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Abstract

The stress response in the model organisms Saccharomyces cerevisiae is a well-studied

system for which many data sets are available. Already in 2000, it was discovered

that yeast cells trigger a similar transcriptional response when different types of stress

are applied. However, the exact regulatory mechanisms and differences between the

different types of stress are still not understood.

Here, we present the Yeast Environmental Stress database (YESdb), a database con-

taining all high-throughput experiments measuring various kinds of stress in yeast.

The goal of the database is to allow the user to execute complex, integrative analyses

of selected data sets, e.g. the comparison of measurements of the same stress using

different platforms or differences between strains, stress strengths or types of stress.

The analyses can be visualized in various ways and can be compiled into interactive

reports to summarize and communicate the results.

The data sets are available as differential conditions (typically stressed vs control),

which are grouped to time or concentration series when multiple measurements over

time or concentrations are done in one experiment. An annotation ontology has been

constructed to annotate the data sets with the type, duration and strength of the applied

stress, the used strain and experimental platform as well as the publication date. These

annotations can easily be combined to select all relevant data sets for an analysis.

YESdb allows to construct and execute Petri net-based workflows to perform predefined

and custom analyses. E.g. to compare two types of stress (e.g. salt vs oxidative stress),

the corresponding data sets are selected from the database, the consistently changed

genes are defined and combined and the shared genes are characterized by enrichment

analysis.

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/


Page 2 of 9 Database, Vol. 2019, Article ID baz023

A broad collection of visualizations is available most of which are also interactive. The

results of all analyses can be summarized in an interactive report. Visualizations of

individual steps (transitions) of YESdb workflows can be automatically added to this

report or customized visualizations as well as interpretive text can manually be added to

the report.

Overall, YESdb aims at making all published data sets on yeast stress immediately

available and comparable for integrated analysis of data sets and sets of genes in order

to identify and assess hypotheses and mechanisms.

Database URL: https://services.bio.ifi.lmu.de/YESdb

Introduction

More and more high-throughput data are made publicly
available in databases like GEO (2), ArrayExpress (15),
SRA (14) or PRIDE (21). This published data can be used to
complement newly measured data in various ways. Meta-
analyses integrate diverse data sets from different studies,
tissues or species to draw unbiased conclusions. While
meta-analyses usually focus on data from the same or
similar platforms, another way to benefit from published
data is to integrate data sets from the same or a similar
condition measured on different platforms (e.g. RNAseq
and microarray data). Systematic biases of one platform can
thus be identified and corrected for. Similarly, data sets that
measure different levels (e.g. expression and protein levels)
of the same condition can be combined to obtain a more
complete picture of the changes in the cell.

Even though the integration of multiple data sets can
improve the analysis, many studies ignore published data
that could be integrated in their analysis. The first hurdle for
integrative analyses is of course to find data that fit, which
often involve reading detailed experimental descriptions
to uncover how similar the conditions are. Furthermore,
integrative analyses are often hindered by the need to pre-
process the raw data that are stored in the public databases.
Especially when the published data are measured on a
different platform, a different preprocessing workflow has
to be used.

To facilitate the use of published data, some databases
offer analysis possibilities directly. GEO introduced the
GEO2R tool, which allows one to use GEO data sets
directly in R analyses. This is a very powerful tool but
limited to users that are familiar with the R program-
ming language. Other databases such as MEM (1) and
SPELL (10) also allow the user to do some analyses directly
on their website, but they focus mainly on co-expression
studies.

Workflow managers (see (16) for a recent review) enable
the user to conduct complicated pipelines to process the
data. This allows the user to easily test the influence of

parameter settings or the choice of specific methods. A
major limitation for using a workflow manager for an
integrative analysis is the search for and import of the
already published data. Furthermore, pipelines are typically
used for a standard analysis of the data (e.g. to derive the
differentially expressed genes in an experiment), as the more
specific downstream analyses cannot normally be re-used
for another experiment, and the next step can often not
be defined in advance, as it depends on the results of the
previous step.

The stress response in Saccharomyces cerevisiae is an
especially well-studied system for which many different
data sets are available. However, there are still many
unsolved questions of how the system is regulated for
the different kinds of stress. To study the conserved and
divergent parts of the system, an integrative analysis is
needed.

yStreX (22) collected, classified and preprocessed several
data sets measuring different stress conditions in yeast. It
allows one to identify differentially expressed genes, to
find conditions in which a gene is differentially expressed
and enrichment analyses for single and multiple conditions.
However, it has also several limitations: the collected data
sets are required to have more than two replicates, so that
many time series analyzing different kinds of stress with
one replicate per time point are missing. Furthermore, it
contains only gene expression data measured by microar-
rays, so that proteomics or sequencing data sets are not
contained. This results in a total of 121 conditions, which
is only a small subset of the available data.

We propose YESdb, a database that contains prepro-
cessed differential expression data for various types of stress

in the model organism S. cerevisiae. To make optimal use of
the data, the database contains a Petri net-based workflow
system, which allows the user to integrate multiple data sets.
The results of the workflow are visualized in interactive
reports, which contain a visual summary of each step in
the workflow. Several runs of a workflow with different
parameters can be directly compared in these reports. This

https://services.bio.ifi.lmu.de/YESdb
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Figure 1. Overview of the data sources and web interface features of YESdb: All stress response data sets from GEO, ArrayExpress, SRA and PRIDE

are selected, processed to differential conditions (‘DCs’) and annotated. The web interface features an intuitive data selection interface, workflows

that allow to execute complex analyses and interactive reports to summarize and visualize the results.

way, the impacts of individual parameters in a complex
analysis can easily be analyzed.

Material and methods

Data search strategy

To find the relevant data sets, the meta-data from GEO was
filtered for data sets measuring RNA in S. cerevisiae, and the
resulting data sets were searched for ‘treatment’/‘treated’,
‘adaptation’/‘adapted’, ‘exposure’/‘exposed’, ‘response’
and ‘stress’. This yielded 386 GEO Series of which most
were microarray data sets contained in GEO and only 35
corresponded to high-throughput sequencing data sets con-
tained in SRA. The same search terms were used to query
ArrayExpress omitting data sets already contained in GEO.
The resulting data sets were additionally manually filtered
for relevance. For proteomics data, there are far fewer
data sets available in PRIDE, which are unfortunately less
standardized and less comprehensively annotated. Here
we manually selected the relevant data sets for which
MaxQuant (5) output was available and for which the
individual conditions could be identified in the output.

Data processing

YESdb contains already differential conditions (‘DCs’),
so that the user does not have to identify replicates and
the conditions that should be compared. To construct this
configuration, we used a semi-automatic framework that
first automatically identifies replicates and control/un-
stressed conditions, which are then manually corrected
and completed. Additionally, time or concentration courses
are saved as ‘series’, i.e. lists of ‘DCs’ together with the
corresponding time or concentration.

For GEO, the data sets are already processed in most
cases. A simple median normalization is used to make the
individual samples comparable while not distorting the
already processed (and normally normalized) values too
much. The configurations are then used to calculate log2

fold changes. When replicate raw intensities are available, t-
tests between the case and control intensities are calculated
and the resulting p-values are multiple testing corrected
by the Benjamini–Hochberg correction. The SRA data sets
are mapped by ContextMap (3), and differential expres-
sion was analyzed by DESeq (17). ArrayExpress does not
contain processed data for all data sets. We thus used the
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R object stored in the database where it is available or used
the ArrayExpress R-package (12) to load the data. The data
sets that could be loaded like this were summarized by RMA
(11) and fold changes and t-test p-values were calculated
analogous to the GEO data sets. For PRIDE, SILAC fold
changes of replicates are combined by taking the mean
and log2 fold changes and t-test p-values with Benjamini–
Hochberg correction are calculated for LFQ data. In all
cases, replicates and raw measurements are saved if avail-
able so that they can be used for visualization and filtering.

Data annotation

We created an ontology of annotations to make it easy
to find the relevant data sets for a specific analysis. This
ontology contains the experimental platform, the publica-
tion date, the yeast strain that was used (including which
genes were knocked out) and the kind of stress that was
applied. Each GEO/ArrayExpress/SRA/PRIDE data set was
manually mapped to all relevant terms in this ontology.
To select the relevant data sets, we provide an easy-to-use
interface where the ontology can be browsed and the ‘DCs’
or ‘series’ annotated to a selected term are shown. These
entries can then be selected or excluded individually or all
at once, and the entries selected so far can be restricted to
those annotated in the current ontology term. This allows
the user e.g. to select all ‘series’ annotated to heat shock at
37 and 39◦C and restrict this selection to those ‘series’ that
were measured by microarray and exclude all ‘series’ that
used knockout strains.

Table 1 shows the first levels of this annotation hierar-
chy. The database contains 2933 ‘DCs’ and 392 ‘series’. Of
these, 820 ‘DCs’ measure 203 different knockout strains
and 2377 ‘DCs’ measure 117 different wild-type strains.
Oxidative stress, osmotic stress, carbon source adaptation
and temperature adaptation are the best-studied kinds of
stress in our database, containing between 278 and 460
‘DCs’.

Workflows

We implemented a Petri net-based workflow system to
allow the user to easily perform integrative analyses of
the data sets in the database. This system facilitates the
identification of interesting genes from several data sets
and to combine them in a flexible way to analyze different
hypotheses. Table 2 shows an overview of the available
transitions. There are transitions to define and combine sets
of entities, for downstream analyses such as enrichment
or simple network analysis and helper transitions to e.g.
modify the ‘DCs’.

These transitions can be connected to elaborated work-
flows. Figure 2 shows an example workflow. It consists of
multiple transitions that can also depend on each other, i.e.
the output of one transition is used as input for another
transition. These workflows can be executed automatically,
or single transitions are selected for execution. Execut-
ing single transitions allows one to interactively evalu-
ate the results of the transition and modify the inputs if
necessary before executing the subsequent steps from the
workflow.

The tokens in the workflow system can have several
types: ‘DC’, ‘series’, ‘set’, ‘DAG’ and ‘network’ as well as
the simple types ‘string’, ‘boolean’ and ‘number’. To allow
for transitions that have a variable number of inputs or
outputs of the same type (e.g. to calculate the intersection of
the differential genes from several ‘DCs’), we introduce the
notion of token lists, which are simply lists of tokens of the
same type. There are helper transitions to combine several
tokens to a list token or to isolate the individual tokens from
a list token.

The initial tokens can be extracted from the ‘DC’ and
(time/concentration) ‘series’ contained in the database.
Additionally, the ‘DAGs’ and the corresponding ‘sets’ of
the gene ontology (9) and different kinds of ‘networks’
for yeast, such as Yeastract (20), BioGRID (4), post-
translational modification networks (6, 7, 19) and manually
curated stress networks (13) are available.

Interactive report

The result of a workflow is not only the final output, but
intermediate results can be just as interesting. To provide a
convenient way to get an overview of all the results, the user
can add to each transition one or more visualizers. When
the workflow is executed, the visualizers generate plots,
tables or network views that are all added to one report
(see Figure 3). For most transitions, there are standard
visualizers, but additionally, the user can also define custom
visualizations to be included in the report, by defining the
plot type and inputs. Most visualizations are interactive, so
that the associated data of points in a plot or rows in a
table can be retrieved. In the example in Figure 3, the genes
selected in the left scatterplot comparing oxidative stress
and heat shock are not only listed below the plot but also
highlighted in the right scatterplot comparing oxidative and
osmotic stress.

The resulting report can be edited, by adding and remov-
ing sections, visualizations and descriptive text or changing
the order of the elements. This way, a report that summa-
rizes the results of the workflow is created. It can then be
saved as an XML file, which can be uploaded to our website
to show the report. This allows one to share the results
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Table 1. Overview of the annotations of the data sets contained in YESdb: Only the first level of annotation is shown, most

annotations contain additional levels such as the specific platform or strain used or the strength of the applied stress; For the

time annotation, only the most frequent entries are shown; The number of all (also indirect) child annotation terms are given

in the last column; The data are processed to ‘DCs’ and (time or concentration) ‘series’

Annotation DC Series Children

Platform 3612 512 162
Microarray 3380 480 152
Sequencing 186 29 8
Mass spectrometry 46 7 2

Publication year 3049 422 19

Strain 3545 504 351
Wild type 3012 428 123
Knock out 900 119 228

Stress 3426 495 76
Other 1428 205 16
Nutrient adaptation 730 104 5
Oxidative stress 466 57 20
Osmotic stress 361 57 19
Temperature 282 47 14
DNA instability 132 22 2
Fermentation 105 20 —
Mating response 40 7 —

Time 1644 — 124
30 min 293 — —
60 min 149 — —
2 h 190 — —
20 min 97 — —
15 min 76 — —
10 min 68 — —
5 min 59 — —
...

with collaborators or to save intermediate results for later
refinement.

If the workflow is executed again with different inputs,
another report with the same visualizations using the new
data is created. If the two runs of the workflow should be
compared, a joined report that contains the results for both
runs next to each other is produced. This allows the user
to easily compare different parameterizations of the same
workflow, e.g. to compare the effects of different cutoffs
for the definition of differential genes or analyzing another
type of stress.

Results

Here we present an example analysis that compares the
genes involved in two types of stress: heat shock and
osmotic stress. Already in 2000, Gasch and Werner-
Washburne (8) showed that yeast responds similarly to a

wide range of different types of stress including heat shock
and osmotic stress. They observed up- and downregulation
of two clusters of genes, which they termed ‘environmental
stress response’. Moreover, the survival of one type of
stress can ‘cross-protect’ yeast cells from a different type
of stress, as e.g. heat shock increases tolerance for osmotic
stress (18). To analyze which genes are unique to the two
types of stress and which are shared, we first identify
the genes that are consistently changed for each type
of stress, and then these two sets are compared to each
other.

YESdb already contains a predefined workflow to define

the consistently changed genes from a list of data sets, which

can be added to an analysis. This predefined workflow

selects for each of the data sets the changed genes and uses

the ‘Count Filter’ transition to identify the genes that are
changed in a given fraction of all data sets. The resulting set
contains only those genes that are consistently changed and
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Table 2. Overview of workflow transitions: The first block of transitions defines ‘sets’ of interesting genes, the second block

characterizes ‘sets’ of genes and the last block contains helper transitions

Name Description

Set from DAG Loads a list of ‘sets’ from a ‘DAG’, e.g. GO
Set from DiffCond Defines a ‘set’ from a ‘DC’ by filtering the measurements (fold change, raw or P-value)
Binary set combination Combines two ‘sets’ by set operations (intersect, difference and union)
Multi set combination Combines multiple ‘sets’ by set operations
Count Filter Defines a ‘set’ of the genes that are contained at least/most a given number of times in a list of ‘sets’
GetRegulators Defines a ‘set’ of regulators from a ‘network’ that regulate at least one target from the given ‘set’

Enrichment Calculates enrichment of a ‘set’ in a list of ‘sets’
Subnetwork Extracts the subnetwork of a ‘set’ from a ‘network’

Reverse fold change Swaps case and control conditions of a ‘DC’
Data set fold change Generates a new ‘DC’ that is the fold change between two ‘DCs’ (e.g. DC1, stress1 vs control; DC2, stress2

vs control → DC1 vs DC2, stress1 vs stress2)
Series2DiffCond Extracts all ‘DCs’ from a ‘series’
Collector Combines several tokens of the same type to a list
Distributor Extract the individual tokens from a list

Figure 2. Example workflow: On the left, the Petri net workflow comparing the consistent genes between heat and salt stress is shown. On the right,

an overview of all tokens used in the workflow is shown. The color of the inputs (ellipses) indicates whether it contains a token (green), and the color

of the transitions (boxes) shows whether it has been fired (green), can be fired (yellow) or cannot be fired because input tokens are missing (red).

not those that are changed in only a few of the data sets,
e.g. due to technical bias or strain-specific responses to the
stress that do not capture the ‘core’ stress response. In the
predefined workflows contained in YESdb, most inputs are

already set to default values, and in this example only the
data sets that should be analyzed have to be selected.

Using our selection interface, we can select all heat
shock data sets measured at 37◦C, exclude all data sets
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Figure 3. An example report: A report consists of sections, with text and interactive visualizations. An editor allows one to modify/add/delete the

individual elements and to change their order. Many of the available visualizations are also interactive. E.g. in the scatterplot shown here, sets of

genes can be selected to highlight them (also in other subplots of the visualization) and to display the labels of the selected points in a list below

the plot.

using knockout strains and restrict the selection to those
data sets measured after 15 min, resulting in 19 data sets.
Similarly, we can select those 10 osmotic stress data sets
measured 30 min after 0.4M NaCl was added, which did
not use knockout strains. Overall, 5627 and 3488 genes are
changing (|fold change| >1) in at least one of the selected
heat shock and osmotic stress data sets, respectively, of
which 796 and 1770 are consistently changing in at least
half of the selected data sets.

To compare the sets of consistently changed genes that
are the result of the two copies of the predefined workflow,
we add a ‘binary set combination’ transition. This transition
applies a set operation (intersect, difference or union) to two
given sets. Using this transition, we can define the set of
genes that is unique for heat shock or osmotic stress, or the
set of genes that are shared between the two types of stress.
There are 725 shared genes and 71 and 1045 genes unique
to heat shock and osmotic stress, respectively. The resulting
workflow is shown in Figure 2.

The inputs of this workflow can be varied to analyze the
robustness of the results. We could e.g. change the cutoff
above which percentage of data sets a gene has to change
in to be considered consistent from 50% to 70%. This
changes the number of consistently changing genes to 59
and 1324 in heat shock and osmotic stress, respectively.
This shows that the selected heat shock data sets are less
consistent than the osmotic stress data sets, maybe because
the heat shock at 37◦C is a very mild stress to which the
different wild-type strains that were analyzed in the data
sets do not react similarly. To visualize the results of such
an comparative analysis, a report comparing multiple runs
of the same workflow can be created. Figure 4 shows such
a report. Similarly to the normal report it contains headers
and descriptive text and visualizations. Visualizations that
are automatically created from visualizers added to tran-
sitions are shown for all selected runs of the workflow,
side by side. This way the different results can easily be
analyzed.
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Figure 4. Example report comparing two runs of the example analysis. On the left, a strict cutoff for the definition of consistently changed genes

is used (only genes that are changed in at least 70% of all data sets) while on the right genes that are changed in at least half of the data sets are

considered. The resulting Venn diagrams are shown side by side so that the user can easily assess the different results of the analysis.

The example presented here is only one of many possible
analyses. It can easily be extended to e.g. characterize the
resulting gene set further by gene set enrichment. Similar
analyses can be used to tackle different questions like
how different strains react to stress, how stress strength
influences stress response or whether there is a platform
bias.

Discussion

Public databases like GEO, ArrayExpress or SRA contain
thousands of data sets that often measure similar exper-
imental conditions. Combining these data sets provides
more robust results because technical biases and noise can
be removed. If different biological entities like proteins and
gene expression are measured, the integration provides a
more complete picture of the changes in the cell. Moreover,
different experimental conditions can be compared to
identify shared mechanisms.

The stress response system in the model organism
S. cerevisiae is a well-studied system that is nevertheless
not completely understood. There are measurements for
different kinds of stress, different strengths, different time
frames and on different experimental platforms. The
integration of these data sets can help to understand the
exact changes in response to a single stress and shared and
divergent mechanisms between different kinds of stress.

YESdb is a database that contains over 3000 DCs
of yeast stress measurements using microarray, next-
generation sequencing and proteomics platforms. It
combines the yeast stress-related data sets of GEO,
ArrayExpress, SRA and PRIDE and provides access to

already preprocessed data on the level of DCs. The data
sets are annotated to different kinds of stress, publication
years, platforms and strains. An easy-to-use interface is used
to select the relevant data sets for further analysis.

A Petri net-based workflow system allows one to com-
bine a given set of transitions to elaborated analyses that
identify and combine interesting sets of genes and character-
ize them. Even though these transitions correspond to quite
simple operations, the possibility to combine them in any
way allows not only to perform standard analyses but also
specialized analyses for a given research question.

The results of such an analysis can be visualized in
an interactive report. For most transitions, visualizers can
be added to the workflow that will automatically add a
visualization of the result of the transition to the report.
This can be especially useful to compare different runs of the
same workflow that differ in some parameter. The resulting
report contains the visualizations side by side so that the
effect of the changed parameter on the results of the various
steps in the workflow can be easily analyzed. Additionally,
the user can create own visualizations by selecting plot
type and inputs from all available inputs and (intermediate)
results. Many of the visualizations are interactive, e.g. tables
are sortable or information about individual points in a
plot can be shown. To explain the results and structure the
report, text and subsections can be added to the report, so
that a human-readable report of the analysis can be created.
The report can be saved as an XML file and uploaded to our
website to show the report, so that reports can be shared e.g.
between collaboration partners.

The annotation contained in YESdb provides a valuable
resource for systematic analyses. It can be used to
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systematically analyze differences between platforms,
strains, types of stress or the strengths of the applied stress.
Furthermore, it contains data sets for 203 knockout strains
that can be used to compare the effects of the knockout
in different types of stress or to understand the regulatory
mechanisms in general.

While this system is now only available for stress
response in yeast, we think that also other research
topics can benefit from this system. To use the interactive
workflows and reports for another biological system, the
corresponding data sets have to be identified, processed and
annotated to create the underlying database. Additionally,
the set of available transitions can be extended to include
also more complex operations.
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