested ([26]
for review). Attempts have been undertaken to improve
delivery of TRAIL to target cells and its therapeutic
efficacy [15]. Another cellular role proposed for BID is
to mediate DNA damage response [27]. It has been
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shown that BID promotes intrinsic apoptotic pathway
in hepatocellular carcinoma cells (HCC) because they
are sensitized to etoposide by overexpression of BID
[17,28]. However, it is not clear whether sensitization of
the intrinsic apoptotic pathway by BID is a general
phenomenon or it is limited to HCC, and which DNA
damaging agents would be a therapeutic option, if they
were combined with BID.

With regard to the potential use of BID as a target in
cancer therapy, we addressed here the issues listed above
by employing TAT cell penetrating peptide to deliver
recombinant BID to cancer cells. TAT peptide is one of
the smallest protein-transduction domains [29] consid-
ered as a vehicle to deliver proteins into cancer cells in
anti-cancer therapies [30]. It was exploited to transport
several different apoptotic proteins either individually e.g.
[31,32] or as a fusion with domains that specifically
confine their action to cancer cells e.g. [33,34]. Prostate
cancer PC3 cells were the main subject of this study. They
have been isolated from bone metastasis of prostate cancer
and retain high metastatic potential. PC3 cells are com-
monly used as a model of prostate cancer metastasis e.g.
[35,36], poorly susceptible to chemotherapy. They are type
II cells [37] that use an apoptotic pathway dependent on
the presence of BID [38]. CK2 activity in prostate cancer
cells is ~3-5 times higher than in a normal tissue [39] and
it influences susceptibility of these cells to apoptosis [40].
Moreover, impairment of apoptosis and not increased pro-
liferation is a main factor in prostate cancer progression
[41] making it a promising target for BID-based therapy.
To have a better insight into ability of directly delivered
BID to sensitize different cancer cells, we also tested three
other cancer cell lines: prostate cancer LNCaP, non-small
human lung cancer A549 and cervix carcinoma HeLa.
TRAIL and camptothecin (CPT) were used to induce
apoptosis through either death receptors or DNA damage,
respectively. We found that: (i) BID fused with TAT pep-
tide is delivered to cells at the non-toxic dose; (ii) delivered
BID sensitized PC3 cells to apoptosis induced by TRAIL
and CPT; (iii) out of other cancer cell lines A549 and
HelLa cells were sensitized to apoptosis induced by TRAIL
and no line to apoptosis induced by CPT; (iv) unpho-
sphorylable mutant of BID sensitized cells similarly as the
wild type protein.

Methods

Cell lines and cell culture

Experiments were performed using two prostate cancer
cell lines (PC3 and LNCaP), and two non-prostate cell
lines: non-small human lung cancer A549 and cervix
carcinoma HeLa. All cell lines were purchased from the
European Collection of Cell Cultures (ECACC). Prostate
cancer cells were cultured in RPMI-1640 medium. PC3
medium contained 2 mg/ml D-glucose. LNCaP medium
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contained 4.5 mg/ml D-glucose, and additionally 10 mM
HEPES and 1 mM sodium pyruvate. Non-small human
lung cancer A549 cell line and cervix carcinoma HeLa
cell line were cultured in F12K or DMEM medium,
respectively. All media were supplemented with 10% FBS,
penicillin (100 U/ml) and streptomycin (100 pg/ml).
Cultures were maintained in a 95% humidified atmos-
phere of 5% CO, at 37°C. For experiments cells were
seeded in 96- and 24-wells plates or dishes.

Reagents

Pfx polymerase was obtained from Invitrogen (Thermo
Fisher Scientific, USA); Ni-NTA agarose resin, GAPDH
antibodies and RPMI-1640 medium from Sigma ALDRICH
(Inc. Sigma-Aldrich Corp, MO, USA); F-12 K medium
from ATCC (ATTC, VA, USA); Applixchange-G25M from
AppliChem (AppliChem GmbH, Darmstadt, Germany);
Superdex-200 from Amersham (GE Healthcare Europe
GmbH, Austria); anti-Bid antibodies from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, USA); cytochrome
¢ antibodies and Annexin V-FITC Apoptosis Detection
kit I from Becton and Dickinson Bioscience (Becton,
Dickinson and Company, New Jersey, USA); Protease
Inhibitor Cocktail from Promega (Promega Corpor-
ation, USA).

Plasmid construction and mutagenesis
c¢DNA corresponding to human BID (BID(L), isoform 1,
195 aa) was amplified by PCR method. Plasmid IRATp
970C1135D (imaGenes) containing full length cDNA BID
clone [GenBank: BC036364] was used as a template. To
construct pET28a/TAT-BID plasmids encoding a series of
BID fusion proteins, bacterial vector pET28a (Novagen)
was enriched with sequences coding TAT and repeated
three times HA-tag. BID ¢cDNA was cloned into the
vector between TAT-sequence and HA-tags. All muta-
tions were introduced into constructed plasmid by site-
directed mutagenesis.

Plasmid for expression of human soluble TRAIL was
prepared as described previously [42].

Expression, isolation and purification of recombinant
proteins

Recombinant BID protein fused with TAT peptide was
used in this study (Figure 1A). The construct was used
either as a wild type protein (TAT-BID) or its mutated
variants. In the latter case, the fusion protein mutated
at sites phosphorylated by CK2 kinase [21], (TAT-
BID"®°A/5764) \as used for testing sensitivity of ex-
ogenous BID to phosphorylation by CK2 in cancer
cells, and the mutant uncleavable by caspase 8 [43]
(TAT-BIDP®) for testing the processing of delivered
recombinant BID in the cell. All the above mentioned
proteins were tagged with His-tag used for purification
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and with HA tag used for simple identification of the pro-
tein in the cell. His-tag used for purification and the TAT
peptide used for the cell penetration were localized at the
N-terminal end of the protein and thus they were removed
after cleavage by caspase 8 that makes the protein active.
On the other hand, HA tags used for identification of
the protein were placed at the C-terminus and remained
uncut after proteolytic cleavage.

Recombinant BID was expressed in Escherichia coli
BL21(DE3) cells. The proteins were isolated and purified
under native conditions using Ni-NTA agarose resin and
gel-filtration (Applixchange-G25M) chromatography.
Purity of all variants of recombinant TAT-BID is shown
on Figure 1B. Recombinant soluble form of human TRAIL
[14] was used to induce apoptosis in several experiments.
For TRAIL protein expression E. coli M15 [pREP4]
(Qiagen) cells were used. TRAIL was purified under
native conditions using Ni-NTA agarose resin and then
using FPLC on Superdex-200. Purity of TRAIL is shown
on Figure 1B. Estimation of the molecular weight identi-
fied that nearly 100% of prepared TRAIL was in an active
trimeric form [14] (Figure 1C).

Protein concentration in samples used in the experiments
was quantified by densitometry after SDS-polyacrylamide
gel electrophoresis using ChemiDocXRS (BioRad).

Uptake of the recombinant proteins by cells

To examine time-dependent kinetics and concentration-
dependence of uptake of the recombinant protein by the
cells, TAT-BID was added directly to the culture medium
in the presence of trypsin inhibitor from soybean (final
concentration 0.005%). Then cells were washed 3 times
with PBS, trypsinized, collected and centrifuged at 250 x g
for 5 min at 4°C. 3 additional series of washing were made
and then cells were counted, resuspended in Laemmli
buffer (1x10* cells/ul) and boiled for 20 min, resolved
on a polyacrylamide gel under denaturing conditions,
and transferred into PVDF membrane. Protein concen-
tration in extracts was measured using Bradford assay
[44]. Protein’s uptake and the level of endogenous BID
were detected by Western blot analysis carried out with
the aid of anti-Bid antibodies. The membranes were sub-
sequently stripped of the first antibody and re-probed with
anti-GAPDH antibodies. The results were quantified by
densitometry using ChemiDocXRS (BioRad).

MTT assay and detection of apoptosis

MTT mixture [45] was added at the concentration
0.5 mg/ml for PC3, LNCaP and A549 cells or 2.5 mg/ml
for HeLa cells, after removal of the culture medium.
Cells were then cultured for additional 120 min at 37°C.
The formazan crystals were diluted in DMSO-isopropanol
mixture (1:1) and the absorbance was measured at 570 nm
using VICTOR Multilabel Plate Reader (PerkinElmer). For
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Figure 1 Recombinant proteins used in this work. A. Schematic representation of TAT-BID constructs used in this study. B. Purity of recombinant
TAT-BID, its mutants, and TRAIL. The gel was stained with Coomassie Brilliant Blue R-250. C. Chromatography of TRAIL on Superdex 200 (original picture
is shown; straight lines at the bottom illustrate controls). Position of the trimeric form of TRAIL is marked.

detection of apoptosis PC3 cells were cultured for
24 hours with 30 pug/ml of TAT-BID in the presence of
trypsin inhibitor from soybean and 200 ng/ml TRAIL.
Then, both floating and adherent cells were harvested.
The floating cells were collected by centrifugation at
700 x g for 5 min at 4°C. Adherent cells were first tryp-
sinized and then collected by centrifugation at 700 x g
for 5 min at 4°C. Both fractions were resuspended in
Annexin V binding buffer and pooled. Apoptotic cells
were detected by flow cytometry as described previously
[42] and analyzed with a BD FACSDiva Software ver.
6.0 (Becton Dickinson).

Cytochrome c assay
To detect cytochrome c release, cytosol-free mitochon-
dria were prepared. PC3 cells were seeded on 60 mm

dishes and treated with TAT-BID (30 pg/ml), TRAIL
(100 ng/ml) or TAT-BID + TRAIL for 4 hours. Next,
both floating and adherent cells were collected, spun at
1000 g for 5 min at RT and pellets were resuspended in
ice-cold Mito-buffer (20 mM HEPES, pH 7.5, 10 mM
KCl, 1.5 mM MgCl,, 1 mM EGTA, 1 mM EDTA, 1 mM
DTT, 250 mM sucrose, 100 pM benzamidine, 55 pM
phenanthroline, 20 pM leupeptin, 5 pM pepstatin A, 1
mM PMSF) and lysed on ice by homogenization in a
small glass Potter-Elvehjem homogenizer. The homoge-
nates were spun at 800 g for 10 min at 4°C to remove
nuclei and cell detritus and then spun at 16 000 g for 30
min at 4°C to pellet the mitochondria. Pellets were
washed with Mito-buffer and spun again at 16 000 g for
30 min at 4°C [46]. Cytosol-free mitochondria were lysed
in Laemmli buffer, boiled for 10 min at 95°C and used
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for Western blot analysis. Mitochondrial proteins were
separated on 15% polyacrylamide gel and cytochrome ¢
was detected using anti-cytochrome c antibodies. Also
GAPDH protein was detected by Western blot analysis
using anti-GAPDH antibodies. The results were quanti-
fied by densitometry using ChemiDocXRS (BioRad).

Data analysis

All experiments were carried out at least in triplicate,
and for each individual point at least five independent
measurements were done. Differences between groups
were calculated using t-Student test. P-Value < 0.05 was
considered statistically significant. The following ranges
were defined: p < 0.05 (*), p <0.01 (**) and p <0.001 (***).
Statistica verl0 software (StatSoft, Poland) was used for
analysis.

Results

TAT-BID enters PC3 cells in amounts depending on time
and dose

To exert an effect on apoptosis TAT-BID had to be
efficiently taken up by PC3 cells at a non-toxic dose.
Therefore, we firstly examined whether TAT-BID
entered PC3 cells, and whether a meaningful amount
of recombinant BID appeared in the cells under condi-
tions that not significantly influences their viability.
Relatively short drug treatment is necessary for activa-
tion of early stages of apoptosis by TRAIL [47] and
CPT [48]. We observed this phenomenon also in our
experimental system where treatment with TRAIL for
1 h or with CPT for 2 h followed by incubation in a
TRAIL- and CPT-free medium was enough to induce
apoptosis detected after 24 h in all tested cancer cell
lines (not shown). Therefore, to control increase in
BID level, we examined the amount of TAT-BID taken
up by the cells during the first two hours. We found
that TAT-BID alone did not influence viability of
PC3 cells by more than 10% within the range of
concentrations used in this work, i.e. up to 40 pg/ml
(Figure 2A). Therefore, we examined a dose depend-
ence of transportation of TAT-BID within the range of
0 — 40 pg/ml.

TAT-BID was taken up by PC3 cells in a time-
dependent (Figure 2B) and a dose-dependent manner
(Figure 2C). When the amount of TAT-BID was related
to the level of endogenous BID, an amount of cellular
BID increased under standard conditions of the treat-
ment (30 pg/ml for 120 min) by about 65%. Taking into
account the estimated level of endogenous BID in PC3
cells as 16.0 + 4.4 fg/cell, the final level of cellular BID
increased due to the treatment up to about 25 fg/cell.
Both mutated TAT-BID were taken up in a similar
extent as the wild type protein.
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TAT-BID sensitizes PC3 cells to apoptosis

We asked next whether increase of the cellular level of
BID achieved due to controlled delivery of the protein
resulted in increased sensitivity of PC3 cells to apoptosis
induced by TRAIL. We found that TAT-BID increased a
number of apoptotic cells that appeared after TRAIL
treatment (Figure 3A-E). Such a picture was observed at a
TRAIL dose that alone increased a number of apoptotic
cells only by about 5 - 10% percent (Figure 3A; see also
Additional file 1: Figure S1A). TAT-BID elevated this
number by about 15 — 20 percentage points (Figure 3A)
and this increment was relatively stable for higher concen-
trations of TRAIL (not shown). If calculated number of
apoptotic cells was reduced by number of these cells
present in the culture under control conditions at low
concentrations of TRAIL, sensitization of PC3 cells by
TAT-BID resulted in two- threefold increase of apoptosis
as compared to cells treated with TRAIL alone (Figure 3A).
Pro-apoptotic effect of combined treatment with TAT-BID
and TRAIL can be observed on microscope pictures
(Figure 3F-I). Increase of the amount of apoptotic cells
upon combined TAT-BID + TRAIL-treatment of PC3
cells, as compared to cells treated with TRAIL alone,
was also observed as a decrease in viability of the cells
(MTT test) (Figure 4A).

Cytotoxicity of TAT peptide has been repeatedly ex-
amined and it was found to be low e.g. [49]. However,
we would like to know whether the effects described
above resulted from participation of recombinant BID in
apoptosis and not from any unspecific action of TAT-
BID fusion. To this end we used TAT fused with D60E
mutant of TAT-BID that is not cleaved by caspase 8
[43]. We observed that TAT fused with inactive BID
(TAT-BID®%F) was ineffective in sensitizing PC3 cells to
TRAIL (Figure 4B), in spite of the fact that it entered
into the cells (Figure 4C) in amounts similar to those of
active protein. This indicates that cleavage of BID by
caspase 8 [13] is a necessary prerequisite for effective
action of TAT-BID.

The unphosphorylable mutant TAT-BID™*?45764 was
similarly effective as the wild type TAT-BID in sensitization
of PC3 cells to TRAIL (Figure 4A). This indicates that
phosphorylation of BID by CK2 suggested to prevent BID
from immediate cleavage by caspase 8 [22] is not a limiting
factor for efficacy of TAT-BID in PC3 cells.

BID is active not only in apoptotic signaling between
death receptors and mitochondria [6,13] but it also plays
a role in the DNA damage response [17,27]. Therefore,
we asked next whether TAT-BID supported the latter
apoptotic pathway in PC3 cells. To examine the effect
of delivery recombinant BID on apoptosis induced by
DNA damage we used CPT. The cells were sensitized
by TAT-BID to CPT at the statistically significant level
(Figure 4D); however, the effect was lower for CPT than
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Figure 2 Uptake of TAT-BID by PC3 cells. A. Effect of different doses of TAT-BID on PC3 cells viability. Viability of cells treated with TAT-BID for
24 h was measured by MTT test. The average of cells viability (+SD) was shown. B. Time-dependence of the uptake of TAT-BID by PC3 cells. TAT-BID
was added to the medium at a concentration of 30 ug/ml. C. Dose-dependence of TAT-BID uptake by PC3 cells. Different doses of TAT-BID were added

to the medium for 120 min. TAT-BID and endogenous BID were identified in cell extracts using anti-BID antibodies. GAPDH was used as a loading
control. Uptake was expressed as increase in cellular BID (endogenous level of BID was 100%).
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for TRAIL used to induce apoptosis (compare Figures 4A
and D). The mutant TAT-BIDT**4/5764 was similarly
effective as the wild type TAT-BID in sensitization of
PC3 cells to CPT.

TAT-BID improves activation of the mitochondrial
pathway in PC3 cells

We also liked to know whether delivered TAT-BID was
used in the cells to improve the mitochondrial cell death
pathway. A critical event in the mitochondrial pathway
is cytochrome c release [6]. Thus, we examined the
effect of TAT-BID on TRAIL-induced cytochrome c
release. We observed significant decrease of the amount
of cytochrome c in mitochondrial fraction after combined
TAT-BID + TRAIL treatment as compared to TAT-BID or
TRAIL administered alone (Figure 5). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), commonly used as a
load control because of its stable level, has been reported
to accumulate in mitochondria of some cancer cell lines
upon induction of apoptosis, and to participate in release
of pro-apoptotic proteins from mitochondria [50]. If such
a process occurred in PC3 cells, it was not detected by
applied methods. However, regardless of whether it
occurred or not, the cytochrome ¢/GAPDH ratio well
illustrates activation of mitochondrial cell death path-
way because both release of cytochrome ¢ and putative
accumulation of GAPDH are thought to participate in

the pathway, and both alter cytochrome c¢/GAPDH
ratio in the same direction. As it can be seen on Figure 5,
the ratio was only slightly affected by TAT-BID, more ser-
iously by TRAIL acting alone, and it dramatically dropped
when TAT-BID was administered together with TRAIL.

TAT-BID selectively sensitizes other cell lines to TRAIL
The next question we liked to answer was whether TAT-
BID sensitized other cancer cell lines to TRAIL similarly
as it was observed for PC3. The prostate cancer cell line
LNCaP is TRAIL resistant [51]. However, another TRAIL-
resistant non-small human lung cancer A549 cell line [52]
has been shown to get TRAIL sensitivity upon expression
of BID from pDNA vector [8,11]. Therefore, we tested
ability of TAT-BID to sensitize both initially insensitive cell
lines to TRAIL. We also used TRAIL-sensitive cervix
carcinoma HeLa cells [52]. Estimated levels of endogen-
ous BID in examined cancer cell lines varied from about
10 fg/cell for LNCaP to about 35 fg/cell for A549 cells
(Figure 6A).

Although TAT-BID entered into all examined cells, the
taken amount was different for particular cell line and
did not depend simply on the level of endogenous BID.
The amount of TAT-BID that entered cells was the high-
est in LNCaP cells, moderate in A549 and low in HeLa
cells. When the amount of TAT-BID was related to the
level of endogenous BID, a standard treatment with
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TAT-BID (30 or 40 pg/ml for 120 min) resulted in in- lines (Figure 6A), one could calculate that after TAT-
crease of the amount of cellular BID by 100% for LNCaP,  BID treatment total amount of BID was within the range
60% for A549 and 20% for HeLa cells (Figure 6B, D, F). 20 — 25 fg/cell for LNCaP and HeLa cells, and about
Taking into account levels of endogenous BID in the cell 60 fg/cell for A549 cells.



Orzechowska et al. BMC Cancer 2014, 14:771
http://www.biomedcentral.com/1471-2407/14/771

(TAT-BID - + -+
TRAIL - - + +

Cytochrome ¢
GAPDH

0.5

cytochrome ¢ / GAPDH

0-

— T

TAT-BID

TRAIL

control TAT-BID+TRAIL

Figure 5 Effect of TAT-BID on cytochrome c release from
mitochondria of PC3 cells treated with TRAIL. Cells were treated
with TAT-BID or TRAIL (or both) for 4 h. Cytochrome ¢ and GAPDH
were identified in mitochondrial extracts using specific antibodies.

Similarly as in the case of PC3 cells, TAT-BID did not
influence viability of remaining cell lines by more than
10%, at least up to the dose of 40 pg/ml (Additional file 2:
Figure S2). TRAIL administered alone at the dose of
100 ng/ml affected viability of neither A549 nor LNCaP
cells by more than 5% (Additional file 1: Figure S1B, C).
In the latter case, no significant changes in cell viability
were observed at concentration as high as 1000 ng/ml.
On the contrary, at the TRAIL dose of 100 ng/ml
TRAIL alone decreased HeLa cells viability by about
40 - 50% (Additional file 1: Figure S1D).

To compare effects of TAT-BID on different cell
lines, we generally used the dose of 100 ng/ml TRAIL
(Figure 6C, E, G). At this dose the effect of TAT-BID
on sensitivity of LNCaP was not statistically significant
(Figure 6C). Neither was it observed at higher TRAIL
doses, up to 500 ng/ml (not shown). A549 cells were
sensitized by TAT-BID to TRAIL similarly as PC3 cells
(Figure 6E). HeLa cells were only slightly sensitized to
TRAIL (Figure 6G). Increase of concentration of TAT-
BID in the medium up to 50 pg/ml did not change a
picture presented on Figure 6C, E, G (not shown).
Similarly as it was observed for PC3 cells, unphosphor-
ylable mutant TAT-BID'**A/576A sensitizes neither
A549 nor HelLa cells to TRAIL better than the wild
type TAT-BID. It was also ineffective towards LNCaP
cells (not shown). None cell line other than PC3 was
sensitized by TAT-BID to CPT.

Discussion

The main finding of this work is that direct delivery of
recombinant BID fused with the TAT cell penetrating
peptide allows for controlled sensitization of cancer cells
to apoptosis induced by TRAIL and CPT. Its results are
primarily relevant to potential use of recombinant BID
directly delivered to cells in anticancer therapy; however,
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the work clarifies also some points concerning function-
ing of BID in different cancer cells.

Importance of BID for apoptosis has been reported for
several cancer cell lines that became either more sensi-
tive to apoptosis after expression of BID or more resist-
ant to it after silencing expression of the protein [8-11].
Those reports raised also a question of therapeutic po-
tential of the overexpressed BID that would act alone
[8,10] or combined with chemotherapy for cancer cells
[11]. However, to confine effects of extra BID only to
cancer cells it has to be applied in low amounts, not
enough to kill the cells but rather to sensitize them to
agents that induce apoptosis. The system described in
this paper fulfills this condition because direct delivery
of TAT-BID allows for stringent control of the amount
of BID in particular type of cancer cells. As an alterna-
tive to expression from DNA vectors, cell penetrating
peptides offer fast, efficient and dose-dependent trans-
port of proteins required for their therapeutic use [31].
Such characteristics was observed in this work for TAT-
BID uptake (Figures 2 and 6) and thus pointed to the
potential of BID fused with TAT as a therapeutic strategy.

The results presented here show that TAT-BID sensi-
tizes PC3, A549 and to very low extent HeLa cells to
apoptosis induced by TRAIL, but it fails to sensitize
LNCaP cells. Looking for explanation of this picture we
firstly analyzed transportation of TAT-BID into cells.
Different cell lines do not show the same efficiency of
the uptake of cell penetrating peptides conjugates [53].
It was also observed by us that transportation occurred
with different efficacy in particular cell lines: it was high
for LNCaP cells, slightly lower for PC3 and A549 cells
and very low for HeLa cells. In the latter case poor
transportation of TAT-BID correlated with low detect-
able sensitization of HeLa cells to TRAIL although a
cause and effect relationship between the two phenom-
ena was not proved here. However, transportation into
cancer cells has to be considered as a factor that could
influence therapeutic use of TAT-BID. Another question
to be answered was why TAT-BID overcame TRAIL
resistance of A549 but not LNCaP cells, despite of satis-
factory transportation of TAT-BID into cells of both cell
lines. As concerns the first cell line, this is in agreement
with previous findings that expression of BID from
pDNA expression vector sensitizes A549 cell to apop-
tosis induced by TRAIL [8,11]. It seems probable that
different effects of TAT-BID on LNCaP and A549 result
from different sites at which defects in TRAIL-induced
signaling are localized. In LNCaP cells the signaling is
impaired upstream of BID at the stage of c-FLIP [51,54],
whereas in A549 cells downstream of BID at the stage of
Bcl-2 that is overexpressed in these cells [55,56]. In the
latter case total amount of cellular BID necessary to
make A549 cells sensitive to TRAIL was significantly
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higher than that effective in PC3 cells (Figures 2 and 6).
Since Bcl-2 sequesters active tBID and this way prevents
cells from killing [19], it is probable that more BID is ne-
cessary in A549 than in PC3 cells to start apoptosis. The
above observation also indicates that estimation of a
level of endogenous BID cannot be a prediction of sensi-
tivity of cancer cells to TAT-BID.

We showed here that TAT-BID sensitized PC3 cells to
apoptosis induced by DNA damage introduced by CPT
(Figure 4D) although sensitization to CPT was clearly
weaker than that to TRAIL. The question was why PC3
but not any other cell line examined in this work was
sensitized to CPT by excess of BID. The pronounced de-
terminant of PC3 making them distinct from other cells
used here is lack of active p53 [57] that mediates main
cellular response to DNA damage. It might be thus
thought that p53-indepentent apoptosis following CPT-
induced DNA damage in PC3 cells was more prone to
BID level than that activated in cells containing active
p53. A functional connection between BID and p53 has
been shown in HCC cells [17]. It has also been shown
that cells of HCC line bearing mutated inactive p53 are
sensitized by overexpressed BID to DNA damage intro-
duced by etoposide [28] to the extent similar to that ob-
served here for PC3 cells sensitized by TAT-BID to CPT.

Although direct comparison of CK2 activity in all four
cell lines studied here has not been done, several reports
provide evidence for elevated activity in each case
[22,24,58]. However, our results indicated that CK2-
mediated phosphorylation neither influenced efficacy of
TAT-BID delivered to PC3 and A549 nor contributed to
lack of effect of TAT-BID on LNCaP and to poor
sensitization of HeLa cells. Therefore, sensitization of
cancer cells to apoptosis based on substitution of BID by
its unphosphorylable analogue does not seem to be bet-
ter strategy at least for cancer lines studied in this work.

TAT is not specific to cancer cells and additional
mechanisms have to be employed to restrict sensitization
made by TAT-BID to tumors. An obvious solution is a
combined treatment including TAT-BID and an antican-
cer drug that is cancer cells-specific. This is a case of
TRAIL that induces apoptosis in cancer but not in normal
cells [15], and that has been shown here as effective
against PC3 and A549 cells if combined with TAT-BID.
Another possibility is to fuse TAT-BID with additional
cassette that restricts its action to tumor cells. Such a
cassette is ODD domain [59] that accelerates degradation
of the fusion protein under normoxia, whereas the fusion
protein remains stable under hypoxia conditions, i.e.
inside tumors. Results of our ongoing investigations
indicate that TAT-BID collaborate well with ODD cas-
sette. These preliminary results show that enrichment
of TAT-BID in additional targeting cassette is a promis-
ing way to improve its specificity to cancer cells.
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Conclusions

In summary, our results indicate that recombinant BID
fused with TAT peptide may be delivered to cells in
controlled manner so that it is not toxic but it sensitizes
cancer cells to apoptosis. The results point to possible
therapeutic potential of BID fused with TAT for cancer
treatment. If applied to cell cultures, controlled delivery
of BID allows for simple examination of sensitivity of
different cancer cells to BID-based therapies and of effi-
cacy of different agents in the treatment combined with
BID. The findings presented here indicate that PC3 and
A549 cells are good targets for TAT-BIB, and that TRAIL
is particularly effective if combined with TAT-BID.

Additional files

Additional file 1: Figure S1. Effect of TRAIL on viability of the used
cell lines. Viability of cells was measured by MTT test. The average of
cells viability (SD) is shown. Red — 100 ng/ml; blue - 500 ng/ml;
black = 1000 ng/ml.

Additional file 2: Figure S2. Effect of TAT-BID on viability of LNCaP,
A549 and Hela cells. Viability of cells treated with TAT-BID for 24 h was
measured by MTT test. The average of cells viability (£SD) is shown.
Pink — LNCaP; yellow — A549; green — Hela cells.
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