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Functional magnetic resonance imaging (fMRI) evaluates brain activity using

blood oxygenation level-dependent (BOLD) contrast. Resting-state fMRI

(rsfMRI) examines spontaneous brain function using BOLD in the absence of

a task, and the default mode network (DMN) has been identified from that.

The DMN is a set of nodes within the brain that appear to be active and in

communication when the subject is in an awake resting state. In addition to

signal changes related to neural activity, it is thought that the BOLD signal

may be affected by systemic low-frequency oscillations (SysLFOs) that are

non-neuronal in source and likely propagate throughout the brain to arrive at

different regions at different times. However, it may be difficult to distinguish

between the response due to neuronal activity and the arrival of a SysLFO

in specific regions. Conventional single-shot EPI (Conv) acquisition requires

a longish repetition time, but faster image acquisition has recently become

possible with multiband excitation EPI (MB). In this study, we evaluated the

time-lag between nodes of the DMN using both Conv and MB protocols

to determine whether it is possible to distinguish between neuronal activity

and SysLFO related responses during rsfMRI. While the Conv protocol data

suggested that SysLFOs substantially influence the apparent time-lag of

neuronal activity, the MB protocol data implied that the effects of SysLFOs
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and neuronal activity on the BOLD response may be separated. Using a higher

time-resolution acquisition for rsfMRI might help to distinguish neuronal

activity induced changes to the BOLD response from those induced by

non-neuronal sources.

KEYWORDS

resting-state fMRI, default mode network, low-frequency oscillation, multiband EPI,
BOLD signal

Introduction

Brain functional magnetic resonance imaging (fMRI)
utilizes blood oxygen level-dependent (BOLD) signal contrast
to evaluate the neuronal activity in active areas of the brain
(Ogawa et al., 1990). Neuronal activity leads to increased
blood flow in specific regions, and the subsequent decrease
in deoxy-hemoglobin concentration in the activated region is
reflected by an increase in the BOLD signal intensity (Obata
et al., 2004; Hirano et al., 2011, 2018). Therefore, the BOLD
signal is not a direct measurement of brain activity, but rather
a measure of secondary hemodynamic changes triggered by
neuronal activation (Buxton et al., 2004; Liu, 2013). In addition
to signal changes related to neural activity, the BOLD signal
may be affected by global changes in arteriovenous blood flow
velocity, cardiac pulsation, and respiration (Chang and Glover,
2009; Chang et al., 2009). Since the effect of those changes
on the BOLD response is relatively slow in comparison to
neuronal activity-related changes, they are called low-frequency
oscillations (LFOs) (Murphy et al., 2013).

Tong et al. (2013) have explored low-frequency
contributions to the BOLD signal that they identified as
systemic low-frequency oscillations (SysLFOs). SysLFOs are
considered to be non-neuronal in source and can be widely
observed in the brain using fMRI. Although it is thought
that SysLFO signal may derive from Mayer waves, CO2
concentration fluctuations and vasomotions, the detailed source
of the signal is still unclear (Nilsson and Aalkjaer, 2003; Wise
et al., 2004; Julien, 2006; Rivadulla et al., 2011; Sassaroli et al.,
2012; Golestani et al., 2015). Tong et al. (2013) suggested that
SysLFOs are endogenous to the cerebral blood flow and, due
to the time they take to propagate, arrive at different regions
at different times. Furthermore, if SysLFOs travel throughout
the body with the blood flow, it is likely that related signals
will be detectable at peripheral sites (Tong and Frederick,
2014). An example of this was provided by a study where near
infrared spectroscopy (NIRS) and resting-state fMRI (rsfMRI)
were simultaneously performed (Erdoğan et al., 2016). After
bandpass filtering the data to the range 0.01–0.1 Hz, it was
found that changes in oxygenation measured at the fingertip
are significantly correlated with the global BOLD signal (GS),

which was obtained by averaging over the whole brain excluding
white matter (WM) and cerebrospinal fluid (CSF). The same
group also proposed a method for estimating the arrival time
of a SysLFO in a particular region of the brain. The method
estimates the delay between the GS and the BOLD signal at each
pixel, and then a SysLFO-MAP of the whole brain is created.
SysLFO-MAPs were found to have a significant correlation with
the cerebral blood flow measured with dynamic susceptibility
contrast (DSC) MRI (Erdoğan et al., 2016; Tong et al., 2017).

Resting-state fMRI is performed while the subject is awake
and at rest, so the data reflects the idle state of the brain
(Biswal, 2012). It is thought that rsfMRI signals demonstrate the
mechanical coupling and connectivity between various regions
of the brain. One of the most important networks is the default
mode network (DMN), which consists of nodes in the posterior
cingulate cortex (PCC), left and right lower parietal lobes (L-
and R-IPL), and medial prefrontal cortex (mPFC) (Greicius
et al., 2003). The connectivity of neuronal activity is considered
to be high if the BOLD signal changes at each of these nodes are
highly correlated. Various studies have reported an association
between brain diseases, such as dementia and schizophrenia,
and DMN connectivity (Greicius et al., 2004; Liang et al., 2006;
Barkhof et al., 2014).

Assuming there is some delay in the propagation of neuronal
activity throughout the brain, it is likely that there is a time-
lag between the different nodes of the DMN. However, it may
be difficult to distinguish between the time-lag in the response
due to neuronal activity and the arrival of a SysLFO in specific
regions. The conventional single-shot EPI (Conv) acquisition
protocol widely used for rsfMRI takes about 2,000 ms to image
the whole brain. In contrast, multiband EPI (MB) acquisition
enables imaging of the entire brain in a much shorter time (TR
500 ms), which means that BOLD signals can be measured with
improved time-resolution (Feinberg et al., 2010). MB protocol
data therefore contains four times more information about
separate neuronal and possible SysLFO-related signals than data
acquired with a Conv protocol. Using a higher time-resolution
acquisition method might help to distinguish neuronal activity
related time-lags from SysLFO delays.

In this study, we evaluated the time-lag between nodes of
the DMN using both the Conv and MB protocols to determine
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whether it is possible to distinguish between neuronal activity
and SysLFO related responses during rsfMRI.

Materials and methods

Eighteen healthy female volunteers (age 26.6 ± 7.1 years)
participated in this study. All subjects provided informed
consent, and the institutional review board of the National
Institutes for Quantum Science and Technology approved the
research protocol (# 16-031).

Data acquisition

All MRI scans were conducted with a clinical 3T MRI
system (MAGNETOM Verio 3T; Siemens Healthcare K.K.,
Erlangen, Germany) equipped with a 32-channel phased-array
head matrix coil. A high-resolution T1-weighted sagittal
three-dimensional anatomical image was acquired using
magnetization prepared rapid-gradient echo (MPRAGE) with
the following parameters: TR = 2,300 ms, TE = 1.95 ms,
TI = 900 ms, flip angle = 9 degrees, matrix = 512 × 512,
FOV = 250 mm × 250 mm, slice thickness = 1 mm, total
acquisition time = 4 min 33 s. For rsfMRI scanning, Conv
protocol data was acquired with the following parameters:

TR = 2,000 ms, TE = 25 ms, flip angle = 90 degrees,
matrix = 64 × 64, FOV = 240 mm × 240 mm, slice
thickness = 3.8 mm, slice gap = 0.5 mm, repetitions = 204,
total acquisition time = 6 min 52 s. The high time-resolution
MB protocol rsfMRI data was acquired with a multiband EPI
sequence (University of Minnesota sequence CMRR MB EPI
VD13A R016a) using the following parameters: TR = 500 ms,
TE = 30 ms, flip angle = 44 degrees, matrix = 64 × 64,
FOV = 240 mm × 240 mm, slice thickness = 3.8 mm, slice
gap = 0.456 mm, multiband factor = 6, repetitions = 600, total
acquisition time = 5 min 7 s. All subjects were instructed to lie
still and remain awake with their eyes open while watching a red
dot on a screen positioned above them. The datasets generated
during the current study are available from the corresponding
author on reasonable request.

Preprocessing

Resting-state fMRI data was preprocessed using DPARSF
(Version 4.31) and SPM12.2 The first 10 images for each subject
were discarded to allow the longitudinal magnetization to reach

1 http://restfmri.net/forum/DPARSF

2 https://www.fil.ion.ucl.ac.uk/spm/

FIGURE 1

Procedure used to assess time-lags between nodes of the DMN. (A) The PCC ROI and GS ROI (whole brain excluding WM and CSF) were
extracted and averaged over to generate the 1D seed data. (B) The correlation coefficient between the 1D seed and the time-course at each
pixel was calculated. Each single-pixel time-course was shifted in time (1) and the correlation coefficient was calculated for each value of 1

[i.e., CCor(1)]. After cubic spline interpolation with respect to 1, the maximum value of the correlation coefficient was taken as the time-lag for
that pixel. (C) Time-lag differences were calculated with respect to the mean time-lag in the PCC ROI and maps were produced to visually
evaluate the time-lag across the brain. Mean time-lag differences were also calculated for the mPFC, L-IPL and R-IPL for further analysis.
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a steady-state. Slice-timing correction and motion correction
were both applied. The data was registered and normalized to
the Montreal Neurological Institute (MNI) space using the T1
image re-sampled to 3-mm isotropic voxels. Smoothing was
performed with a 4 mm FWHM Gaussian kernel. Time courses
were filtered for linear trends and then band-pass filtering
(0.01–0.1 Hz) was applied. Confounding terms such as head
motion, white matter signal and cerebrospinal fluid signal,
were regressed out.

Time-lag analysis

Seed-based correlation analysis was performed to estimate
the time-lags due to functional connectivity of the mPFC, L-IPL,
and R-IPL with respect to seed data taken from the PCC and GS.
First, a three-dimensional volume seed regions of interest (ROI)
was drawn for both the PCC and GS (whole brain without WM

and CSF) using the Automated Anatomical Labeling (AAL)
brain template, and a one-dimensional seed time-course was
produced by averaging over each ROI (Figure 1A). Second,
the correlation coefficient was calculated between the one-
dimensional seed time-courses and the time-course for each
pixel in the brain. The single-pixel time-courses were also shifted
in time (1), and the correlation coefficient between the seed
time-course and the shifted single-pixel time-course at each 1

[i.e., CCor(1)] was calculated. The full range of 1 was ± 20 s
in 2 s steps for the Conv protocol and ± 5 s in 0.5 s steps for
the MB protocol. Cubic spline interpolation was then applied
to CCor(1) as a function of 1 for each pixel, and the 1

corresponding to the highest value of CCor(1) was defined to be
the time-lag for that pixel (Figure 1B). To facilitate comparison
between the PCC and GS seed results, the mean time-lag in the
PCC ROI was calculated and then subtracted from the time-
lag of each pixel. Time-lag difference maps were then produced
to visually evaluate the time-lag across the brain (Figure 1C),

FIGURE 2

Assessment of the difference in time-lag between the PCC and each of the DMN nodes for data acquired with the Conv protocol
(TR = 2,000 ms). Eighteen healthy female volunteers participated in this study. (A) Time-lag difference maps calculated using the PCC seed.
(B) Box-whisker plots of the time-lag difference estimated using the PCC seed for each of the mPFC, L-IPL, and R-IPL ROIs. (C) Time-lag
difference maps calculated with the GS seed. (D) Box-whisker plots of the time-lag difference estimated using the GS seed for each of the
mPFC, L-IPL and R-IPL ROIs.

Frontiers in Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2022.961686
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-961686 September 15, 2022 Time: 16:20 # 5

Tachibana et al. 10.3389/fnins.2022.961686

and the mean values in the mPFC, L-IPL, and R-IPL were
calculated using ROIs drawn with reference to the AAL brain
template. The Wilcoxon signed-rank test was then performed
to determine whether the time-lags of each of the DMN nodes
with respect to the PCC were significantly different from zero.
Bonferroni correction for multiple comparisons was performed
by multiplying each p-value by 3 for the three different nodes
of the DMN.

Correlation analysis

Spearman’s correlation analysis was performed for the
mPFC, L-IPL, and R-IPL to evaluate the relationship between
the time-lag of neuronal activity, as represented by the PCC
seed analysis, and the time-lag of SysLFOs, as represented by the
GS seed analysis. As comparisons were performed for the three
different nodes of the DMN, Bonferroni correction for multiple
comparisons was applied by multiplying each p-value by 3.

Results

Time-lag analysis

Supplementary Figure 1 contains the cross-correlation
curves and maps at each 1 for one of the subjects (No.
7). Subsequently, time-lag difference maps were generated
(Figures 2A,C, 3A,C), and time-lag analysis was performed on
the Conv and MB protocol data for both the PCC and GS seeds.

For the Conv protocol data (Figure 2), the median time-
lags estimated with the PCC seed for the mPFC, L-IPL,
and R-IPL ROIs differed from the time-lag of the PCC ROI
by –547.7, –716.4, and –401.8 ms, respectively (Figure 2B).
These differences in time-lag all differed significantly from
zero (mPFC, corrected p = 0.037; L-IPL, corrected p = 0.0099;
R-IPL, corrected p = 0.033), indicating that the responses were
advanced in time compared to that of the PCC. Additionally,
the median time-lags estimated using the GS seed differed from
that of the PCC ROI by –799.1, –841.6, and –678.7 ms for the

FIGURE 3

Assessment of the difference in time-lag between the PCC and each of the DMN nodes for data acquired with the MB protocol (TR = 500 ms).
Eighteen healthy female volunteers participated in this study. (A) Time-lag difference maps calculated using the PCC seed. (B) Box-whisker plots
of the time-lag difference estimated using the PCC seed for each of the mPFC, L-IPL and R-IPL ROIs. (C) Time-lag difference maps calculated
with the GS seed. (D) Box-whisker plots of the time-lag difference estimated using the GS seed for each of the mPFC, L-IPL and R-IPL ROIs.
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FIGURE 4

Spearman’s correlation analysis between the time-lag differences calculated with the PCC seed and those calculated with the GS seed.
Eighteen healthy female volunteers participated in this study. (A–C) Results calculated from the Conv protocol data. (D–F) Results calculated
from the MB protocol data. The correlations obtained for the MB protocol data were considerably weaker than for the Conv protocol data.

mPFC, L-IPL, and R-IPL ROIs, respectively (Figure 2D). The
response in each ROI was advanced in time with respect to the
PCC because the differences were all significantly different from
zero (mPFC, corrected p = 0.029; L-IPL, corrected p = 0.022;
R-IPL, corrected p = 0.0055).

When time-lag analysis was performed on the MB protocol
data (Figure 3), the median time-lags estimated with the PCC
seed differed from the time-lag of the PCC ROI by –329.3,
–602.4, and –427.8 ms for the mPFC, L-IPL, and R-IPL
ROIs, respectively (Figure 3B). The differences for the mPFC
(corrected p = 0.0099) and L-IPL (corrected p = 0.0099) were
significantly different from zero, implying a faster response in
comparison to the PCC for those ROIs. However, the response
in the R-IPL did not significantly differ from that of the
PCC (corrected p = 0.059). After analysing the data using
the GS seed, it was found that the median time-lags of the
mPFC, L-IPL, and R-IPL ROIs differed from the time-lag of
the PCC ROI by –408.5, –331.2, and –390.6 ms, respectively
(Figure 3D). These results were all significantly different from
zero (mPFC, corrected p = 0.0048; L-IPL, corrected p = 0.017;
R-IPL, corrected p = 0.032), so the responses were advanced in
time compared to the PCC.

Correlation analysis

Analysis of the Conv protocol data found substantial
correlations between the time-lag differences calculated with
the PCC seed (see Figure 2B) and those calculated with the

GS seed (see Figure 2D). Spearman’s correlation coefficient for
the mPFC, L-IPL, and R-IPL was 0.64 (corrected p = 0.014,
Figure 4A), 0.54 (corrected p = 0.069, Figure 4B), and 0.78
(corrected p = 0.00072, Figure 4C), respectively. In contrast,
applying a similar analysis to the MB protocol data found that
the correlation between the time-lag differences calculated with
the PCC (see Figure 3B) and GS (see Figure 3D) seeds was
much weaker. Spearman’s correlation coefficient for the mPFC,
L-IPL, and R-IPL was 0.086 (corrected p = 2.2, Figure 4D), 0.43
(corrected p = 0.24, Figure 4E), and 0.41 (corrected p = 0.27,
Figure 4F), respectively.

Discussion

The time-lag analysis results indicate that, even though the
acquisition sampling rate of the Conv protocol is four times
less than that of the MB protocol, a time-lag between nodes
of the DMN was detectable with both protocols. In addition,
the presence of significant time-lags between nodes indicates
that the response in different nodes is highly correlated, but
not simultaneous.

Based on the results of previous studies (Biswal, 2012;
Erdoğan et al., 2016), in this manuscript the PCC and GS seeds
are taken to represent the response due to neuronal activity and
SysLFOs, respectively. The time-lag analysis with the PCC seed
therefore provides an estimate of the delay in neuronal activity
between the PCC and the other nodes of the DMN. Similarly,
the time-lag analysis with the GS seed provides an estimate
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of the delay between the response in different regions of the
brain due to SysLFOs. Correlation analysis was then performed
to compare the delays estimated with each seed. The fact that
significant correlations between the delays are found for the
Conv protocol data indicates that the arrival of the response due
to neuronal activity cannot be distinguished from the arrival of
the response due to SysLFOs. That is, functional connectivity
evaluated from Conv protocol data may be heavily influenced
by SysLFO signals that are of non-neuronal origin.

On the other hand, the correlation coefficients calculated
from the MB protocol data suggest that the arrival of the
response due to neuronal activity can be distinguished from
the arrival of the response due to SysLFOs in the frequency
domain 0.01–0.1 Hz. That is, the higher sampling rate
of the MB protocol may allow the SysLFO contribution
to the signal to be isolated. Therefore, with suitable
adjustments to the analysis procedures, multiband EPI
acquisition of rsfMRI data may permit resting-state neuronal
activity to be studied without the obfuscating non-neuronal
effects of SysLFOs.

There a number of limitations that could have affected the
results of this study. First, a relatively high multiband factor
of six was employed when acquiring the MB protocol data.
With such a high factor it is possible that there was signal
leakage from one slice into another simultaneously excited
slice (Todd et al., 2016), and this may have influenced the
results of the time-lag and correlation analysis. Experiments
trialing multiple multiband factors and TR protocols would be
required to determine whether the leakage has a significant
effect on the results. Second, even though standard motion
correction, registration and normalization were applied to the
data, it is impossible to guarantee that imperfect correction
has not affected the results to some degree. In a similar
way, although the data was bandpass filtered, it is not
possible to rule out some aliasing of high frequency BOLD
signal into the filtered data as noise that influences the
results.

Conclusion

In conclusion, a time-lag between nodes of the DMN
was detectable with both the Conv and MB acquisition
protocols, with the responses in the mPFC, L-IPL, and R-IPL
being temporally advanced with respect to that in the PCC.
Correlation analysis of the Conv protocol data suggested
that SysLFOs substantially influence the apparent time-lag of
neuronal activity. However, correlation analysis of the MB
protocol data implied that the effects of SysLFOs and neuronal
activity on the BOLD response may be separated. Therefore,
using a higher time-resolution acquisition method for rsfMRI
might help to distinguish neuronal activity induced changes to
the BOLD response from those induced by SysLFOs.
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Buxton, R. B., Uludağ, K., Dubowitz, D. J., and Liu, T. T. (2004). Modeling the
hemodynamic response to brain activation. NeuroImage 23(Suppl. 1), S220–S233.
doi: 10.1016/j.neuroimage.2004.07.013

Chang, C., Cunningham, J. P., and Glover, G. H. (2009). Influence of heart
rate on the BOLD signal: the cardiac response function. NeuroImage 44, 857–869.
doi: 10.1016/j.neuroimage.2008.09.029

Chang, C., and Glover, G. H. (2009). Relationship between respiration, end-
tidal CO2, and BOLD signals in resting-state fMRI. NeuroImage 47, 1381–1393.
doi: 10.1016/j.neuroimage.2009.04.048
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