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Heavy metal contamination is an environmental issue on a global scale. Particularly,
cadmium poses substantial threats to crop and human health. Saccharomyces
cerevisiae is one of the model organisms to study cadmium toxicity and was recently
engineered as a cadmium hyperaccumulator. Therefore, it is desirable to overcome
the cadmium sensitivity of S. cerevisiae via genetic engineering for bioremediation
applications. Here we performed genome-scale overexpression screening for gene
targets conferring cadmium resistance in CEN.PK2-1c, an industrial S. cerevisiae
strain. Seven targets were identified, including CAD1 and CUP1 that are known to
improve cadmium tolerance, as well as CRS5, NRG1, PPH21, BMH1, and QCR6
that are less studied. In the wild-type strain, cadmium exposure activated gene
transcription of CAD1, CRS5, CUP1, and NRG1 and repressed PPH21, as revealed
by real-time quantitative PCR analyses. Furthermore, yeast strains that contained two
overexpression mutations out of the seven gene targets were constructed. Synergistic
improvement in cadmium tolerance was observed with episomal co-expression of
CRS5 and CUP1. In the presence of 200 µM cadmium, the most resistant strain
overexpressing both CAD1 and NRG1 exhibited a 3.6-fold improvement in biomass
accumulation relative to wild type. This work provided a new approach to discover and
optimize genetic engineering targets for increasing cadmium resistance in yeast.

Keywords: gene overexpression, combinatorial optimization, genome-scale engineering, Saccharomyces
cerevisiae, cadmium tolerance

INTRODUCTION

Heavy metal contamination is a severe environmental problem (Vareda et al., 2019; Hu et al.,
2020). Cadmium is one of the primary risks to human health due to the pollution of food
crops and drinking water (Nordberg et al., 2018). Saccharomyces cerevisiae is a model organism
to study cadmium toxicity, and related mechanisms include glutathione biosynthesis, stress
response, vacuole transportation and sorting, metal ion homeostasis, and chromatin remodeling
(Wysocki and Tamas, 2010). Notably, cadmium tolerance mechanisms are conserved between
S. cerevisiae and plants, including gene overexpression of glutathione reductase (Kim et al., 2012),
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metallothionein (MT) (Wei et al., 2016; Ansarypour and
Shahpiri, 2017), and phytochelatin (Cahoon et al., 2015; Yang
et al., 2017).

Physiochemical and biological remediation are common
strategies to treat heavy metal contamination. For example,
chemical precipitation is frequently utilized, but the main
limitations include secondary waste generation and complex
infrastructure requirements (Fu and Wang, 2011; Li et al., 2019;
Vardhan et al., 2019). Phytoremediation by “hyperaccumulator”
plants is a promising alternative, but it suffers from the long
life cycle and engineering challenges of plants (Rascio and
Navari-Izzo, 2011; Reeves et al., 2018). On the other hand,
microbial bioremediation may provide a scalable and cost-
effective solution. In particular, S. cerevisiae has been recently
engineered as a heavy-metal hyperaccumulator when equipped
with selected membrane transporters and enhanced vacuolar
compartmentalization (Sun et al., 2019, 2020). Furthermore,
S. cerevisiae can be utilized to ferment the biomass of
phytoremediation plants (Jing et al., 2020). However, S. cerevisiae
is relatively sensitive to cadmium, and it is desirable to
improve its cadmium robustness of S. cerevisiae as a future
bioremediation agent.

Chemical tolerance is a complex phenotype with hundreds
of genetic determinants (Almeida et al., 2007). Due to the lack
of mechanistic understanding, it often requires genome-wide
screening to identify mutations that confer resistance (Warner
et al., 2010; Si et al., 2015b; Chen et al., 2020; Liu et al., 2020). For
such endeavors, gene-deletion strain libraries are often utilized
in S. cerevisiae, but most identified mutations lead to cadmium
sensitivity (Jin et al., 2008; Ruotolo et al., 2008; Serero et al.,
2008; Thorsen et al., 2009). Genetic overexpression libraries
are less studied, and hence beneficial mutations are relatively
scarce (Hwang et al., 2009; Fang et al., 2016). Notably, existing
screening campaigns for cadmium resistance are confined to
certain laboratory strains derived from the S288c background.
Moreover, only single genetic mutations are investigated, whereas
combinatorial optimization of multiplex gene targets is often
needed for resistance engineering (Si et al., 2015a; Jiang et al.,
2020).

Here we performed genome-wide screening in S. cerevisiae
using a comprehensive cDNA plasmid library that was previously
constructed (Si et al., 2017). We utilized a widely used industrial
strain, CEN.PK2-1c, whose cadmium resistance has not been
studied. Both known and new gene targets were identified to
confer increased resistance. Further improvement in cadmium
tolerance was achieved via the combinatorial introduction
of individual mutations. Dosage-dependence and genetic
interactions were also observed among different gene targets.

MATERIALS AND METHODS

Strains, Media, and Cultivation
Conditions
A previously reported derivative (CAD) of CEN.PK2-1c (MATa
ura3-52 trp1-289 leu2-3,112 his3D1 MAL2-8C SUC2) was
utilized in this study as the wild-type (WT) background,

harboring an integrated RNA-interference pathway (Si et al.,
2015a). Overexpression cassettes were either integrated into
the genomic LEU2 locus or cloned in episomal plasmids
(Supplementary Tables 1,2). Saccharomyces cerevisiae strains
were cultivated in either synthetic dropout medium (0.17% Difco
yeast nitrogen base without amino acids and ammonium sulfate,
0.5% ammonium sulfate and 0.083% amino acid dropout mix,
0.01% adenine hemisulfate, and 2% glucose) or YPAD medium
(1% yeast extract, 2% peptone, 0.01% adenine hemisulfate,
and 2% glucose). For cadmium stresses, 100 mM Cd(NO3)2
solution stock was added to the above medium to indicated
final concentrations. All media were adjusted to pH = 4.5.
Saccharomyces cerevisiae strains were cultured at 30◦C and with
250 r.p.m. agitation in culture tubes or 96-well microplates.
Cadmium nitrate tetrahydrate was purchased from Aladdin
(C118495). Other chemicals were purchased through Sigma-
Aldrich.

Genome-Scale Overexpression
Screening
The overexpression library was constructed by cloning the
normalized cDNA library into a single-copy plasmid pRS416,
which contains a PTEF1 promoter and a TPGK1 terminator (Si
et al., 2017). The library was transformed into CAD strain by
the standard LiAc/ssDNA/PEG protocol (Gietz and Schiestl,
2007) with an optimized condition, where 15 µg plasmid DNA
was used to transform 30 OD600(optical density at 600 nm)
unit competent yeast cells by heat shock at 42◦C for 1 h. Cell
transformant suspension was diluted 10-fold and spread onto SC-
Ura agar plates containing 200 µM Cd(NO3)2. Approximately
1.5 × 106 independent yeast clones were obtained. The WT
strain containing an empty pRS416 vector was used as a control.
Clones with substantially larger colony sizes relative to WT were
selected for further characterization. The overexpression cassettes
of isolated plasmids were subjected to Sanger sequencing
and Basic Local Alignment Search Tool (BLAST) analysis for
target identification. Plasmid retransformation into a fresh WT
background was performed to confirm positive targets.

Cadmium Tolerance Assays
Yeast strain cultures transformed with the empty vector or gene-
overexpressing plasmids were inoculated and cultivated to the
early stationary phase. OD600 values were measured using a
Ultrospec 10 cell density meter (Biochrom, 80-2116-30). For
spot assay, one OD600 unit of yeast cells was serially diluted
at tenfold, spotted (3 µL) on SC-Ura agar supplemented with
200 µM Cd(NO3)2, and incubated at 30◦C for 2 to 3 days. For
microculture growth assay, growth phase-synchronized cultures
were diluted to an initial OD600 of 0.2 in 200 µL of SC-
Ura, SC-Ura/Leu or SC-Ura/Leu/Trp medium supplemented
with indicated Cd(NO3)2 concentrations and cultivated at 30◦C
in 96-well, round-bottom plates (Corning). A BioTek Epoch2
microplate reader was utilized to monitor OD600 at 30 min
intervals. The OD600 values at 48 h from three independent
experiments were used to calculate relative cadmium tolerance
[Equation (1), see below].
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Real-Time, Quantitative PCR (RT-qPCR)
Analyses
The mid-log phase cell cultures of the WT strain were treated
with 50, 100, or 200 µM Cd(NO3)2 for 2 h. Total RNA was
isolated using a Bacteria RNA Extraction Kit (Vazyme, R403-01),
and 1 µg total RNA was reverse transcribed using HiScript III RT
SuperMix for qPCR with gDNA wiper (Vazyme, R323-01). RT-
qPCR reaction and data analysis were performed in an Analytik
Jena qTOWER3 Real-Time PCR Thermal Cycler using ChamQ
Universal SYBR qPCR Master Mix (Vzyme, Q711-02) following
the manufacturer’s instructions. Primers for qPCR reactions were
listed in Supplementary Table 3.

Dual-Mutation Strain Construction
The identified overexpression cassettes of cadmium-tolerant
genes were PCR amplified with the TEF1p and PGK1t primers
and cloned into the pRS415 vector using the Gibson Assembly
Cloning Kit (New England Biolabs) (Supplementary Table 2).
The primers used are listed in Supplementary Table 3.
For genomic integration, the expression cassettes and LEU2
marker gene were PCR amplified with primers fusing with
40 bp homology arms and integrated into the LEU2 locus via
homologous recombination.

Calculation of Relative Cadmium
Tolerance and Combinatorial Effect
Scores
The final OD600 at 48 h was used to calculate relative cadmium
tolerance using Equation (1):

Cadmium Tolerance (CTG) =
ODG,T/ODG, C

ODV, T/ODV, C
(1)

where G indicates a gene-overexpression target and V means
the empty-vector control. T indicates cadmium treatment and C
means the cadmium-free control. A value larger than 1 indicates
improved cadmium tolerance relative to WT. The combinatorial
effects of cadmium-tolerant genes were calculated using Equation
(2) (Anastassiou, 2007):

Combinatorial Effect
(
CEG1,G2

)
=

(CTG1,G2 − 1)− [(CTG1 − 1)(CTG2 − 1)] (2)

where CTG1,G2 indicates cadmium tolerance of the strain co-
expressing genes 1 and 2, whereby CTG1and CTG2 means
cadmium tolerance of the strain overexpressing only gene 1
or gene 2, respectively. A positive value of CEG1,G2 indicates
synergistic effect.

RESULTS

Genome-Wide Overexpression Screening
for Enhanced Cadmium Resistance
We first studied the cadmium sensitivity of an industrial yeast
strain CEN.PK2-1c using a previously constructed derivative

(Si et al., 2015a). The WT strain transformed with the empty
plasmid (pRS416) was cultivated in the synthetic dropout
medium containing Cd(NO3)2 as a source of cadmium. We
observed growth inhibition in a cadmium concentration-
dependent manner (Figure 1A), and a 50% decrease in total
biomass accumulation was elicited by approximately 70 µM
cadmium (Figure 1B). Nearly complete growth inhibition was
observed at 200 µM cadmium, which was selected to screen
for resistant strains (Figures 1A,B). Similarly, the lethal dose
of cadmium for BY4741 yeast strain, an S288c derivative, was
150 µM (Kuang et al., 2015).

We transformed the WT strain with a genome-scale library on
the pRS416 vector, which was previously constructed based on a
normalized, full-length enriched cDNA library of S. cerevisiae (Si
et al., 2017). Over 106 independent transformants were obtained
to ensure sufficient coverage of >92% of all yeast genes (Si
et al., 2017). Resistant clones were selected based on colony sizes
(Figure 2A). Plasmid DNA sequencing of the 160 largest colonies
revealed 95 (59.4%), 27 (16.9%), and 5 (3.13%) clones contained
the upregulation cassettes of CUP1, CAD1, and PPH21 genes,
respectively. After retransformation into a fresh WT background,
seven gene targets were confirmed with resistant phenotypes to
100 µM cadmium in liquid media, including CAD1, CRS5, CUP1,
NRG1, PPH21, BMH1, and QCR6 (Figure 2C). Except for BMH1
and QCR6, gene overexpression of all other targets also conferred
enhanced growth on agar media containing 200 µM cadmium
(Figure 2B; Supplementary Figure 1). Gene Ontology (GO)
analysis suggested that these genes are involved in stress response
to chemical, oxidative, osmotic and DNA damage, regulation of
transcription, translation, protein modification and cell cycle, and
organization of organelle, cell wall and vacuole (Supplementary
Table 4), which are all relevant mechanisms to cadmium toxicity.

Gene Regulation of Identified Targets in
Response to Cadmium Stress
To examine whether gene expression of identified targets is
regulated by cadmium stress, we challenged the WT strain
at the exponential growth phase with different cadmium
concentrations. qPCR results indicated that the mRNA levels of
CAD1, CRS5, CUP1, and NRG1 were significantly upregulated
by cadmium in a concentration-dependent manner (Figure 3).
Genetic upregulation of CRS5, CUP1, and NRG1 by cadmium
was consistent with previous transcriptomic studies in the S288c
background (Jeyaprakash et al., 1991; Fauchon et al., 2002; Jin
et al., 2008). On the other hand, cadmium treatment suppressed
PPH21 expression, and no significant changes in mRNA levels
were observed for BMH1 and QCR6 (Figure 3). Consistently,
previous studies did not report substantial transcriptional
alterations in PPH21, BMH1, or QCR6 upon cadmium treatment
(Jeyaprakash et al., 1991; Fauchon et al., 2002; Jin et al., 2008).

Combinatorial Optimization of
Cadmium-Tolerant Genes
We then constructed mutant strains harboring two
overexpression targets to improve cadmium tolerance
(Figure 4A; Supplementary Figure 2). First, each identified
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FIGURE 1 | Growth inhibition by cadmium in the WT strain. (A) Cd(NO3)2 was added to the SC-Ura medium at indicated concentrations. Cellular growth was
monitored every 30 min for 48 h as optical density at 600 nm (OD600). (B) Cadmium concentration-dependent reduction in the normalized final OD600 at 48 h. The
curve was best fitted using a one-phase exponential decay model. Dash lines indicated the cadmium concentration for 50% growth inhibition.

FIGURE 2 | Genome-scale screening for cadmium-tolerant genes. (A) Scheme of genome-wide overexpression screening for cadmium resistant clones. (B) Spot
assay on agar media. Yeast cultures were serially diluted, spotted, and cultivated for 2–3 days on agar plates with or without 200 µM cadmium. (C) Time-course of
cellular growth in liquid media. The time-course of OD600 was collected at 30 min intervals for 48 h with or without 100 µM cadmium. Error bars indicate standard
deviations of three biological replicates.

cassette was separately integrated at the LEU2 locus of the yeast
genome. In the presence of 100 µM cadmium, genomic and
episomal overexpression of CAD1, NRG1, BMH1, or QCR6
conferred comparative improvement in cadmium tolerance
relative to WT (Supplementary Figure 3). On the contrary, the
strains integrated with CRS5, CUP1, or PPH21 cassettes showed
substantially weaker cadmium resistance improvement relative
to their plasmid-overexpression counterparts (Supplementary
Figure 3). Differences in gene expression levels were previously
noted between genomic integration and episomal expression
(Crook et al., 2014; Si et al., 2015a). Therefore, genomic
integration (1 per cell) of the CUP1 cassette may result in a lower

overexpression level compared with pRS416 (3-4 copies per cell),
so that a minimum threshold of CUP1 overexpression required
for cadmium resistance was not achieved (Jeyaprakash et al.,
1991; Adamo et al., 2012). To further confirm dosage effects, we
constructed yeast strains overexpressing a single-gene target on
pRS426, which is a 2 µ multicopy plasmid (20–80 copies per
cell). Indeed, cadmium tolerance of CUP1-overexpressing yeast
strains showed a pRS426 > pRS416 > integration pattern. No
substantial dosage effects were observed for other targets except
for CRS5 (Supplementary Figures 3, 4). Notably, both CUP1 and
CRS5 encode yeast metallothionein, which suggested a possibly
shared mechanism.
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FIGURE 3 | qPCR analysis of cadmium-tolerant genes upon cadmium stress. During the exponential growth phase, the WT strain was treated with Cd(NO3)2 at
indicated concentrations for 2 h. Error bars indicate standard derivations of three biological replicates. *P < 0.05; **P < 0.01.

FIGURE 4 | Combinatorial effects of cadmium-tolerant genes. Relative cadmium tolerance of the engineered strains with episomal plasmids in the presence of
100 µM (A) or 200 µM (B) cadmium was calculated as described above in Materials and Methods. (A) Genomic and episomal expression are labeled as bold and
italic, respectively. (B) Red bars indicate overexpression from genomic (under the line) and episomal (above the line) vectors, and green bars indicate episomal
expression for both targets. Values are means and standard derivations (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001.

Dual overexpression was then achieved by transforming the
above-mentioned LEU2-integrated strains (Figure 4A, bold)
with overexpression plasmids (Figure 4A, italic).Only selected
combinations were constructed to save experimental efforts,
whereby a more potent target was integrated into the yeast
genome, and a weaker target was placed on the episomal

plasmid. In the presence of 100 µM cadmium, CAD1-integrated
strains generally exhibited high levels of resistance, except when
transformed with a PPH21-overexpressing plasmid. Mutant
strains harboring CRS5-CUP1, CRS5-NRG1, and CUP1-NRG1
combinations also showed robust resistance. Therefore, CAD1,
CRS5, CUP1, and NRG1 were selected for further optimization,
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and new strains with two targets both expressed from episomal
plasmids (pRS415 and pRS416) were constructed. Mutant
strains containing integration-plasmid and plasmid-plasmid
combinations were evaluated for the time-course of cellular
growth under 200 µM cadmium (Figure 4B; Supplementary
Figure 5). The highest tolerance was achieved by CAD1 and
NRG1 co-expression both from plasmids, and the corresponding
strain exhibited a 3.6-fold improvement in the final OD600
relative to WT. Unfortunately, no further improvement was
achieved with triple overexpression of CAD1-NRG1-CRS5 or
CAD1-NRG1-CUP1 from episomal plasmids (pRS414, pRS415,
and pRS416) (Supplementary Figure 6).

Also, we examined the combinatorial effects among identified
gene targets. Genetic interactions were evaluated using Equation
(2) as previously reported, based on relative tolerance values
calculated by Equation (1) (see Materials and Methods).
In the presence of 100 µM cadmium, synergistic effects
were observed between genome-integrated CRS5 and plasmid-
borne NRG1, as well as between genome-integrated CUP1
and plasmid-borne NRG1 (Figure 4A). In the presence of
200 µM cadmium, synergistic interaction was noted between
CRS5 and CUP1 when both expressed episomally (Figure 4B).
Synergistic improvement confirmed the necessity for multiplex,
combinatorial optimization of individual engineering targets
(Wang et al., 2009; Si et al., 2015a, 2017; Cao et al., 2020; Chen
et al., 2020).

DISCUSSION

Here we performed the first genome-wide overexpression
screening to engineer cadmium resistance in an industrial
CEN.PK-derived S. cerevisiae strain. Possible mechanisms
underlying identified targets may be deduced from GO analysis
(Supplementary Table 4) and known functions reported in
literature (Supplementary Table 5). Particularly, identifying
well-established targets such as CAD1 and CUP1 indicated
our approach was effective. These results also suggested that
the corresponding mechanisms are conserved among different
S. cerevisiae backgrounds for cadmium tolerance. For example,
CAD1 encodes an AP-1-like basic leucine zipper (bZIP)
transcriptional activator, which increased cadmium resistance
when expressed on a multicopy plasmid (Wu et al., 1993;
Hirata et al., 1994). Cad1p was imported to the nucleus
from cytoplasm upon cadmium stress, upregulating FRM2
for oxidative stress attenuation, as well as activating gene
expression of SLT2, RLM1, and CHS1 for cell-wall maintenance
(Fernandes et al., 1997; Bilsland et al., 2004; Azevedo et al.,
2007; Mazzola et al., 2015). In addition to nuclear import, our
qPCR results implied that upregulation of CAD1 induced by
cadmium may also participate in these processes (Figure 3).
Moreover, we confirmed another known target, CUP1, which
was reported to increase copper and cadmium resistance
when constitutively expressed on high-copy episomal plasmids
(Ecker et al., 1986).

Several less studied overexpression targets were also isolated.
For example, Nrg1p is a Rim101-mediated transcriptional

repressor. NRG1 overexpression enhanced transcriptional
repression of TAT1, whose deletion also increased cadmium
tolerance (Ruotolo et al., 2008) (Supplementary Table 5).
Moreover, PPH21 encodes a catalytic subunit of protein
phosphatase 2A (PP2A), which mediates cadmium-
induced repression of class I transcription by targeting the
formation/dissociation of the Pol I-Rxn3 complex in yeast (Zhou
et al., 2013). It was reported that PP2A homolog prevented
cadmium-induced cell death via inactivation of Erk1/2 and
JNK and participated in MT expression regulation through
dephosphorylation of MTF-1 in mammalian cells (Chen et al.,
2008, 2014) (Supplementary Table 5). Also, BMH1 encodes a
member of 14-3-3 proteins that function in various biological
processes such as stress response (Kumar, 2017), and yeast cells
expressing the human 14-3-3β/α showed enhanced cadmium
resistance (Clapp et al., 2012) (Supplementary Table 5).

Notably, two new overexpression targets were identified in
this study. We demonstrated plasmid-overexpression of CRS5
increased cadmium tolerance in S. cerevisiae for the first time
(Figures 2B,C). CRS5 and CUP1 both encode MT in S. cerevisiae
(Chatterjee et al., 2020), and Crs5p possesses a Cd(II)-binding
ability (Pagani et al., 2007) (Supplementary Table 5). Gene
deletion of crs5 did not lead to cadmium sensitivity (Culotta
et al., 1994). Like CUP1, genomic overexpression of CRS5
was less effective than episomal expression (Supplementary
Figures 3, 4). In addition, both CUP1 and CRS5 transcription
levels were upregulated upon cadmium exposure (Figure 3),
suggesting dosage effects of MT may be common when
regarding cadmium tolerance (Jeyaprakash et al., 1991; Adamo
et al., 2012). Furthermore, QCR6 encodes the subunit 6
of the ubiquinol cytochrome-c reductase complex (complex
III). Complex III is a component of the mitochondrial
inner membrane electron transport chain, which is suggested
as a substantial source of reactive oxygen species (ROS)
induced by cadmium in mammalian tissues (Wang et al.,
2004) (Supplementary Table 5). Here we showed QCR6
overexpression weakly increased cadmium tolerance in yeast
(Figures 2B, C).

In addition to single targets, we also explored multiplex
overexpression optimization for improving cadmium resistance
in S. cerevisiae. The most resistant strain overexpressing both
CAD1 and NRG1 on plasmids exhibited a 3.6-fold improvement
in biomass accumulation compared with WT under 200 µM
cadmium, and 1.1-fold and 3.1-fold improvement relative to
the mutant strains containing individual overexpression of
CAD1 and NRG1, respectively. Furthermore, additive and
synergistic effects were observed among overexpression targets.
Additive effects for NRG1 and BMH1 were observed in CRS5-,
CUP1-, NRG1-, or PPH21-integrated strains (Figure 4), possibly
mediated via the cooperation of different tolerant mechanisms.
For example, the gene products of CRS5, CUP1, NRG1, and
PPH21 are metal-binding proteins, whereby NRG1 and BMH1
both encode transcription factors (Supplementary Table 4).
Synergistic tolerance improvement was achieved by CRS5-
NRG1, CUP1-NRG1, and CRS5-CUP1 co-expression (Figure 4),
suggesting the presence of genetic interactions that warrant
future mechanistic investigation.
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Certain discrepancies were observed between this study
and previous literature. For example, overexpression of
PPH21 improved cadmium tolerance (Figure 2), but it was
down regulated in response to cadmium stress (Figure 3). It
is not surprising, however, because the genes with substantially
altered transcription and translation revealed by transcriptomic
and proteomic profiling do not necessarily represent effective
targets for genetic engineering (Momose, 2001; Vido et al.,
2001; Fauchon et al., 2002; Jin et al., 2008; Ruotolo et al., 2008;
Serero et al., 2008; Thorsen et al., 2009; Huang et al., 2016;
Marmiroli et al., 2016). Indeed, little overlap was observed
between transcriptomics and genome-deletion screening results
for cadmium sensitivity (Serero et al., 2008). Moreover, different
sets of gene targets were often identified during different
genome-wide screening campaigns targeting cadmium resistance
(Thorsen et al., 2009), and the main reasons may include
variations in strain background, screening conditions, and the
formats of genetic mutations. For example, we observed different
effects of the same gene target between genomic and episomal
expression (Supplementary Figure 3), as well as between
liquid and agar media (Figure 2). Therefore, it is necessary to
perform genome-wide screening and multiplex optimization
in a particular target strain under conditions that best reflect
the real-world application scenario. Considering a range of
1–100 mg/L (∼8.9–890 µM) cadmium in wastewater (Huang
et al., 2020), existing efforts on engineering cadmium-resistant
yeast for bioremediation has only achieved moderate success.
For example, upon heterologous introduction of TaPCS1 that
encodes a phytochelatin synthase, S. cerevisiae was engineered
as a plant-like cadmium hyperaccumulator in the presence of
around 100 µM cadmium (Sun et al., 2019). In this study, we
engineered a yeast strain that can tolerate up to 400 µM cadmium
by co-overexpression of CAD1 and NRG1 (Supplementary
Figure 6). But further endeavor is warranted to further improve
the resistance to cadmium and other inhibitors in waste water for
real-world applications using S. cerevisiae.

Another limitation of the current approach is the inability
to explore functional potential within the S. cerevisiae pan-
genome due to the use of a cDNA-derived library of a select
yeast strain. For example, PCA1 encodes a cadmium efflux
transporter. Whereas some natural S. cerevisiae isolates harbor
a functional PCA1 gene that confers cadmium resistance, most
laboratory S. cerevisiae strains including CEN.PK2-1c used in this
study contain a nonfunctional Pca1p due to a G970R missense
mutation (Adle et al., 2007; Wei et al., 2014; Wong et al., 2021).
Therefore, it is unlikely to identify PCA1 as a positive hit
via genome-scale screening using a CEN.PK cDNA-derived
overexpression library. Moreover, the cDNA-templated library
can only cover endogenous genes. To engineer CEN.PK yeast
strains as bioremediation agents, it is necessary to screen

heterologous genes to further improve its cadmium tolerance
in future studies.

CONCLUSION

Using a genome-wide approach, we identified new and known
targets and their dual combinations that substantially improved
cadmium resistance of an industrial S. cerevisiae strain. Genome-
wide search and optimization of more than two targets
are desirable and underway for achieving superior cadmium
robustness via iterations of the current workflow either manually
(Si et al., 2015a) or using an automated biofoundries (Si et al.,
2017). This workflow can also be extended to engineer robustness
toward other chemical inhibitors in S. cerevisiae.
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