
Data and text mining

PHi-C2: interpreting Hi-C data as the dynamic 3D genome

state

Soya Shinkai 1,*, Hiroya Itoga 1, Koji Kyoda 1 and Shuichi Onami 1,2,*

1Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan and 2Life Science

Data Sharing Unit, Infrastructure Research and Development Division, RIKEN Information R&D and Strategy Headquarters, Kobe

650-0047, Japan

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on May 7, 2022; revised on August 14, 2022; editorial decision on September 5, 2022

Abstract

Summary: High-throughput chromosome conformation capture (Hi-C) is a widely used assay for studying the three-
dimensional (3D) genome organization across the whole genome. Here, we present PHi-C2, a Python package sup-
ported by mathematical and biophysical polymer modeling that converts input Hi-C matrix data into the polymer
model’s dynamics, structural conformations and rheological features. The updated optimization algorithm for regen-
erating a highly similar Hi-C matrix provides a fast and accurate optimal solution compared to the previous version
by eliminating the factors underlying the inefficiency of the optimization algorithm in the iterative optimization
process. In addition, we have enabled a Google Colab workflow to run the algorithm, wherein users can easily
change the parameters and check the results in the notebook. Overall, PHi-C2 represents a valuable tool for mining
the dynamic 3D genome state embedded in Hi-C data.

Availability and implementation: PHi-C2 as the phic Python package is freely available under the GPL license and
can be installed from the Python package index. The source code is available from GitHub at https://github.com/soya
shinkai/PHi-C2. Moreover, users do not have to prepare a Python environment because PHi-C2 can run on Google
Colab (https://bit.ly/3rlptGI).

Contact: soya.shinkai@riken.jp or sonami@riken.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput chromosome conformation capture (Hi-C) quanti-
fies genomic DNA contacts in the three-dimensional (3D) conform-
ation of chromosomes across the whole genome (Lieberman-Aiden
et al., 2009). The processed data are typically combined into a ma-
trix as the population-averaged contact probability, which is
depicted as a two-dimensional (2D) heatmap (Kerpedjiev et al.,
2018; Robinson et al., 2018). The various 2D Hi-C patterns should
reflect the structural characteristics of the 3D genome organization.
However, since Hi-C data consist of a mass of snapshots of prox-
imal genomic DNA pairs due to chemical fixation, the outcome pic-
tures are mostly limited to static and averaged models. Meanwhile,
live-cell imaging has revealed that chromatin dynamically moves,
coupling with genome functions within living cells (Heun et al.,
2001; Nagashima et al., 2019). Therefore, biophysical modeling is
essential for developing a quantitative understanding of the gap be-
tween Hi-C data for fixed cells and information on chromatin dy-
namics for living cells.

In 2020, we released PHi-C software as Python codes designed
to decipher Hi-C data into polymer dynamics (Shinkai et al.,

2020b). PHi-C demonstrations output dynamic characteristics of
genomic loci and chromosomes, as observed in live-cell imaging
experiments, and allow Hi-C data to be interpreted as dynamic in-
formation on the 3D genome organization (Shinkai et al., 2020a).
However, although the reconstructed contact matrix from an input
contact matrix shows excellent agreement with the Pearson correl-
ation coefficient (PCC) of more than 95% (Shinkai et al., 2020c),
the optimization procedure, which is a core part of the PHi-C algo-
rithm, is a computational bottleneck; the iterative algorithm to re-
duce the cost function at every optimization step requiring several
days to obtain an optimal solution. At each step, a randomly
selected matrix element is slightly changed; moreover, all matrix ele-
ments are needed to calculate the cost function. This redundant
computational algorithm is inefficient. Furthermore, by defining the
cost function according to the logarithmic form during optimization
and interpolation for the null value of an input contact matrix,
PHi-C is not appropriate for every Hi-C matrix data.

To overcome these problems, we first found the mathematical
transformation between an input contact matrix and a set of param-
eters of our polymer model, and the forward and inverse transfor-
mations were in the invertible correspondence (Supplementary Note

VC The Author(s) 2022. Published by Oxford University Press. 4984

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(21), 2022, 4984–4986

https://doi.org/10.1093/bioinformatics/btac613

Advance Access Publication Date: 10 September 2022

Applications Note

https://orcid.org/0000-0001-6852-2751
https://orcid.org/0000-0001-5224-3811
https://orcid.org/0000-0001-9455-2153
https://orcid.org/0000-0002-8255-1724
https://github.com/soyashinkai/PHi-C2
https://github.com/soyashinkai/PHi-C2
https://bit.ly/3rlptGI
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/


S1). Then, we elucidated the mathematical concept of the optimiza-
tion and updated the optimization algorithm (Supplementary Note
S2). Benchmarks of the optimization calculations indicated that the
scores were improved in terms of both the speed and closeness be-
tween the input and optimal contact matrices (Supplementary Note
S3). In addition, we incorporated a rheology analysis (Shinkai et al.,
2020a) as a new function to convert Hi-C data into the spectrum of
the dynamic rheological properties along the genomic coordinate of
a single chromosome (Supplementary Note S4). Here, we present
PHi-C2 as a Python package, redesigned from the ground up with
additional new features. Additionally, we included a command-line
interface (CLI) for convenient application.

2 Implementation and benchmarks

PHi-C2 is implemented using the phic Python package, which
includes a suite of CLI subcommands under a top-level phic com-
mand namespace (Fig. 1). The input Hi-C file is the contact matrix
format extracted from the .hic file by Juicer and Straw (Durand
et al., 2016). First, the phic preprocessing command converts
the input into the normalized contact matrix data so that the diag-
onal elements are units based on the PHi-C polymer modeling the-
ory. Next, the phic optimization command outputs an optimal
matrix as the PHi-C polymer model parameter set. To visualize the
results of a reconstructed contact matrix and a contact probability
decay curve, we prepared the phic plot-optimization com-
mand. After the optimization procedure, users can calculate the
polymer model’s dynamics and structure sampling using the phic
dynamics and phic sampling commands, respectively. The out-
puts are .xyz and .psf format files, and visualization requires VMD
(Humphrey et al., 1996). Furthermore, to reveal the hierarchical
and dynamic 3D genome state embedded in the input 2D Hi-C pat-
tern, users can apply the phic rheology command and the three
consecutive commands (phic plot-compliance, phic plot-
modulus and phic plot-tangent) to visualize the rheological
analysis results. In addition, without introducing a Python environ-
ment in the user’s local platform, PHi-C2 can run on Google Colab,
where users can easily change parameters and check the results of
the plots along the workflow in the notebook.

As the optimization procedure is a core computational part of
PHi-C2, we benchmarked the performance for a 400�400-sized
input Hi-C matrix (chr1: 50–60 Mb, 25-kb bins) of mouse

embryonic stem cells (Bonev et al., 2017) (Supplementary Note
S3). First, the updated PHi-C2 algorithm improved the speed and
accuracy compared to that obtained using the previous PHi-C ver-
sion (Supplementary Fig. S3). By varying the optimization parame-
ters in terms of the initial values, learning rate, and stop condition,
we obtained optimal solutions with the PCC, r � 0:997, and
distance-corrected PCC (Bianco et al., 2018), r0 � 0:957, between
the input and optimized contact matrices (Supplementary Table
S2). All tests were finished in 30 min for an IntelV

R

XeonVR Gold
6154 processor (24.75 M Cache, 3.00 GHz) with IntelV

R

distribu-
tion for the Python environment and in 90 min for the Google
Colab environment.

Note that PHi-C2’s input contact matrix should be denser be-
cause all the null contact elements in a binning resolution are
regarded as zeros. However, the null element is not necessarily
equivalent to the zero value of the contact probability. Although
the null-value contribution has been eliminated when calculating
the cost function (Liu et al., 2021), PHi-C2 has not implemented
it. The iterative optimization process depends on the input ma-
trix size (Shinkai et al., 2020b), while 100�100–500�500 is a
good and practical input matrix size according to the genomic re-
gion of interest (Supplementary Table S3). Users need to appro-
priately adjust the binning resolution and genomic region for the
input.

3 Conclusion

We developed a Python package, PHi-C2, to analyze Hi-C matrix
data, including CLI subcommands for convenient manipulation. As
we reconsidered the mathematical framework and eliminated the
computational bottleneck of the previous version, the speed and ac-
curacy improved. Therefore, without a massive computational cost,
users can calculate the polymer dynamics, structural conformations,
and rheological features consistent with the input Hi-C data. The
easy installation from the Python package index and calculations
on Google Colab would help users reveal the physical features
embedded in Hi-C data.

Acknowledgements

We thank Dr M. Nakagawa for the critical feedback and helpful discussion

provided. We also thank Dr C. Wen for the helpful information on developing

the Google Colab notebook.

Funding

This work was supported by the Japan Society for the Promotion of Science

KAKENHI [18H05412, 20H05550 and 21H05763]; and the RIKEN BDR

Structural Cell Biology Project.

Conflict of Interest: none declared.

Data availability

The data underlying this article are available in the article and in its
online supplementary material.

References

Bianco,S. et al. (2018) Polymer physics predicts the effects of structural var-

iants on chromatin architecture. Nat. Genet., 50, 662–667.

Bonev,B. et al. (2017) Multiscale 3D genome rewiring during mouse neural de-

velopment. Cell, 171, 557–572.e24.

Durand,N.C. et al. (2016) Juicebox provides a visualization system for Hi-C

contact maps with unlimited zoom. Cell Syst., 3, 99–101.

Heun,P. et al. (2001) Chromosome dynamics in the yeast interphase nucleus.

Science, 294, 2181–2186.

Humphrey,W. et al. (1996) VMD—visual molecular dynamics. J. Mol.

Graph., 14, 33–38.

Fig. 1. Overview of the PHi-C2 pipeline and phic CLI commands. PHi-C2 analyzes

input Hi-C data as the contact matrix format extracted from .hic file by Juicer and

Straw (Durand et al., 2016). The updated optimization algorithm outputs an opti-

mal parameter set for the polymer model and depicts the optimal contact matrix.

Using the optimal parameters, users can calculate the polymer model’s dynamics,

structure sampling and rheology spectra, which are consistent with the input Hi-C

matrix

PHi-C2 4985

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac613#supplementary-data


Kerpedjiev,P. et al. (2018) HiGlass: web-based visual exploration and analysis

of genome interaction maps. Genome Biol., 19, 125.

Lieberman-Aiden,E. et al. (2009) Comprehensive mapping of long-range interac-

tions reveals folding principles of the human genome. Science, 326, 289–293.

Liu,L. et al. (2021) Extracting multi-way chromatin contacts from Hi-C data.

PLoS Comput. Biol., 17, e1009669.

Nagashima,R. et al. (2019) Single nucleosome imaging reveals loose genome chro-

matin networks via active RNA polymerase II. J. Cell Biol., 218, 1511–1530.

Robinson,J.T. et al. (2018) Juicebox.js provides a cloud-based visualization

system for Hi-C data. Cell Syst., 6, 256–258.e1.

Shinkai,S. et al. (2020a) Microrheology for Hi-C data reveals the spectrum of

the dynamic 3D genome organization. Biophys. J., 118, 2220–2228.

Shinkai,S. et al. (2020b) PHi-C: deciphering Hi-C data into polymer dynamics.

NAR Genom. Bioinform., 2, lqaa020.

Shinkai,S. et al. (2020c) Toward understanding the dynamic state of 3D gen-

ome. Comput. Struct. Biotechnol. J., 18, 2259–2269.

4986 S.Shinkai et al.


