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A major part of membrane function is conducted by proteins, both integral and peripheral. Peripheral membrane proteins
temporarily adhere to biological membranes, either to the lipid bilayer or to integral membrane proteins with noncovalent
interactions.The aimof this studywas to construct and analyze the interactions of the human plasmamembrane peripheral proteins
(peripherome hereinafter). For this purpose, we collected a dataset of peripheral proteins of the human plasmamembrane. We also
collected a dataset of experimentally verified interactions for these proteins. The interaction network created from this dataset has
been visualized using Cytoscape. We grouped the proteins based on their subcellular location and clustered them using the MCL
algorithm in order to detect functional modules. Moreover, functional and graph theory based analyses have been performed to
assess biological features of the network. Interaction data with drugmolecules show that ∼10% of peripheral membrane proteins are
targets for approved drugs, suggesting their potential implications in disease. In conclusion, we reveal novel features and properties
regarding the protein-protein interaction network created by peripheral proteins of the human plasma membrane.

1. Introduction

Since the completion of the human genome project in
2001 [1], the analysis of large datasets containing biological
information has risen in an unprecedented degree. One field
that has had a significant development in the last decade is
that of proteomics [2].The function andmolecular properties
of individual proteins have been studied extensively and
information collectedwas deposited in databases likeUniProt
[3]. But proteins scarcely ever act individually [4]. Large
molecular complexes, formed by interacting proteins, per-
formnumerous biological processes vital to the cell’s lifecycle.
Protein-protein interactions (PPIs) are an integral part of
virtually every process that takes place in the human cell [5].
These interactions can be permanent or transient, between
homooligomers or heterooligomers, and obligate or nonobli-
gate [6] and can be detected by experimental procedures [7].
Many high-throughput experimental methods are used for
the detection of interactions, such as yeast two-hybrid (Y2H)

[8], affinity purificationmass spectrometry (AP-MS) [9], and
protein chip technology [10]. Both low- and high-throughput
interaction data are deposited in public databases [11]. A
compilation of these databases can be found on Pathguide—
a meta-database of more than 190 biological pathways and
network databases [12]. From all these repositories, the
interaction databases most commonly used by the scientific
community are DIP [13], MINT [14], and IntAct [15, 16], the
main cofounders of IMEx [17], the International Molecular
Exchange Consortium. IMEx provides an expertly curated,
nonredundant set of molecular interactions from a network
of 10 collaborating major public interaction databases. IMEx
togetherwithHUPO-PSI (HUmanProteomeOrganization—
Proteomics Standard Initiative) [18] has defined the MIMIx
[19] (Minimal Information about a Molecular Interaction)
standard, which improves the quality of data and the cura-
tion of molecular interactions. Protein-protein interaction
networks (PPINs) may help us to have an insight of the
cell’s functions. In PPINs, proteins are represented by nodes
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and their interactions by edges in a graphical view. There
have been studies to explore human large-scale protein-
protein interaction networks [20]. The first efforts to create a
systematic map of protein-protein interactions was through
large-scale Y2H experiments [21] and, recently, efforts have
been made to map interactions through next generation
sequencing techniques [22]. These and other efforts are
combined in the Human Interactome Database [21–23].
Protein Interaction Networks can be of significant value in
the analysis of a protein dataset as theymay provide a comple-
mentary view of the biological pathways inwhich the proteins
participate and reveal aspects of their functions [24, 25].
However, missing and misleading information through false
negatives and false positives that are integrated via various
experimental approaches of protein interaction identification
can cause problems during the analysis of the results [24].

Membrane proteins are of central importance to the cell
as they take part in ion, metabolite, and macromolecule
transport across membranes; signal transduction; cell adhe-
sion; cell-cell communication; protein anchoring to specific
locations in the cell; regulation of intracellular vesicular
transport; control of membrane lipid composition, and the
organization and maintenance of organelle and cell shape
[26]. Membrane proteins can be distinguished based on their
association with the membrane: transmembrane proteins
span a biological membrane one or more times, lipid-
anchored proteins interact covalently with a fatty acid, which
anchors to themembrane, and peripheralmembrane proteins
associate with integral membrane proteins or/and the lipid
bilayer reversibly. Peripheral membrane proteins are indis-
pensable for the cell’s proper function as they have numerous
functions: from enzymes and electron carriers to polypeptide
ligands (like hormones, toxins, and inhibitors) and structural
domains [27]. In addition, they are as essential to membrane
structure as transmembrane proteins, as their arrangement
may affect the membrane conformation, stability, biological
activity, folding, and the binding of other biomolecules [27].
Peripheral proteins have been shown to have membrane
binding domains, a fact consistent with their role in signal
transduction and membrane trafficking [28]. These domains
are significant for the recognition of lipids and, thus, allow
these proteins to interact with the membrane. Peripheral
proteins have also been proposed as potential drug targets
mainly due to their interactions with membrane lipids [29].
Moreover, specialized membrane microdomains enriched in
sphingolipids and cholesterol, termed lipid rafts, compart-
mentalize cellular processes and can sometimes be stabilized
to form larger platforms through protein-protein interactions
[30]. The presence of peripheral membrane proteins in lipid
rafts can be of great importance, since proteins in these
components take part in endocytosis, transcytosis, signal
transduction, and receptor recycling among other important
cellular processes [31].

Having such a crucial role, membrane proteins are not
studied only as distinct units but as complexes too. Studies for
the construction of membrane protein PPINs have been con-
ducted in the past few years [32–34]; however, these studies
are not focused on human cellmembranes but onmembranes
of other organisms, prokaryotes [32] and eukaryotes [33] as

well. The aim of our study was to identify and analyze the
molecular interactions of peripheral membrane proteins in
order to obtain insights about their role across the human
plasma membrane.

2. Methods

2.1. Dataset of Peripheral Membrane Proteins. To collect
the dataset of human peripheral membrane proteins, a
search was conducted in UniProtKB/Swiss-Prot [3]. Proteins
that, in their subcellular location field, were experimentally
annotated as “peripheral membrane proteins” were collected.
Proteins with probable, potential, or by similarity confidence
regarding that fieldwere excluded from the set.These proteins
were grouped based on their presence in various organisms
and organelles, and a dataset of peripheral membrane pro-
teins from Homo sapiens that interact with the plasma mem-
brane was constructed. In addition, an extensive literature
search was performed in order to identify additional proteins
belonging to this category. The final dataset created includes
a total of 277 human peripheral membrane proteins of the
plasma membrane (Supplementary Table S1 available online
at http://dx.doi.org/10.1155/2014/397145).

2.2. Collection of Protein-Protein Interaction Data. Using the
Accession Numbers (ACs) collected from UniProtKB/Swiss-
Prot for the dataset of 277 peripheral membrane proteins,
a query was submitted in IMEx [17]. This query provided
a set of interactions for a subset of 249 proteins and only
protein interactions between human proteins were used,
excluding interaction data with viral proteins. This resulted
in a final dataset of 238 peripheral membrane proteins with
molecular interactions. The file containing the interactions
was formatted in MITAB 2.5 format [35], which describes
only binary interactions for one pair of interactors in each row
(Table S2). In addition to the network generated using IMEx,
a network using interactions deposited in IntAct [15, 16] was
created to exclude possible misleading results by low quality
interactions. IntAct uses a scoring system in which each
binary interaction pair is scored, by adding the value of a
weighted score for the interaction detectionmethodwith that
of the interaction type for each binary interaction [16]. For
this reason, all interaction data that originated from spoke-
expanded cocomplexes and with an IntAct MI-score lower
than 0.6 were filtered out (Table S3) in order to producemore
reliable protein-protein interaction datasets [36].

2.3. Visualization and Analysis of the Network. Cytoscape is
a well-established platform for the visualization of molec-
ular interaction networks and the integration of these
networks with annotations, gene expression profiles, and
other state data. Additional features are available as plug-
ins for Cytoscape. For the visualization of the network, both
Cytoscape 2.8.3 [37] and Cytoscape 3.0.0 were used, since
Cytoscape 2.8 offers a plethora of plug-ins not yet available
for Cytoscape 3.0, whereas the latter provides for several
novel and improved options. Cytoscape supports a lot of
standard network and annotation file formats and can work
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as aweb service client, since it can directly connect to external
public databases and import network and annotation data.
The dataset of interactions described above was visualized
based on the different properties of its proteins, such as their
subcellular location.

To perform a graph theory based analysis, the plugin
NetworkAnalyzer [38] for Cytoscape was utilized. Network-
Analyzer is a versatile anduser-friendly tool for the analysis of
biological and other networks. It can efficiently compute and
analyze a comprehensive set of topological parameters.These
parameters are stored as node attributes in the Cytoscape
data structure and, thus, visual mapping settings can easily
be applied to highlight any parameter on the network.
These parameters include the number of nodes, edges, and
connected components: the network diameter (the largest
distance between two nodes), radius (the minimum among
the nonzero eccentricities of the nodes in the network),
density (the density of the network’s population with edges),
centralization (the measurement that shows whether the
nodes of the network have on average the same connectivity
or a star-like topology), heterogeneity (shows the tendency
of a network to contain hubs), and clustering coefficient
(a measurement of a graph’s tendency to be divided into
clusters); the characteristic path length (the average number
of connections between nodes, which must be crossed in the
shortest path between any two nodes); and the distributions
of node degrees, neighborhood connectivities, average clus-
tering coefficients, and shortest path lengths. To investigate
the contribution of certain nodes to the network stability,
attacks were conducted by removing the nodes in descending
order of degree and calculating the characteristic path length
(CPL) of the network in each case. CPL is commonly used in
order to measure the network stability [39–41].

From the interaction data, all the 2374 interactors were
isolated, and for each protein in that set the subcellular
location was examined. All proteins were categorized based
on their subcellular location in the following categories:
cytoplasm (396), endomembrane system (182), lipid-anchor
(25), membrane (239), mitochondrion (143), nucleus (851),
peripheral (242), and secreted (228) including (39) extra-
cellular peripheral proteins. For proteins that could not be
categorized, 7 prediction algorithms (pTarget [42], TargetP
[43], WOLF-PSORT [44], BaCelLo [45], PredSL [46], Loc-
Tree2 [47], and GOASVM [48]) were used, in order to
include them in one of the categories described above, if
three or more algorithms agreed in their prediction. If the
subcellular location still could not be predicted, that field was
characterized as unknown (Table S4). Moreover, using data
described in [49], the presence of the network’s proteins in
lipid rafts was examined (Table S5).

Interactions with drugs for the peripheral membrane
proteins of the network were also collected, conducting a
search in DrugBank [50, 51].The 121 drugs collected were cat-
egorized in 31 categories according to the field “indications” as
described in theDrugCard, thus creating the layer of diseases.
The drugs were also classified in 28 groups based on the
drug category inwhich they belong (e.g., anticoagulants).The
network created by these data was visualized using Arena3D
[52, 53]. Arena3D uses staggered layers in 3D space, allowing

the user to group related data into separate layers, in this case,
the proteins, the drugs, and the indications/diseases. All data
from the drug association analysis are available in Tables S6
and S7.

2.4. Clustering and Functional Analysis of the Network. Clus-
terMaker is a Cytoscape plugin that implements several clus-
tering algorithms and provides network views of the results
[54]. It provides a clustering framework that allows the com-
putation and visualization of clusters inmultiple ways and the
interactive exploration of the results with various approaches.
From the algorithms provided, theMCL (MarkovClustering)
algorithm was chosen, in search of clusters that represent
macromolecular complexes in the cell [55]. The MCL algo-
rithm appears to be superior in comparison with other
clustering methods in detecting clusters in sets of high-
throughput interaction data [56, 57]. The clusters detected
were compared with known complexes found in the Mam-
malian Protein-Protein Interaction Database (MIPS) [58]
using the Comprehensive Resource of Mammalian protein
complexes (CORUM) [59] in order to detect possible novel
components of the known complexes. The data for protein
complexes deposited in CORUMaremanually annotated and
data from high-throughput experiments are excluded. For
the functional analysis of the network, two (2) online tools
that performGO term enrichment analysis (Gorilla [60]) and
GO slim classification (WebGestalt [61, 62]) were used. The
analysis was performed for two (2) different datasets: that of
the 238 peripheralmembrane proteins and, also, the complete
set of the network’s proteins, 2374 proteins totally, to study the
molecular functions and biological processes in which they
participate, as well as the cellular components in which they
are located. A set of all the network’s proteins from which the
peripheralmembrane proteins had been removedwas used as
a background set for the functional enrichment analysis of the
238 peripheral membrane proteins in order to examine their
function in the human plasma membrane peripherome. All
data derived from the clustering and the functional analyses
are available in Tables S8, S9, and S10. An FDR 𝑞-value of
1.00E-2 is used as a cut-off to select GO entries in Tables S9
and S10.

3. Results and Discussion

3.1. Collection of the Protein-Protein Interaction Data. As
mentioned above, from all the peripheral membrane proteins
that were collected, 249 were shown to have interactions in
IMEx. These proteins had 4336 interactions isolated from
all the databases participating in the consortium (DIP, I2D-
IMEx, InnateDB-IMEx, IntAct, MatrixDB, MINT, MolCon,
UniProt, and BioGRID) except MPIDB, which contains data
for microbial proteins and MBInfo, which is a specialized
database focusing on mechanobiological interactions. After
the removal of nonhuman proteins and their interactions,
2374 proteins, including 238 peripheral membrane proteins,
were shown to have 3445 interactions. We resubmitted a
query in IMEx for all 2374 proteins and resulted in a final
dataset of 16961 interactions between the 2374 proteins of
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our network. The 2374 proteins were the nodes and their
interactions were the edges that created the network, which
was later used in the analysis.The additional network created
using data gathered from IntAct consisted of high quality
interactions only having 691 nodes and 855 interactions
between them.

3.2. Analysis of the Network

3.2.1. Analysis of Network Structure Based on Graph Theory.
For a deeper understanding of the network’s functions, its
topological parameters were calculated. Topological param-
eters can be calculated for both directed and undirected
networks. In our case, the parameters were calculated for
an undirected network (see the method in Section 2.3). The
simple parameters that give certain information for the net-
work are the clustering coefficient (0.121), the characteristic
path length (3.260), the average number of neighbors (13.177),
the network density (0.006), and the network heterogeneity
(1.765). Moreover, the complex parameters were calculated in
order to obtain a better view of the network. Such parameters
are the node degree distribution and the average clustering
coefficient (Figure 1). By examining the network’s properties
one-by-one, interesting information can be obtained. Starting
with the network density, it was observed that it has a low
value (<0.1) [63].This is a characteristic often present inmany
biological networks and it has been argued that biological
networks are generally sparsely connected, as this confers
an evolutionary advantage for preserving robustness [64].
Another important measure is the clustering coefficient. In
random networks, the clustering coefficient is approximately
1/𝑁, where 𝑁 is the number of the nodes of the network
[65]. Biological networks have significantly higher clustering
coefficients compared to random ones—as is the case here—
which shows that cellular processes are executed by subsets of
molecules forming functional modules [64], as seen during
the MCL clustering process.

The understanding of the topology of a network can
give insights relevant to its biological significance. The basic
parameter that reveals the topology of a network is the node
degree distribution (Figure 2(a)). In our case, the distribution
is of the following form:

𝑃 (𝑘) = 1015.8𝑘

−1.383

. (1)

In scale-free networks, the probability 𝑃(𝑘) that a vertex
in the network interacts with 𝑘 other vertices decays as a
power law, following 𝑃(𝑘) ∼ 𝑘−𝛾—as is the case here—where
𝛾 is the degree exponent [66]. The value of 𝛾 determines
important properties of the network. In cases where the value
of 𝛾 < 2, the role of the hubs in the network becomes
more important, than in most cases where 2 < 𝛾 < 3 [67].
Biological networks are robust against random node failures,
but disruption of hubs (proteins with a large number of
links) often leads to system failure [68]. Scale free networks
have average path lengths significantly smaller than those of
random networks. To compute the average path length for

Figure 1: Visualization of graph theory parameters in the network of
the human plasma membrane peripheral proteins with 2374 nodes
and 16961 edges. The colour gradient is visualized based on the
clustering coefficient of each node. In darker colours are the nodes
with the higher clustering coefficients grading to lighter colours for
nodes with lower clustering coefficients. A size gradient is used to
map the node degree on the network’s proteins. Larger nodes are
indicative of nodes with higher degrees and smaller nodes of nodes
with lower degrees.

a random graph we used the formula introduced by Fronczak
et al. [69] as follows:

𝑙random =
ln𝑁 − 𝛾
ln ⟨𝑘⟩
+

1

2

, (2)

where 𝛾 = 0.5772 is Euler’s constant. For this case, the
average path length is 7.55, which is larger than 3.26—
the characteristic path length of the network. From these
data we can observe that the network has a scale-free
topology, where the hubs hold the network together [70].
Proteins with high node degrees (>30) are considered hubs
in the network. These proteins have various functions:
from receptors for GABA (UniProtKB AC:Q9H0R8) and
estrogens (UniProtKB AC:P03372) to structural proteins
like fibronectins (UniProtKB AC:P02751) and microtubule
associated proteins (UniProtKB AC:Q9H492), all important
for the sustention of the cell’s homeostasis and precise
function. For instance, knockout of the von Hippel-Lindau
tumor suppressor, a peripheral membrane protein (UniPro-
tKB AC:P40337), which is also a hub in our network, causes
prenatal lethality due to abnormalities in the morphology of
various organs during the development and organogenesis of
the embryo in mice [71–73].

As stated above, for random networks, the clustering
coefficient is𝐶 ∼ 1/𝑁, and, in this case,𝐶 ∼ 4.21 ⋅10−4 which
is very small compared to the clustering coefficient of the
network (0.121).This, combined with the fact that the average
path length of our network is small compared to that of a ran-
dom network, indicates a small-world network [74]. Small-
world networks can efficiently transmit information between
distant nodes (small path length), while simultaneously pro-
cess local information efficiently (high clustering coefficient)
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Figure 2: Charts for four complex topological parameters of the network of the peripheral proteins of human plasma membrane. (a) Node
degree distribution which decays as a power law and accentuates the scale-free properties of the network. (b) Average clustering coefficient
distribution. (c) Topological coefficient distribution. Both the average clustering coefficient and topological coefficient distributions indicate
that the network has a modular organization. (d) Betweenness centrality distribution. This distribution shows that proteins with high
betweenness centralities, which act as hubs, are few, compared to the rest of the proteins in the network. All the distributions shown above
are in log-log plots.

[75]. For example, in our network, a peripheral protein with
a high clustering coefficient and a small average path length
is the subunit sigma of AP-2 complex (AP2S1) (Figure S1).
This protein is part of the adaptor protein complex 2, which
functions as a protein transporter in different membrane
traffic pathways via transport vesicles and is involved in
clathrin-mediated endocytosis. This protein interacts in our
network with three (3) other proteins—epidermal growth
factor receptor substrate 15 (EPS15), growth factor receptor-
bound protein 2 (GRB2), and vascular cell adhesion protein
1 (VCAM1)—which take part in signal transduction and
cell-cell recognition. These proteins, in turn, interact with
510 other proteins in the network. This signifies AP2S1 as a
“bottleneck” and a very important protein for the network’s
normal function and subsequently the cell’s vitality. Its
removal would destroy many links between the 510 proteins
that are now connected. Interestingly, knockouts ofGRB2 and
VCAM1 lead to prenatal lethality in mice [76, 77]. Using data
collected from the Mouse Genome Database (MGD) [78],
we were able to characterize the hubs and bottlenecks of the

network as proteins encoded by essential (knockout of these
genes in mice produces lethal phenotypes) and nonessential
genes for the organism’s development (Table S11).We observe
that 52% of hubs in the network of the plasma membrane
peripherome and 25% of bottlenecks are essential proteins as
knockouts of their protein-coding genes results in abnormal
survival (lethality) inmice.More details about the top 10 hubs
and bottlenecks of this network are presented in Table S12.

To examine whether a protein shares interaction partners
with other nodes in the network, the topological coefficient
has to bemeasured [79].The topological coefficient decreases
with the number of links (Figure 2(c)), which is an indicator
that hubs in the network are as connected as the rest of the
network’s proteins, thus, suggesting that hubs in the network
are not clustered together. It also indicates, in compliance
with the clustering coefficient, that the network has amodular
organization [25].

The gradual removal of proteins present in lipid-rafts
and peripheral membrane proteins of the human plasma
membrane in descending order of node degree (“attacks”
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Figure 3:The effect of the gradual removal of selected (attacks) and
random (failure) nodes to the characteristic path length (CPL) of the
network. The removal (attack) of peripheral proteins of the human
plasma membrane and proteins located in lipid rafts based on their
node degree causes a more rapid increase of the characteristic path
length of the network compared to the removal of random nodes
(failure).

[41]) caused a more rapid increase in the characteristic path
length (CPL) of the network compared to the removal of the
same proportion of randomly selected nodes from the whole
network (commonly described as “failure” [41]) (Figure 3).
The increase in the network’s CPL shows the importance of
the removed proteins as mediators of intracellular commu-
nications, since the paths connecting the remaining nodes in
the network are longer (Table S13).This effect on the CPL for
peripheral membrane proteins and lipid raft related proteins
in the human plasma membrane peripherome indicates their
importance for the stability and proper function of this
cellular subnetwork.

The network structure and topology are similar for the
network created using only high-quality data present in
IntAct. 𝑃(𝑘) decays as a power law, following 𝑃(𝑘) ∼ 𝑘−𝛾
(𝑃(𝑘) = 474.7𝑘−2.036), the clustering coefficient of the net-
work is larger than that of a random network and the average
path length is smaller. The IntAct network has a scale-
free topology and small-world properties and the complex
parameters of this network have similar distributions to
those mentioned for the network created using data from
IMEx, thus, suggesting that the differences between the two
networks are not such to suggest that the presence of data
fromhigh-throughput experiments have a severe effect on the
networks topology and characteristics.

In order to further examine the characteristics of the
human plasmamembrane peripherome, we compared it with
the human protein interactome as presented in Klapa et al.
[80]. The human interactome has a node degree distribution
which decays as a power law (𝑃(𝑘) = 8755.8𝑘−1.648) with an
Euler’s constant (𝛾) less than 2, as is the case with the human
plasma membrane peripherome. In addition, the human
protein interactome has a small network density (0.001),
a small characteristic path length (3.691), and a clustering

coefficient of 0.127. These simple parameter values are all
similar to those of the peripherome and indicate that the
two networks share the same topological features. This is
consistent with the relevant “network biology” theory [67],
according to which the human protein-protein interaction
network and its subnetworks are expected to follow a scale-
free topology with few protein hubs and the majority of the
protein nodes having a small number of interactions.

3.2.2. Analysis Based on the Proteins’ Subcellular Location.
All the network’s proteins were categorized based on their
subcellular location (Figure 4). The main observation was
that peripheral proteins interact with proteins that have
multiple subcellular locations and are not mainly localized
in the plasma membrane as perhaps expected. Peripheral
membrane proteins of the plasma membrane constitute a
central node connecting the plasma membrane with the
entire cell, as they can detach themselves from themembrane
plane and interact with proteins with multiple subcellular
locations inside the cell.

Through this transient membrane association, they are
involved in protein transport and are essential for the reg-
ulation of vesicle transport [81]. This is indicative of the
central importance of the peripheral membrane proteins,
as they constitute a subproteome, pivotal for the cell’s
metabolism and function. Another observationmadewas the
preference of extracellular peripheral membrane proteins to
interact with transmembrane proteins and especially single-
pass transmembrane proteins of the plasma membrane. The
majority of single-pass transmembrane proteins belongs to
type I (proteins spanning the membrane once, with their N-
terminal on the extracellular side of the membrane and their
signal peptide removed) and is associated with the immune
system. This is consistent with the fact that the secreted
peripheral proteins are mainly associated with inflammatory
processes and so it is logical for these proteins to interact with
other proteins of the immune system like interleukins, anti-
gens, and cytokines. Approximately 50% of transmembrane
proteins of the human plasma membrane peripherome act
as receptors and almost a quarter of them present catalytic
activity (Table S15). Interestingly, 182 (ca. 8%) of proteins in
the human plasma membrane peripherome are located in
lipid rafts and 45% of them have catalytic activity while 29%
act as receptors. The distribution of the proteins amongst the
various subcellular locations is not affected by the removal
of “low quality” interactions—as shown through the analysis
of their distribution in the network composed from data
collected from IntAct (Table S14).

3.2.3. Analysis of Peripheral Membrane Proteins’ Interactions
with Drugs. From the data collected fromDrugBank [50, 51],
a correlation between drugs and diseases was made based
on the field “Indications.” Peripheral membrane proteins
and drugs interacting with them are associated mainly with
cardiovascular and blood associated diseases and cancer.
There are also a few proteins associatedwith asthma, arthritis,
and skeletal disease. It was observed that ca. 10% of the
peripheral membrane proteins in the plasma membrane are
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Figure 4: Proteins are grouped based on their subcellular location in the network of the human plasma membrane peripheral proteins. 1:
secreted proteins, 2:membrane proteins, 3: peripheral proteins, 4: cytoplasmic proteins, 5: nuclear proteins, 6: endomembrane systemproteins,
7: mitochondrial proteins, and 8: lipid-anchored proteins. The membrane proteins of organelles and the endomembrane system are forming
circles around the other proteins of the organelles. Proteins with unknown subcellular location are hidden in this view of the network.

targets for ca. 10% of approved drugs. But if the peripheral
membrane proteins are examined based on their subcellular
location the case is different, since 40% of extracellular
peripheral membrane proteins have interactions with at least
one drug. There is also a correlation of “drug category”
(as described in the Drugbank card) and the proteins’
subcellular locations: the majority of the drugs belong to
a category in which all of them interact with proteins that
are either in the cytoplasmic (e.g., drugs that belong to the
category of contraceptives) or the extracellular (e.g., drugs
that belong to the category of anticoagulants) side of the
plasma membrane. Interactors (Figure S2) are proteins in
the network, which interact with the peripheral proteins of
the plasma membrane that are associated with drugs (as
described above). These interactors are categorized—based
on their associationwith themembrane plane—to six distinct
categories: multipass transmembrane proteins, single-pass
transmembrane proteins, peripheral membrane proteins,
secreted proteins, intracellular proteins, and others. It was
observed that extracellular peripheral membrane proteins
interact mostly with single-pass transmembrane proteins
and secreted proteins. This was also observed for all the
extracellular peripheral proteins mentioned in the previous
section. A certain example for Alzheimer’s disease is given in
Figure S2, where the drugs associated with this disease, the
proteins connected with these drugs, and their interactors are
selected.

Even though the percentage of peripheral proteins inter-
acting with drugs seems small, we believe that these pro-
teins should be further studied as drug targets (e.g., as
antithrombotic agents) due to the statistical significance of
the presence of certain drug categories in the network—
the odds ratio is greater than 1.0 in 18 out of the 40 drug
categories inwhich drugs interactingwith peripheral proteins

of the human plasma membrane belong to (Table S17).
An additional disease enrichment analysis was carried out,
where the set of the 274 peripheral membrane proteins was
compared to the human genome.The results of these analyses
are similar to those of the analyses mentioned above, since
we observe an enrichment of cancer, cardiovascular, and
blood associated diseases along with inflammation and skin
associated diseases (Table S18).

3.2.4. Functional Analysis of the Network. From the GO
term slim classification it is apparent that the 2374 network’s
proteins take part in metabolic processes (especially protein
modification), biological regulation (especially intracellular
protein kinase cascade), apoptotic processes, and intracellu-
lar transport.The cellular components inwhichmost proteins
are located are the cellular membranes and the nucleus, a
fact additionally present in their categorization based on
subcellular location (Figure 4). As for the protein molecular
functions, all the network’s proteins take, mainly, part in pro-
tein (especially ubiquitin protein ligase and nuclear hormone
binding) and ion (ATP) binding and present catalytic activity
(protein kinase), but peripheral membrane proteins take part
in lipid binding to a much larger degree than the rest of the
proteins in the network.This is relevant with the fact that the
majority of peripheral proteins that interact directly with the
membrane have lipid binding domains [82].

More detailed results were gathered through the GO term
enrichment analysis conducted using GOrilla [60]. In the
results of the enrichment analysis, every biological process,
molecular function, and cellular component is associated
with certain proteins in the network and a 𝑃 value is given
to each association according to its significance (lower values
correspond to larger significance). Processes with fairly low
𝑃 values (10−10–10−6) for all the network’s proteins present in
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the results of the analysis were ATP synthesis coupled proton
transport, cholesterol efflux, and TAP-independent antigen
processing and presentation of exogenous peptide antigen via
MHC class I. However, only a small number of proteins is
associated with these processes (up to 1%), thus, implying
that they could belong to a certain cluster of the network
and that they are not representative of the process that the
whole network is conducting. Applying the same logic for
molecular function and cellular components, we were able to
isolate such examples like G-protein coupled amine recep-
tor activity, MHC class I receptor activity, and translation
factor activity for molecular function and triglyceride-rich
lipoprotein particle, clathrin adaptor complex, and AP-type
membrane coat adaptor complex for cellular components.
For the peripheral proteins in particular there was an evident
association with the plasma membrane and the cytoskeleton.
As noticed during the slim classification process as well,
peripheral proteins participate in lipid binding and especially
phospholipid binding and, regarding biological processes,
those showing an overrepresentation are the regulation of
signaling, cell communication, and phosphate metabolic
processes.

3.2.5. Network Clustering. For the detection of macromolec-
ular complexes in the network, theMCL clustering algorithm
was used (see Section 2). The inflation parameter was set
to 1.8. This value has been shown to give the best results
regarding the identification of functional modules in PPINs
[56]. The algorithm detected 160 complexes in total. For
these complexes, we performed functional analysis using the
WebGestalt toolkit, in order to detect biological similarities
between the proteins in each complex.We selected the human
genome as a reference gene set in order to perform enrich-
ment analysis to obtain information from all the databases
in WebGestalt (see Section 2.4 above). We evaluated the data
obtained from these analyses for all the protein clusters at
hand and assigned a specific biological activity or disease to
those complexes that a significant correlation with specific
terms could be made. This allowed us to retrieve 45 macro-
molecular complexes with a certain function. Some of these
complexes are depicted in Figure 5. The complexes in the
network take part in a long range of processes inside the
cell, from cell division to the regulation of matrix adhesion
and antigen processing and presentation, thus, revealing the
central role of peripheral proteins in multiple cell functions.
In Figure 5(b) some of the protein complexes that have a
relation with diseases are shown. The diseases with which
the clusters’ proteins associate are mainly infectious diseases
(e.g., AIDS), cardiovascular and blood diseases and disorders
(e.g., hypertrophic cardiomyopathy and polycythemia vera),
and cancers (e.g., acute myeloid leukemia). The peripheral
membrane proteins in these complexes are of central impor-
tance and further drug research should focus on them as they
appear to be central nodes connecting proteins related to the
same disease.

All 45 complexes identified were compared with known
complexes in MIPS [58]. 25% of these complexes were
partially correlated with complexes deposited in MIPS. Two

characteristic examples are shown in Figure S3. The first
is the endosomal sorting required for transport complex
ESCRT-III, which is required for intracellular transport [83].
Seven proteins of this cluster are known components of this
complex. There is a potential novel member of the ESCRT-
III complex present in this cluster. It is a Multivesicular
Body Protein (MBP) involved in BD formation, a function
conducted by ESCRT-III complex consisting this protein
a probable core component of ESCRT-III [84]. The other
proteins in this complex are associated with other ESCRT
complexes [85] or cell trafficking in general [86] and could
possibly be components of this complex as well since their
function has not been studied extensively. The second is
the mTORC2 complex, a protein complex regulating the
cytoskeleton. Two of the proteins not currently in the
complexes in MIPS are described as potential members of
the mTORC2 complex [87, 88] (Figure S3). In addition, all
complexes were examined for the existence of peripheral
proteins and proteins located in lipid rafts (Table S5).

4. Conclusions

Almost 50% of human proteins are intrinsic or peripheral to
cellular membranes [82] and are one of the most important
components of the human cell. In this work we studied
the interactions of peripheral proteins of the human plasma
membrane and analyzed various properties of the interaction
network in order to obtain a better understanding of the
characteristics of the humanplasmamembrane peripherome.
We observed that the network possesses the characteristics of
biological networks, thus, having a scale-free topology and
small-world properties. Further analysis, indicated proteins
which are essential for maintaining the connectivity and
stability of the network. Removal of these proteins leads
to deleterious effects on cells and lethal phenotypes in
mammals. Peripheral membrane proteins and proteins of the
network located in lipid rafts are important for the stability
of the human plasma membrane peripherome and have a
greater contribution to the stability of the whole network
than other proteins since their removal leads to network
destruction. Peripheral membrane proteins are targets for
ca. 10% of approved drugs and are associated with multiple
diseases. There are also other proteins in the network,
belonging to certain complexes, associated with diseases that
are commonly studied, and have high prevalence in the
human population.The plasmamembrane peripherome par-
ticipates in cell trafficking, signal transduction, and apoptotic
processes and consists of proteins present in almost every
subcellular compartment. Certain examples presented here
underline the importance of these proteins in the formation
and functionality of the biological system they forge since
their removal can even lead to organismal lethality (e.g., von
Hippel-Lindau tumor suppressor [71–73]). The presence of
lower quality interaction data can cause problems during
the analysis of the network. For this reason we created and
analyzed an additional network consisting of high quality
data only and observed that the basic characteristics of
the network remain the same. Protein-protein interaction
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Figure 5: (a) All the 160 complexes produced from the MCL clustering process are shown. In white are complexes that no biological
significance could be detected in and in the remaining colours are complexes that are associated with a certain biological function or disease.
(b) In this figure the complexes that are circled in (a) are shown. These complexes are some characteristic examples of complexes with a
certain biological function or disease. The gene name that maps to each protein is shown for all the nodes in each cluster. Every complex has
a label consistent with its association.

data for membrane proteins are under-represented in public
databases but their study can reveal important features of
membrane proteins and guide future experiments. In conclu-
sion, this study reveals certain new properties and features of

the peripheral membrane proteins and the network created
from them and their interactors; hence, their study uncovers
their pivotal role in the cell’s functionality and vitality. The
study of the human plasma membrane peripherome reveals
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potential candidates (e.g., hubs and bottlenecks) that can be
used for further experimental studies. Moreover, the study
of various human cell interactomes—such as the one studied
here—can be of great importance for the mapping and the
identification of the complete human cell interactome and as
Dennis Bray stated “we have a new continent to explore and
will need maps at every scale to find our way” [89].
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