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Abstract: Open innovation initiatives provide opportunities for collaboration and sharing of knowl-
edge and experience between industry, academia, and government institutions. Through open inno-
vation, Merck is offering a Mini Library of 80 carefully selected compounds from previous research
and development projects to a broader scientific community for testing in academic drug discovery
projects. These compounds are predominantly drug-like and cover a broad range of molecular targets.
They could potentially interact with other enzymes, receptors, transporters, and ion channels of
interest. The Mini Library was tested on seven in-house enzymes (bacterial MurA, MurC ligase, and
DdlB enzyme, human MAO-A/B, human BChE, and murine AChE), and several hits were identified.
A follow-up series of structural analogues provided by Merck gave a more detailed insight into the
accessibility and the quality of the hit compounds. For example, sartan derivatives were moderate
inhibitors of MurC, whereas bisarylureas were potent, selective, nanomolar inhibitors of hMAO-B.
Importantly, 3-n-butyl-substituted indoles were identified as low nanomolar selective inhibitors of
hBChE. All in all, the hit derivatives provide new starting points for the further exploration of the
chemical space of high-quality enzyme inhibitors.

Keywords: Merck Mini Library; screening; MurA; MurC; human MAO-A/B; human BChE; murine AchE

1. Introduction

Pharmaceutical companies and academic research groups often begin their small
molecule drug discovery programs by screening compound libraries against biological
targets to identify hit compounds that are, subsequently, optimized for potency, physic-
ochemical, and ADMET properties [1–3]. Roughly, more than 16 million compounds are
available from commercial vendors [4], and large pharmaceutical companies also have
internal screening libraries assembled from several million compounds from previous
projects [5]. Despite the development of several alternative approaches to drug design,
such as virtual screening [6], the fragment-based hit-to-lead design [7], DNA-encoded li-
braries [8], and others, high-throughput screening (HTS) remains the most effective method
for discovering hits and leads [5]. HTS has served as the starting point for numerous ap-
proved drugs [9], such as sitagliptin (DPP IV inhibitor) and rivaroxaban (factor Xa inhibitor).
However, two features are critical to the success of a compound library screening: a robust
and sensitive biochemical assay against the essential biological target and the quality of
the compound library [10]. The most important features that determine the quality of the
screening library are size, structural diversity, novelty, purity, and pharmaceutical proper-
ties, i.e., lead and/or drug-like properties [5]. In addition, problematic compounds, such as
frequent hitters, reactive moieties, or redox-cycling compounds, should be identified and
eliminated [10,11].

Drug repurposing is a promising approach to rapidly find new therapeutic options for
existing drugs [12]. Hits derived from approved drugs have a significant advantage in the
drug optimization process, as a considerable amount of biological data is already available.
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As part of the open innovation initiative, Merck offers a curated Mini Library of compounds
to a broader scientific community that can be tested in biochemical and cell-based assays
to identify hits with novel and promising biological activities [13]. Therefore, the Mini
Library was assayed against several in-house targets: bacterial MurA, MurC, and DdlB
ligases, human butyrylcholinesterase (hBChE), murine acetylcholinesterase (mAChE), and
human monoamine oxidases A and B (hMAO-A/B).

Briefly, MurA, MurC, and DdlB ligases are essential bacterial enzymes involved in
the cytoplasmic steps of bacterial cell wall biosynthesis [14]. Despite the extensive knowl-
edge of their enzyme kinetics, catalytic mechanisms, and available crystal structures, these
enzymes are underutilized as antibacterial targets [15]. On the other hand, BChE, AChE,
and MAO-A/B are well-validated targets for neurological disorders, such as Alzheimer’s
disease, Parkinson’s disease, and depression, for which several drugs have already been ap-
proved [16–19]. However, recent findings from biological and longitudinal clinical studies
are expanding the therapeutic applicability of ligands targeting the above enzymes to other
neurodegenerative, cardiac, and malignant diseases [20–24]. The lack of effective ligands
against bacterial enzymes and the emerging therapeutic options for the human enzymes
described above prompt further drug discovery efforts to find new, well-characterized
ligands with desired pharmacological activities.

2. Results and Discussion

Merck’s Mini Library is part of the open innovation initiative, and contains drug-like
compounds from former Merck Biopharma research and development projects. Most of
these compounds have been well-characterized in vitro and in vivo against their primary
targets and toxicologically evaluated to rule out toxic compounds. In addition, clinical data,
such as human pharmacokinetics and human safety, are available for certain ligands.

Initially, 80 compounds from Merck’s Mini Library were tested at a concentration
of 100 µM against the bacterial enzymes MurA, MurC, and DdlB, and at a concentration
of 10 µM against the remaining enzymes, i.e., hBChE, mAChE, hMAO-A, and hMAO-B
(Supporting Information, Table S1). Results were expressed as residual activities (RAs) at
the indicated compound concentration. Three compounds showed a moderate inhibition
of MurA, three sartan derivatives inhibited MurC, four compounds were active against
hBChE, three against mAChE, and only two inhibited hMAO-B. No active compounds were
found against DdlB and hMAO-A. To determine the IC50 values and to explore the chemical
space around the active ligands, Merck secured sufficient amounts of active compounds
and their structural analogues.

Salicylic acid analogues have been described as potent and selective inhibitors of glomeru-
lar epithelial protein-1 [25], which plays an important role in controlling the chemotaxis of
various types of leukocytes. In our screening campaign, they were identified as inhibitors of
the bacterial enzymes MurA, mAChE, and hBChE (Figure 1, Tables 1 and S2). In general, the
compounds inhibited mAChE in the nanomolar range, and MurA was inhibited with IC50
values in the low micromolar range. The substitution of the hydroxyl group with fluorine
did not affect the inhibitory potency on both MurA and mAChE (MS-ML24 vs. MS-ML26).
The introduction of an amide bond also did not alter the inhibitory potencies to a signifi-
cant extent (MS-ML24 vs. MS-ML25). The preferred substitution at the diphenylacetylene
moiety was a linear alkyl chain, i.e., n-butyl, while the alkyl substituent at the amine/amide
did not affect the observed activities. Unfortunately, these compounds did not show clear
structure–activity relationships (SARs) against any of the targets, which was also reflected
in higher Hill coefficients (>1.5), which could also indicate a nonspecific inhibition due
to the highly lipophilic chemical structure, leading to poor solubility in the micromolar
concentration range [26]. In addition, the presence of negatively charged moieties—i.e.,
carboxylic acids—is not optimal for permeation through the blood–brain barrier, which
is a prerequisite for target enzymes located in the central nervous system (i.e., AChE and
BChE), making salicylic acid analogues of no major interest for further development as
cholinesterase inhibitors [27].
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Table 1. In vitro inhibitory potencies of salicylic acid analogues against MurA, mAChE, and hBChE.

Compound
MurA mAChE hBChE

RA a (%) IC50 (µM) RA b (%) IC50 (nM) RA b (%) IC50 (nM)

MS-ML24 0 7 ± 3 1 294 ± 25 9 949 ± 46
MS-ML25 0 6 ± 2 3 485 ± 79 55 /
MS-ML26 0 7 ± 4 8 275 ± 60 57 /

1 0 No clear dose-dependency 2 1200 ± 50 100 /
2 64 / 99 / 100 /
3 58 / 100 / 100 /
4 14 102 ± 15 100 / 100 /
5 0 7 ± 3 2 1100 ± 100 16 2400 ± 200
6 0 27 ± 7 13 4800 ± 1300 95 /

7 100 / 19 682 ± 86 45 19,700 ± 10,000
c

8 0 14 ± 5 22 368 ± 52 71 /
9 10 91 ± 13 52 1800 ± 450 80 /

Fosfomycin 0 0.24 ± 0.02 / / / /
Tacrine 0 106 ± 10 0 12 ± 3

a RA was determined at 100 µM; b RA was determined at 10 µM. c Poor solubility, estimated IC50 value.

4,5-Dihydro-4-oxo-3H-imidazo[4,5-c]pyridine derivatives are nonpeptide angiotensin
II receptor antagonists. This class of compounds, named sartans, is widely used in clinics
for the treatment of hypertension and heart failure [28–30]. The follow-up sartan derivatives
were assayed at 100 µM against MurC, and the IC50 values were determined for compounds
showing RAs below 50% (Table 2). Most sartan analogues inhibited MurC in a micromolar
concentration range, with IC50 values of approximately 100 µM. Variously substituted benzyls
were well-tolerated at position five of the 3,5-dihydro-4H-imidazo[4,5-c]pyridin-4-one core,
whereas the introduction of the acyclic tert-butyl moiety was not tolerated and resulted in the
loss of MurC inhibition (compounds 15 and 17). To further explore the SARs of the sartan
analogues against MurC, a larger number of compounds would need to be tested.

The Mini Library screening identified two structurally distinct classes of hMAO-B
inhibitors (Tables 3 and S3). Heterocyclic-substituted bisarylureas were patented by Merck
as kinase inhibitors; notably, these compounds inhibit the VEGF-stimulated mitogenesis of
human vascular endothelial cells [31]. In addition, triazaindolizines have been patented as
inhibitors of methionine aminopeptidase 2 [32]. Several bisarylureas inhibited hMAO-B in
the low micromolar to submicromolar range, and small structural changes resulted in large
differences in inhibitory potencies. For example, the introduction of N-methylacetamide on
the pyridine ring resulted in the complete loss of activity, whereas the replacement of the
pyridine moiety with aminopurine (22) or the complete removal of the pyridine to obtain
p-aniline analogue 23 resulted in equipotent inhibitors. The introduction of substituents on
the pyridine ring, e.g., N,N-dimethylethyl (27) or piperidine-1-ethyl (28), resulted in active
compounds. Only triazaindolizine MS-ML31 with the phenyloxypyridinyl fragment inhib-
ited hMAO-B (Table 3). The replacement of phenyloxypyridine with substituted quinolines,
(tetrahydro)isoquinolines, and phenyls completely abolished hMAO-B inhibition (Table S3).
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All compounds were inactive against hMAO-A, indicating that bisarylureas were selective
hMAO-B inhibitors.

Table 2. In vitro inhibitory potencies of sartan derivatives against MurC.
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Table 2. Cont.

Compound R1 R2 X
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Table 3. Cont.
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and most of them were selective hBChE inhibitors. Indole and tryptophan derivatives are
known hBChE inhibitors and have also been extensively studied in our group as promising
pharmacological tool molecules and lead compounds for the treatment of Alzheimer’s
disease [34,35].

Table 4. In vitro inhibitory potencies of indoles against hBChE and mAChE.
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Table 4. Cont.
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solutions (4.6 mg/mL in 10 mM MES-NaOH buffer, pH 6.5) in a sodium phosphate-
buffered solution (0.1 M, pH 8.0). Reactions were performed in 0.1 M phosphate-buffered 
solution, pH 8.0, containing 370 µM 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), 500 µM 
substrate (butyrylthiocholine and acetylthiocholine for hBChE and mAChE, respectively), 
and 1 nM hBChE or 50 pM mAChE. The final organic solvent (DMSO) content was always 
1% (v/v). Reactions were initiated by adding the substrate to the enzyme and inhibitor, 
which were preincubated for 5 min. The increase in absorbance at 412 nm was monitored 
for 2 min using a microplate reader (Synergy™ H4 microplate reader; BioTek Instruments, 
Inc., BioTek Gen5 Data Analysis Software, version 2.9, Santa Clara, CA, USA). To 
determine the blank value (b), the enzyme solution was replaced by a phosphate-buffered 
solution. The initial velocity (v) was calculated from the slope of the linear trend obtained, 
with each measurement performed in triplicate. The inhibitory potencies were expressed 
as 𝑅𝐴 =  (𝑣𝑖 –  𝑏) (𝑣𝑜 –  𝑏),⁄  where vi is the velocity in the presence of the test compounds 
and vo is the control velocity in the presence of DMSO. Seven different concentrations of 
each compound were used for the IC50 measurements. IC50 values were obtained by 

0 70 ± 5 47% 15 ± 5

a RA was determined at 10 µM; * numbers represent the position of substituent on the indole ring.

3. Materials and Methods

Inhibitory activities were expressed as residual activities (RAs) in percent. IC50 values
were determined for the most potent inhibitors and were given as IC50 ± SEM. Compounds
were provided by Merck as 10 mM stock solutions in DMSO.

3.1. Inhibition of Mur Enzymes and DdlB

Inhibition of Mur enzymes was monitored with the colorimetric malachite green
method, which measured orthophosphate formed during reaction [36]. The mixtures with
a final volume of 50 µL contained:

MurA: 50 mM HEPES-NaOH, pH 7.8, 0.005% Triton X-114, 200 µM uridine-diphosphate-
N-acetylglucosamine, 100 µM phosphoenolpyruvate, purified MurA, and 50 or 100 µM of
each compound tested.

MurC: 50 mM HEPES-NaOH, pH 8.0, 5 mM MgCl2, 0.005% Triton X-114, 120 µM
L-Ala, 120 µM UDP-N-acetyl-muramic acid, 450 µM ATP, purified MurC, and 50 or 100 µM
of each compound tested.

DdlB: 50 mM HEPES-NaOH, pH 8.0, 5 mM MgCl2, 6.5 mM (NH4)2SO4, 10 mM KCl,
0.005% Triton X-114, 700 µM D-Ala, 500 µM ATP, purified DdlB, and 50 µM of each
compound tested.

All compounds were soluble in the assay mixtures containing 5% DMSO (v/v). After
incubation for 15 min (20 min for DdlB) at 37 ◦C, the enzyme reaction was terminated
by addition of Biomol® reagent (100 µL) and absorbance was measured after 5 min at
650 nm (Synergy™ H4 microplate reader; BioTek Instruments, Inc., BioTek Gen5 Data
Analysis Software, version 2.9, Santa Clara, CA, USA). All experiments were performed
in duplicate. Residual activities (RAs) were calculated in comparison to assays, where 5%
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DMSO replaced the compound, and IC50 values were determined by measuring the RAs at
seven different compound concentrations.

3.2. Inhibition of hBChE and mAChE

Enzyme solutions were prepared by diluting the concentrated enzyme stock solutions
(4.6 mg/mL in 10 mM MES-NaOH buffer, pH 6.5) in a sodium phosphate-buffered so-
lution (0.1 M, pH 8.0). Reactions were performed in 0.1 M phosphate-buffered solution,
pH 8.0, containing 370 µM 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB), 500 µM substrate
(butyrylthiocholine and acetylthiocholine for hBChE and mAChE, respectively), and 1 nM
hBChE or 50 pM mAChE. The final organic solvent (DMSO) content was always 1% (v/v).
Reactions were initiated by adding the substrate to the enzyme and inhibitor, which were
preincubated for 5 min. The increase in absorbance at 412 nm was monitored for 2 min
using a microplate reader (Synergy™ H4 microplate reader; BioTek Instruments, Inc.,
BioTek Gen5 Data Analysis Software, version 2.9, Santa Clara, CA, USA). To determine
the blank value (b), the enzyme solution was replaced by a phosphate-buffered solution.
The initial velocity (v) was calculated from the slope of the linear trend obtained, with
each measurement performed in triplicate. The inhibitory potencies were expressed as
RA = (vi − b)/(vo − b), where vi is the velocity in the presence of the test compounds
and vo is the control velocity in the presence of DMSO. Seven different concentrations
of each compound were used for the IC50 measurements. IC50 values were obtained by
plotting the residual enzyme activities against the applied inhibitor concentrations, fitting
the experimental data to the 4-parameter Hill equation:

Y =
Bottom + (Top− Bottom)

1 + 10((LogIC50− X)× Hill Slope)
(1)

where X is the logarithm of the inhibitor concentration, and Y is the residual activity. GraphPad
Prism 8.2.0 (GraphPad Software, San Diego, CA, USA) was used for the fitting procedure.

3.3. Inhibition of hMAO-A and hMAO-B

The effects of the compounds on hMAO-A and hMAO-B were investigated using
a fluorimetric assay, following a method previously described in the literature [37]. Recom-
binant human microsomal hMAO enzymes expressed in BTI-TN-5B1-4 baculovirus-infected
insect cells, horseradish peroxidase (HRP, type II, lyophilized powder), and p-tyramine
hydrochloride were purchased from Sigma Aldrich. 10-Acetyl-3,7-dihydroxyphenoxazine
(Amplex Red reagent) was synthesized as described in the literature [38].

Briefly, 100 µL of 50 mM sodium phosphate buffer (pH 7.4, 0.05% (v/v) Triton X-114),
containing the compounds and hMAO-A or hMAO-B, was incubated for 15 min at 37 ◦C in
a flat-bottomed black 96-well microplate protected from ambient light. After preincubation,
the reaction was started by adding final concentrations of 200 µM Amplex Red reagent,
2 U/mL HRP, and 1 mM p-tyramine hydrochloride. Resorufin production was quantified
based on the fluorescence produced (λex = 530 nm; λem = 590 nm) at 37 ◦C over a 20 min
period. For the control experiments, DMSO was used instead of appropriate dilutions of
the compounds in DMSO. For the determination of blank (b), the enzyme solution was
replaced by a phosphate-buffered solution. Initial velocities were calculated from the
obtained trend, with each measurement performed in duplicate. Specific fluorescence
emission to determine the final results was calculated after subtracting the blank activity (b).
Inhibitory potencies were expressed as RAs, and IC50 values were calculated as described
in the section “Inhibition of hBChE and mAChE” above.

4. Conclusions

Overall, compound library screening is a viable route to obtaining novel ligands
targeting underexploited proteins in the field of antibacterial agents or fully validated
enzymes that form the core of Alzheimer’s and Parkinson’s disease therapy. We performed
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a successful screening of Merck’s Mini Library on seven in-house enzymes, revealing sev-
eral hit compounds. Particular attention should be paid to validate the activity detected
in the screening phase and not to pursue hits with questionable activity. Salicylic acid
analogues fell into the latter category, while sartans, as moderate MurC inhibitors, needed
to be validated in secondary assays to confirm the clear SARs of these hits. On the other
hand, bisarylureas and indoles as selective, nanomolar hMAO-B and hBChE inhibitors,
respectively, in combination with Merck’s data on these derivatives (e.g., selectivity, pre-
clinical pharmacokinetics, and toxicology) [39–49], provided a solid foundation for the
further exploration of their activities. Further cell-based and in vivo rodent models of
neurodegenerative diseases should be used to reveal the true potential of hit compounds
as potential agents against neurodegenerative disorders.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27144484/s1, Table S1: In vitro inhibitory potencies of Merck’s
Mini Library against MurA, MurC, DdlB, mAChE, hBChE, hMAO-A/B; Table S2: Structures of
salicylic acid derivatives; Table S3: In vitro inhibitory potencies of triazaindolizines derivatives
against hMAO-B and hMAO-A.
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