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Objective. To dissect the efficacy of Tol-DC therapy with or without IS in multiple animal models of transplantation.Methods and
Results. PubMed, Medline, Embase, and the Cochrane Library were searched for reviews published up to April 2015. Six systematic
reviews and a total of 61 articles were finally included. Data were grouped by organ transplantation models and applied to meta-
analysis. Our meta-analysis shows that Tol-DC therapy successfully prolonged allograft survival to varying extents in all except the
islet transplantation models and with IS drugs further prolonged the survival of heart, skin, and islet allografts in mice, but not of
heart allografts in rats. Compared with IS drugs alone, Tol-DC therapy with IS extended islet allograft survival in rats but failed to
influence the survival of skin, small intestine, and heart allografts in rats or of heart and skin allografts in mice. Conclusion. Tol-DC
therapy significantly prolongedmultiple allograft survival and further prolonged survival with IS. However, standardized protocols
for modification of Tol-DC should be established before its application in clinic.

1. Introduction

Transplantation is one of the most effective methods of
extending life for patients with end-stage organ failure. How-
ever, the immunosuppressive (IS) agents commonly used
to prevent graft-versus-host disease and host-versus-graft
disease compromise the recipient’s immune system and are
associated with side effects such as infection and recurrence
of disease, thus decreasing the patient’s quality of life. For
this reason, induction of donor-specific tolerance without
impairment of immune defense remains the holy grail of
transplantation research.

Dendritic cells (DCs), first described in 1973 [1], are
the most effective antigen-presenting cells and are key reg-
ulators of a balanced immune system by virtue of their
dual immunogenic and tolerogenic functions. Immunogenic
DCs have been developed as positive therapeutic vaccines to
elicit antitumor responses.The first DC vaccine, sipuleucel-T

(PROVENGE�), was approved by the FDA in 2010 and has
since been successfully used in prostate cancer treatment [2].
In contrast, tolerogenic DCs (Tol-DCs) lack essential costim-
ulatory signals and/or express inhibitory signals and play a
role in tolerance induction. Evidence indicates that Tol-DCs
have great therapeutic potential in autoimmunity and allergy
[3]. To date, several phase I trials assessing safety of Tol-
DCs in rheumatoid arthritis and refractory Crohn’s disease
patients were conducted [4, 5].Moreover, mounting evidence
shows that Tol-DCs are able to induce donor-specific T cell
hyporesponsiveness and prolong allograft survival. As such,
negative vaccines based on Tol-DCs have great potential to
prevent transplant rejection. The safety of autologous Tol-
DCs has so far been demonstrated in type I diabetes patients
[6] and is currently being tested by Moreau et al. in kidney
transplant recipients [7]. However, whether Tol-DCs can
effectively prolong allograft survival and show superiority
to other forms of IS therapy remains controversial. Here,

Hindawi Publishing Corporation
Journal of Immunology Research
Volume 2016, Article ID 5730674, 17 pages
http://dx.doi.org/10.1155/2016/5730674

http://dx.doi.org/10.1155/2016/5730674


2 Journal of Immunology Research

we present the results of a meta-analysis of the efficacy of
Tol-DCs in multiple animal models of transplantation. We
evaluated allograft survival time after treatmentwithTol-DCs
alone, compared the relative superiority of single therapywith
Tol-DCs or IS, and looked for evidence of synergy between
Tol-DC and IS therapy in promoting allograft survival.

2. Methods

2.1. Criteria for Considering Reviews for Inclusion and Exclu-
sion. We included systematic reviews that focused on the
effects of Tol-DC injection on allograft survival compared
with untreated groups in any kind of transplantation model.
To be included, the reviews had to describe the outcome of
interest.

2.2. Search Methods for Identification of Reviews. Com-
prehensive literature searches were conducted in PubMed,
Medline, Embase, and the Cochrane Library from database
inception until April 2015. We identified relevant system-
atic reviews using the following as MeSH or text words:
“transplantation,” “dendritic cells,” “tolerance,” and “review.”
To ensure comprehensive and up-to-date coverage of the
evidence base and to make recommendations for future
reviews, we also searched for and considered primary articles
that were potentially eligible for, but not yet included in,
published reviews.

2.3. Selection of Reviews and Articles. We screened reviews
according to the inclusion criteria above and also included
new primary studies, excluding duplicates and those already
included in the reviews. For primary articles, we included
only those that provided data applicable to meta-analysis
on (i) Tol-DCs versus untreated and/or (ii) Tol-DCs in
combination with IS agents (including immunosuppressive
drugs and/or costimulatory blockers) versus Tol-DCs alone
and (iii) Tol-DCs in combination with IS agents versus IS
alone. We also excluded studies that were included in the
reviews but did not provide data applicable to meta-analysis.

2.4. Data Extraction. For the eligible reviews, two review-
ers independently extracted information on author name,
publication year, transplantationmodel, outcomesmeasured,
whether a meta-analysis was conducted, and quality assess-
ment of the original articles. For primary articles, informa-
tion was extracted on transplantation model, interventions,
group comparisons, and outcomes measured. Disagreements
were resolved by consensus.

2.5. Quality Assessment of Systematic Reviews. The method-
ological quality of the included systematic reviews was
appraised by two independent reviewers using the Assess-
ment of Multiple Systematic Reviews (AMSTAR) tool [9].
AMSTAR consists of 11 questions, each with “Yes,” “No,”
“Can’t Answer,” or “Not Applicable” answers, and checks
for the following items: (1) “a priori” study design; (2)
duplicate reviewers for study selection and data extraction;
(3) comprehensive literature search; (4) publication status as

an inclusion criterion (i.e., gray or unpublished literature);
(5) list of studies included/excluded; (6) characteristics of
the included studies; (7) scientific quality assessment and
documentation; (8) appropriate formulation of conclusions
(based on methodological rigor and scientific quality of
the studies); (9) appropriate methods of combining studies
(homogeneity test, effects model, and sensitivity analysis);
(10) assessment of publication bias (graphic and/or statistical
test); and (11) inclusion of conflict of interest statement.
Disagreements were resolved by consensus.

2.6. Data Synthesis. Data were divided into six groups
according to the transplantation model and then further
divided into subgroups based on animal species. For each
model, we grouped the data by intervention as follows: Tol-
DCs versus untreated, Tol-DCs in combinationwith IS versus
Tol-DCs, and Tol-DCs in combination with IS versus IS.
The primary end point of our meta-analysis was allograft
survival time. For each study, we calculated the summary
mean difference and 95% confidence intervals (CI) for the
end point. We pooled studies using a random effects model,
making the assumption that individual studies estimated
different treatment effects. We examined heterogeneity in the
main analysis and subgroup analysis by 𝑄 statistic and 𝐼2
index. Three articles were excluded from our summary table
(Table 3) and discussion because they contained only a single
set of data and the evidence was too weak to be included
[16–18]. However, data from those articles are mentioned
individually in the Results.

2.7. Ethics. No ethical approval was required.

3. Results

3.1. Results of Search and Selection. Our research identified
1121 reports, of which 87 were excluded as duplicates. Screen-
ing by the titles and abstracts, we excluded 1027 articles
for irrelevant themes or unwanted article types and 7 were
selected to be read in their entirety. Of those, 1 systematic
review was excluded for irrelevant theme and 6 systematic
reviews assessing the efficacy of Tol-DC treatment in animal
models of heart, liver, kidney, small intestine, skin, and islet
transplantation satisfied our inclusion and exclusion criteria
and were further evaluated (Figure 1) [10–15]. Of the 112
studies included in the six systematic reviews, 65 studies were
excluded because of inadequate data for meta-analysis (heart
28, skin 16, kidney 9, islet 8, small intestine 3, and liver 2), and
the remaining 47 studies were included in our overview [8,
16, 17, 19–63]. We also included 14 newly identified primary
articles (heart 8 [64–71], skin 3 [8, 71, 72], and islet 3 [18, 73,
74]). Thus, we evaluated a total of 61 studies (Table 1).

3.2. Description of Included Reviews. Of the six included
reviews, which were published between 2012 and 2014, only
one conducted a meta-analysis [10–15]. The remaining five
had incomplete information, such as omission of sample
size or standard deviation, and applied semiquantitative
methods to analyze the collected data. The kidney and islet
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Potentially relevant reports identified
through database: n = 1121

Exclude duplicates (n = 87)

Included: 1034 studies

Included: 7 studies

Exclude irrelevant studies
and unwanted article types

by titles and abstracts
(n = 1027)

Exclude irrelevant studies by
full articles (n = 1)

Included: 6 studies

Figure 1: Flow diagram of searching and selection for included systematic reviews.

transplantation studies included both mouse and rat models,
whereas the skin and heart studies included only mouse
models and the small intestine and liver studies included only
rat models (Table 1). Studies using either model were eligible
for our overview.

3.3. Methodological Quality of Included Reviews. We assessed
the methodological quality of the six included reviews using
AMSTAR. The scores ranged from 5 to 8, with points
deducted for Item 4 (status of the publication as an inclusion
criterion), Item 5 (list of studies included/excluded), Item
9 (appropriate methods of combining studies), and Item 10
(assessment of publication bias) (Table 2). Although the sys-
tematic reviews are of onlymoderate to high quality, it should
be borne in mind that there are no conventional criteria for
quality assessment of animal studies and no clinical data are
available for an equivalent analysis of humans.

3.4. Effects of Interventions on the Survival of Organ Allografts

3.4.1. Liver Transplantation Models. In rats, infusion of Tol-
DCs promoted liver allograft survival for an additional 18
days compared with no treatment (mean and 95% CI; 18.17,
11.02 to 25.33) (Figure 3). One study (excluded from the
overall evaluation) reported that Tol-DC + IS therapy was
more effective in prolonging graft survival than either Tol-
DCs or IS alone (mean ± SD, 112 days ± 19.0 versus 58 ± 3.7
versus 54 ± 2.4, resp.) [16].

3.4.2. Renal Transplantation Models. Tol-DC therapy pro-
longed renal graft survival by 17 days in rats (17.72, 13.35 to
22.10) (Figure 3). Moreover, one study reported that Tol-DCs
+ IS extended graft survival significantly longer than Tol-DCs
or IS alone (38.7 days ± 40.0 versus 5.0 ± 2.2 versus 7.5 ± 1.2,
resp.) [17].

3.4.3. Heart TransplantationModels. Heart grafts survived 14
days longer in Tol-DC-infused rats than in untreated rats

(14.21, 6.11 to 22.31) (Figure 2). However, Tol-DC + IS therapy
failed to further prolong allograft survival compared with
Tol-DCs alone (60.21 days, −43.78 to 164.20) (Figure 4) or
IS alone (57.56 days, −59.15 to 174.27) (Figure 5). In mice,
infusion of Tol-DCs extended graft survival by 11 days (11.61,
7.73 to 15.49) (Figure 2). Tol-DC + IS therapy extended graft
survival compared with Tol-DCs alone (5.05 days, 1.53 to
8.57) (Figure 4) but not with IS alone (1.72 days, −3.67 to 7.10)
(Figure 5).

3.4.4. Small Intestine TransplantationModels. In rats, Tol-DC
therapy prolonged graft survival by 8 days (8.89, 6.16 to 11.61)
(Figure 3); however, Tol-DC + IS therapy failed to promote
graft survival longer than IS therapy alone (8.97 days, −3.75
to 21.07) (Figure 5).

3.4.5. Islet Transplantation Models. Infusion of Tol-DCs
failed to prolong allograft survival in rats (7.28 days, −2.91
to 17.46) (Figure 3). However, Tol-DC + IS therapy was
significantly better than Tol-DCs or IS alone in prolonging
graft survival (137.49 days, 96.59 to 178.40 and 177.83 days,
160.05 to 195.62, resp.) (Figures 4 and 5). In mice, Tol-DC
therapy prolonged allograft survival by 6 days (6.81, 2.97 to
10.64) (Figure 3). One included study reported that Tol-DCs
+ IS facilitated graft survival for significantly longer than Tol-
DCs or IS alone (77.4 days ± 10.7 versus 24.9 ± 4.5 versus
38.9 ± 6.1, resp.) [18].

3.4.6. Skin Transplantation Models. The systematic reviews
did not include studies of the effects of Tol-DC therapy alone
on skin allograft survival in rats. Nevertheless, our analysis
indicates that graft survival was no better in rats treated with
Tol-DC + IS therapy than with IS alone (7.15 days, −3.84 to
18.13) (Figure 5). In mice, Tol-DC therapy prolonged graft
survival by 5 days (5.45, 2.31 to 8.59) (Figure 3), and Tol-DCs
+ IS had a significantly better outcome compared with Tol-
DCs alone (3.84 days, 3.40 to 4.29) (Figure 4) but not with IS
alone (0.45 days, 0.00 to 0.89) (Figure 5).
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Table 1: Characteristics of included systematic reviews.

Included reviews Tx models Animal models Data synthesis Included
studies

Excluded
studies

Potential
new

studies

Final
included
studies

Wu et al. 2012 [10] Heart
Mice Included 44 28 2
Rats Not included 0 0 6
Total Description 44 28 8 24

Sun et al. 2012 [11] Islet
Mice Included 9 7 3
Rats Included 4 1 0
Total Description 13 8 3 8

Xia et al. 2014 [12] Liver
Mice Not reported 0 0 0
Rats Included 7 2 0
Total Description 7 2 0 5

Xia et al. 2013 [13] Renal
Mice Included 5 5 0
Rats Included 11 4 0
Total Description 16 9 0 7

Zhou et al. 2013 [14] Skin
Mice Included 21 15 3
Rats Not included 0 0 0
Total Description 21 15 3 9

Sun et al. 2013 [15] Small intestine

Mice Not reported 0 0 0
Rats Included 11 3 0

Total Description &
meta-analysis 11 3 0 8

Total 5 112 65 14 61

Table 2: Methodological quality assessment of systematic review.

SR Model
Methodological quality assessment of the included systematic reviews,

AMSTAR items
1 2 3 4 5 6 7 8 9 10 11 Rating

Sun et al. [15] Small intestine Yes Yes Yes No No Yes Yes Yes No Yes Yes 8
Zhou et al. [14] Skin Yes Yes Yes No No Yes Yes Yes N/A No Yes 7
Sun et al. [11] Islet Yes Yes Yes No No Yes Yes Yes N/A No Yes 7
Wu et al. [10] Heart Yes Yes Yes No No Yes Yes No N/A No Yes 6
Xia et al. [13] Renal Yes No Yes No No Yes Yes Yes N/A No Yes 6
Xia et al. [12] Liver Yes No Yes No No Yes Yes No N/A No Yes 5
Total 6 4 6 0 0 6 6 4 0 1 6
% 100% 67% 100% 0% 0% 100% 100% 67% 0% 17% 100%
N/A: not applicable. There are 11 items in total, “Yes” making 1 score and “No” or “N/A” 0.

3.5. Effects of Different Interventions on Allograft Survival

3.5.1. Tol-DCs versus No Treatment. Tol-DC therapy pro-
longed allograft survival in all transplantation models in rats
and/or mice, with the exception of the islet transplantation
model in rats. Ranked in order from longest to shortest
allograft survival time, Tol-DC therapy was most efficacious
for liver, kidney, heart, small intestine, and islet allografts
in rats and heart, islet, and skin allografts in mice (Table 3,
Figures 2 and 3).

3.5.2. Tol-DCs + IS versus Tol-DCs Alone. In rats, Tol-DCs
+ IS further prolonged the survival of islet allografts (137.49
days, 96.59 to 178.40), but not heart allografts (60.21 days,
−43.78 to 164.20), compared with Tol-DCs alone. In mice,
Tol-DCs + IS were superior to Tol-DCs alone in prolonging
survival of both heart and skin allografts (5.05 days, 1.53
to 8.57 versus 3.84 days, 3.40 to 4.29, resp.) (Table 3 and
Figure 4). Three studies of mouse islet [18], rat liver [16],
and rat kidney [17] transplantation models reported better
outcomes with Tol-DCs + IS than with Tol-DCs alone.
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Study or subgroup

1.1.1 Allograft survival in mice
Bonham et al. 2002 (1)
Bonham et al. 2002 (2)
Bonham et al. 2002 (3)
Fu et al. 1996 (4)
Gao et al. 1999 (5)
Han et al. 2005 (6)
Heng et al. 2010 (7)
Hikawa et al. 2007 (8)
Hikawa et al. 2007 (9)
Kaneko et al. 2003 (10)
Lan et al. 2006 (11)
Li et al. 2002 (12)
Li et al. 2002 (13)
Li et al. 2002 (14)
Liang et al. 2006 (15)
Liang et al. 2006 (16)
Liu et al. 2014 (17)
Lina et al. 1997 (18)
Lina et al. 1997 (19)

Lina et al. 1997 (21)
Lina et al. 1997 (20)

Lina et al. 1997 (22)
Min et al. 2000 (23)
O’connell et al. 2002 (24)
O’connell et al. 2002 (25)
O’connell et al. 2002 (26)
O’connell et al. 2002 (27)
Smyth et al. 2013 (28)
Smyth et al. 2013 (29)
Smyth et al. 2013 (30)
Su et al. 2008 (31)
Takayama et al. 2002 (32)
Taner et al. 2005 (33)
Taner et al. 2005 (34)
Zhang et al. 2004 (35)
Zhang et al. 2004 (36)
Subtotal (95% CI)

1.1.2 Allograft survival in rats

Depaz et al. 2003 (43)
Garrovillo et al. 1999 (44)
Garrovillo et al. 2001 (45)
Jiga et al. 2007 (46)
Jiga et al. 2007 (47)
Subtotal (95% CI)

Total (95% CI)

Mean

8.88
69.6
29.5
23.3
17.5
30.5
48
35

16.88
6.4
29

26
5.3

38.9
24.2

29.8
20

21.83
22

59.4
23.88

20.75
37.25

19
10
12

SD

2.59
30.13
14.01

5.5
4.34
3.2
5.9

25.66
7.3

1.34
8.3

3.6
1.34

24.75
3.29

14
4

3.54
4.12
39.1

11.69

1.89
34.26

2
1.4
0.6

Total

8
10
8

15
8
8
9

11
8
5
5

5
10
10
10

10
6

9
5
5
8

279

4
16

8
5
5

71

350

Mean

10.29
10.29
10.29
10.1
9.38
8.6
9

13.1
13.1

10.54
11.1

6.7
10.13
10.13

8

10.2
10

6.66
10.67
9.14
9.14

6.5
6.5

10.5
10.2
10.5

SD

2.21
2.21
2.21
2.2

1.19
1.1

1.46
4.32
4.32
1.39
1.2

0.4
2.23
2.23
0.53

2.2
2

1.21
1.58
1.57
1.57

0.76
0.76

1
0.7
1

Total

7
7
7
8
8
8
8
8
8

13
14

7
8
8

10

7
5

9
9
7
7

294

8
8

8
5
6

87

381

Weight

2.3%
1.7%
2.1%
2.3%
2.3%
2.3%
2.2%
1.8%
2.2%
2.3%
2.2%

2.3%
2.3%
1.8%
2.3%

2.1%
2.2%

2.3%
2.2%
1.0%
2.1%

76.5%

2.3%
1.8%

2.3%
2.3%
2.3%

23.5%

100.0%

Tol-DC Untreated
IV, random, 95% CI

Mean difference

Footnotes
(1) CTLA4Ig-DC
(2) (si-NF-𝜅B decoy ODN+CTLA4Ig)-DC
(3) si-NF-𝜅B decoy ODN-DC
(4) GM-CSF+DC
(5) Donor spleen DC coculture with leucocytes
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Figure 2: Mean difference (95% confidence intervals) for Tol-DC infusion versus untreated groups for allografts survival in heart. All studies
involved used MHC complete mismatch models either in rats or in mice. In the footnotes, “−” before “DC” means genetic modification and
“+” means substances added in the culture medium. If not specialized, DC refers to donor bone borrow DC; when injection time is involved,
we take the transplantation day as day 0. i.v.: intravenous; p.v.: portal vein.
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Figure 3: Continued.
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Figure 3: Mean difference (95% confidence intervals) for Tol-DC infusion versus untreated groups for allografts survival in islet (a), small
intestine (b), liver (c), skin (d), and renal (e) transplantation models. Except for MHC semimismatch model in skin transplantation group,
all other studies involved used MHC complete mismatch models either in rats or in mice. In the footnotes, “−” before “DC” means genetic
modification and “+”means substances added in the culture medium. If not specialized, DC refers to donor bone borrowDC; when injection
time is involved, we take the transplantation day as day 0. i.v.: intravenous; i.p.: intraperitoneal; s.c.: subcutaneous.
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Figure 4: Continued.
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Figure 4: Mean difference (95% confidence intervals) for Tol-DC in combination with IS versus Tol-DC alone for allografts survival in heart
(a), islet (b), and skin (c) transplantationmodels. In the footnotes, “−” before “DC”means geneticmodification and “+” inside the parentheses
means substances added in the culture medium and “+” outside the parentheses means combined IS agents. If not specialized, DC refers to
donor bone borrow DC.

3.5.3. Tol-DCs + IS versus IS Alone. In rats, Tol-DCs + IS
led to better outcomes than IS alone in the survival of islet
allografts, but not of heart, skin, or small intestine allografts,
whereas in mice, Tol-DCs + IS were not significantly better
than IS alone in prolonging the survival of heart or skin
allografts (Table 3 and Figure 5). In three studies, the survival
of mouse islets, rat liver, and rat kidneys was extended for
significantly longer with Tol-DCs + IS than with IS alone [16–
18].

3.5.4. Subgroup Analysis. All of themice used in the included
studies were inbred strains, while the rats used in the liver,
kidney, and small intestine studies included both inbred
strains and closed colony randomly bred animals. A subgroup
analysis of the inbred strains and closed colonies revealed
similarly prolonged survival times in the kidney and small
intestine transplantationmodels, and themerged results were
identical. In the liver transplantation model, despite negative
merged result (28.98 days,−11.16 to 69.12) in closed colony, we
tended to take it as positive because of positive results of both
included studies, then identical to inbred strains (Figure 6).
Therefore, no heterogeneity in allograft survival was observed
in the inbred strains and closed colony animals.

4. Discussion

Thecurrent overview included a total of 61 articles (47 studies
from six systematic reviews and 14 primary studies) dissect-
ing the efficacy of adoptive transfusion of Tol-DCs with or
without IS drugs in promoting the survival of heart, liver, kid-
ney, small intestine, skin, and islet allografts in animals. Tol-
DC therapy prolonged allograft survival to varying extents
in all except the islet transplantation models. Moreover, Tol-
DC combined with IS drug therapy further prolonged the
survival of heart, skin, and islet allografts in mice, but not of
heart allografts in rats. Compared with IS drugs alone, Tol-
DC + IS therapy extended islet allograft survival in rats but
failed to influence the survival of skin, small intestine, and
heart allografts in rats or of heart and skin allografts in mice
(Table 3). Although three articles reported that Tol-DC + IS
therapy had better outcomes than IS alone in the mouse islet,

rat liver, and kidney transplantationmodels, the evidence was
based on single sets of data and we therefore did not include
the results in our discussion. In addition, we did not directly
compare Tol-DC and IS single therapies because most of
the IS drugs have long histories of clinical use, whereas
Tol-DC therapy has not yet been standardized and protocol
differences undoubtedly affected the outcomes of the studies
included here [10–15]. Comparisons of outcomes with single
versus combination Tol-DC and IS therapy suggest that IS
drugs have advantages over Tol-DCs. Our meta-analysis also
shows that the efficacy of Tol-DC and Tol-DC + IS therapy
varied with the transplantation model in both mice and rats,
presumably reflecting the diversity of immune environments,
organ-specific responses, and therapeutic protocols. Indeed,
the severity and acuteness of rejection have been reported to
vary for different grafts within a single organism, indicating
organ-specific immune responses [75]. Moreover, in one
transplantation model, the outcomes were different in rats
and mice, suggesting species-specific responses to Tol-DC
therapy.

4.1. Limitations. The following limitations of this overview
are noted. (1) The studies used different strains of rats
and mice. Gene expression in primary immunocytes varies
greatly across inbred mouse strains, suggesting that the
same Tol-DC therapy may have variable efficacy in different
strains [76]. (2) The Tol-DC modification protocols and
organ donor/recipient strain derivation differed among the
studies. Thus, Tol-DCs with the same modification gave
different outcomes depending on the transplanted organ
and the donor/recipient combinations [54, 74, 77]. Addi-
tionally, different gene modifications, drugs, cytokines, and
culturemedia can induce Tol-DCswith immature, mature, or
semimature phenotypes. Immature DCs are conventionally
considered to be tolerogenic and mature DCs to be immuno-
genic. However, immature Tol-DCs are not always superior
to mature Tol-DCs in terms of allograft survival [38, 78]. (3)
The studies differed in Tol-DC injection time, route, dose,
and frequency. These factors influence Tol-DC efficacy to
variable extents [37, 40, 65], presumably by affecting the
distribution, maintenance, and homing of Tol-DCs [79, 80].
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Figure 5: Continued.
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Figure 5: Mean difference (95% confidence intervals) for Tol-DC in combination with IS versus IS alone for allografts survival in heart (a),
small intestine (b), islet (c), and skin (d) transplantation models. Rats used in study Gorczynski 1998 [8] in small intestine and skin models
were MHC semimismatch. In the footnotes, “−” before “DC” means genetic modification and “+” inside the parentheses means substances
added in the culture medium and “+” outside the parentheses means combined IS agents. If not specialized, DC refers to donor bone borrow
DC.

(4) The type of IS drug and the dose, time, and frequency of
drug injection also differed considerably among the studies.
(5)The statistical heterogeneity of the meta-analysis was very
large for all transplantation models.

4.2. Clinical and Preclinical Implications. Our meta-analysis
suggests that infusion of Tol-DCs alone is able to promote
survival of allografts. However, there are currently no stan-
dardized protocols for the modification or application of Tol-
DCs. To date, clinical experience with Tol-DCs is limited to
a phase I trial of autologous Tol-DCs for type I diabetes,
rheumatoid arthritis and refractory Crohn’s disease, and
an ongoing safety trial of autologous Tol-DCs for kidney
transplantation [4–7]. Nevertheless, our results indicate that
a number of problems must be solved before Tol-DC therapy
successfully moves from bench to bedside. For instance,
standardized protocols must be established for the modifi-
cation and dose of Tol-DCs; the time, frequency, and route
of injection; and the type of IS drugs to be administered
in combination. Considering that Tol-DC efficacy may be
organ-specific, the therapeutic protocol may also need to
be tailored to the transplanted organ. Although Tol-DC
therapy did not give better outcomes than IS therapy or show
synergy with IS drugs, Tol-DC therapy does have advantages
over drug therapy. First, Tol-DCs are generally infused
before transplantation, and since they exert their effect at
the very earliest stages of the immune response, they are
very likely to inhibit hyperacute rejection. Second, Tol-DCs

are likely to induce tolerance or prolong allograft survival
without impairing the recipient’s immune defense against
other antigens. Third, the studies included in this overview
did not administer IS drugs continuously. Therefore, Tol-
DC therapy may allow IS drug use to be reduced, thus
decreasing their toxicity and improving the recipients’ quality
of life, which is particularly important for IS-sensitive and IS-
tolerant recipients. Notably, tacrolimus has been reported to
inhibit the functions of Tol-DCs in mice [81], suggesting that
further preclinical studies of Tol-DC and drug combinations
are needed.

Our results indicate that Tol-DC efficacy may be species-
specific, suggesting that studies in primates will be more
clinically relevant. A kidney transplantation model has been
successfully established in rhesus macaques and infusion of
donor-derived Tol-DCs in combination with IS prolonged
allograft survival [82]. This nonhuman primate model will
help to translate research findings from animals to the clinic.
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Figure 6: Continued.
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Figure 6: Mean difference (95% confidence intervals) for subgroups of inbred and closed colony rats for allografts survival in liver (a), renal
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