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Abstract: Cutaneous T-cell lymphomas (CTCL) are the most common primary lymphomas of the
skin. We have previously identified thymocyte selection-associated high mobility group (HMG) box
protein (TOX) as a promising drug target in CTCL; however, there are currently no small molecules
able to directly inhibit TOX. We aimed to address this unmet opportunity by developing anti-TOX
therapeutics with the use of computer-aided drug discovery methods. The available NMR-resolved
structure of the TOX protein was used to model its DNA-binding HMG-box domain. To investigate
the druggability of the corresponding protein–DNA interface on TOX, we performed a pilot virtual
screening of 200,000 small molecules using in silico docking and identified ‘hot spots’ for drug-binding
on the HMG-box domain. We then performed a large-scale virtual screening of 7.6 million drug-like
compounds that were available from the ZINC15 database. As a result, a total of 140 top candidate
compounds were selected for subsequent in vitro validation. Of those, 18 small molecules have been
characterized as selective TOX inhibitors.

Keywords: computer-aided drug design; cutaneous T cell lymphoma; TOX; HMG-box domain;
small molecule inhibitors

1. Introduction

Cutaneous T cell lymphoma (CTCL) is a primary lymphoma of the skin that is derived from
cutaneous resident memory T cells. In the vast majority of cases, the malignant T cells are CD4+ in
nature. The most common variants of CTCL are mycosis fungoides (MF) and Sezary syndrome (SS).
While most patients with early stage CTCL have a life span approaching that of healthy individuals,
approximately 10% of CTCL patients with limited patch and plaque disease, and up to 25% of patients
with extensive patches or plaques, eventually develop end-stage conditions such as leukemic stage
CTCL including SS, which has high mortality. SS patients have a median survival of 2–4 years and an
estimated 5-year survival rate of 24% [1]. The treatment of CTCL is individualized, depending on the
disease severity and clinical stage. In early stages, CTCL mainly affects the skin; thus, the therapies
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available are skin-directed, including topical steroids, topical nitrogen mustard, and topical retinoids
as well as phototherapy. In refractory cases, and in late stages when the disease is no longer limited
to the skin, systemic therapies are often required. Although a number of agents, including retinoids,
interferons (IFN), monoclonal antibodies, epigenetic modifiers such as histone deacetylase inhibitors
(HDACi), and denileukin diftitox, have shown benefit in the treatment of advanced disease, none are
curative. Therefore, new therapies for CTCL are urgently needed.

Thymocyte selection-associated high mobility group box protein (TOX) is a 526 aa nuclear protein
(molecular weight, 57 kD) that binds DNA in a structure-dependent and sequence-independent
manner [2]. It is a member of the evolutionarily conserved high mobility group (HMG) box family and
a key regulatory nuclear protein in the development of CD4+ T cells, natural killer cells, and lymphoid
tissue inducer cells [2–6]. The roles of TOX in immune system development are well-characterized [2].
Its expression is tightly controlled and expressed during early CD4+ T cell development. When mature
CD4+ T cells exist the thymus and enter the peripheral sites, such as the blood and the skin,
TOX expression is switched off [4]. Gene knockout experiments have demonstrated that mice lacking
functional TOX gene are viable, and developmentally normal with the exception of their lacking CD4+

T cells, confirming the essential role of TOX in T cell development and maturation. In recent years,
strong evidence has emerged that TOX is a specific biomarker, strong prognostic factor, key pathogenic
driver, and attractive therapeutic target for CTCL [7–10].

(1) TOX is aberrantly expressed in CTCL: In comparative transcriptome studies [10] comparing
CTCL skin biopsies with those of normal healthy skin and benign inflammatory dermatosis (BID),
TOX emerged as the most highly enriched in CTCL skin biopsies. Similarly, purified CTCL cells
expressed much higher levels of TOX mRNA compared with benign CD4+ T cells from healthy donors
and from patients with BID. In addition, TOX-specific antibodies identified the malignant CD4+ T
cells in the dermis and epidermis of CTCL, and in purified primary CTCL cells and in cultured
cell lines. TOX is also highly expressed in Pautrier’s micro-abscesses, the pathological hallmark of
CTCL [10]. (2) Enhanced transcript levels of TOX correlate with increased risk of disease-specific
mortality in CTCL: Further experiments showed that TOX expression levels in CTCL skin biopsies and
in peripheral-blood-purified malignant CTCL cells were positively correlated with disease-specific
mortality of CTCL patients [9]. (3) Stable knockdown of TOX inhibits growth of CTCL cells in vitro:
After TOX gene silencing using lentiviruses containing TOX-shRNA sequences, proliferation of
CTCL cells (Hut78, HH, and SZ4), was markedly suppressed compared with control cells. Similarly,
colony formation capability in vitro was decreased [8]. (4) TOX suppression induces apoptosis and
caspase activation in CTCL cells: With TOX suppressed, CTCL cells had increased numbers of apoptotic
cells. On the molecular level, TOX knockdown led to activation of caspase 9 and caspase 3, which are
involved in apoptosis initiation and execution [8]. (5) TOX suppression impairs tumor-forming ability of
CTCL cells in vivo: Using a well-established mouse model of CTCL developed in house, we found that
CTCL patient-derived cell lines (Hut78 and HH) readily formed tumors when injected subcutaneously.
However, when TOX expression was silenced, this ability was abolished [8], demonstrating the
indispensable role of TOX in the pathogenesis of CTCL. (6) TOX suppression led to expression changes
of multiple downstream genes: Transcriptomic analysis showed that TOX silencing resulted in marked
expression changes of numerous genes, with the most significant changes observed in cell cycle
suppressor gene SMAD3, which is normally suppressed by TOX but was sensitively induced after TOX
gene silencing [8]. In summary, there are multiple lines of evidence that together strongly demonstrate
that TOX is an attractive molecular target for developing CTCL therapies.

There are currently no small molecule inhibitors of TOX, and herein we aimed to address this
unmet need by developing anti-TOX therapeutics through a computer-aided drug design (CADD)
platform that we have previously established [11] and successfully utilized in a number of other
cancer-related drug targets, including androgen receptor (AR) [12], estrogen receptor (ER) [13],
ETS-related gene (ERG) [14], MYC [15], etc. Here, we report the use of this established CADD pipeline,
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which combined virtual screening of 7.6 million drug-like small molecules with in vitro experimental
validation, to discover a new class of anti-TOX compounds.

2. Results

2.1. Druggability Assessment of the TOX HMG-Box Domain

The available NMR structure of TOX deposited in the PDB database (ID: 2CO9) [16], as shown in
Figure 1, was used as a model for in silico screening of small molecules. To investigate the druggability
of the DNA-binding HMG-box domain of TOX, we performed initial in silico screening of 200,000
drug-like chemical structures from the ZINC15 database [17] by using docking software Glide [18]
with a ‘blind docking’ setup where no specific binding site was pre-defined. Figure 2 illustrates that
the binding of these 200,000 virtual compounds concentrated on a few “hot spots” located at the DNA
interface on the HMG-box domain. The top 10% of molecular structures (n = 20,000), as ranked by the
Glide docking scores, were re-docked using two additional docking programs, eHiTs [19] and ICM [20].
A total of 22 molecules had consistent docking poses across the three programs: Glide, eHiTS, and ICM
(RMSD ≤ 3A), and they were selected for in vitro testing.
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protein (PDB ID: 2CO9) was identified as the best structural template, with 100% sequence similarity 
across the 87 amino acids of the HMG-box domain, compared to the human TOX protein. (b,c) By 
superimposing the 2CO9 structure (orange ribbons) onto the HMG-box protein Transcription factor 
A, mitochondrial (TFAM, pink ribbons, PDB ID: 3TMM, 46% sequence similarity to human TOX, 3.8A 
RMSD) in complex with DNA (green ribbons), the TOX–DNA interface was determined. 

Figure 1. Protein structural templates for the high mobility group (HMG)-box domain of thymocyte
selection-associated high mobility group box protein (TOX). (a) A NMR structure of mouse TOX
protein (PDB ID: 2CO9) was identified as the best structural template, with 100% sequence similarity
across the 87 amino acids of the HMG-box domain, compared to the human TOX protein. (b,c) By
superimposing the 2CO9 structure (orange ribbons) onto the HMG-box protein Transcription factor
A, mitochondrial (TFAM, pink ribbons, PDB ID: 3TMM, 46% sequence similarity to human TOX,
3.8A RMSD) in complex with DNA (green ribbons), the TOX–DNA interface was determined.

2.2. Large-Scale In Silico Screening

Based on the hot spots identified from the in silico druggability assessment as described above,
we performed a large-scale virtual screening of 7.6 million drug-like molecules from the ZINC15
database [17] (please see the Materials and Methods section for details on the binding site). Using our
established virtual screening protocols [11,14], the binding poses and scores of these 7.6 million
molecules were calculated using three docking programs—Glide [18], ICM [20], and OEDocking [21].
High-scoring small molecules with consistent docking poses (evaluated by the corresponding
root-mean-square deviation, RMSD) were subjected to ADMET (absorption, distribution, metabolism,
excretion, toxicity) and pharmacokinetics filtering using computational programs including ADMET
Predictor [22], FAF-Drugs [23], and Quantitative Estimate of Drug-likeness (QED) [24]. Based on the
consensus scoring of the above computational predictions (e.g., docking, RMSD, ADMET), we selected
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118 top candidate compounds for experimental validation, including 66 compounds with molecular
weights greater than or equal to 350 Dalton, and 52 compounds with molecular weights lower than
350 Dalton.
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Figure 2. Druggability of the HMG-box domain of TOX. (a) TOX–DNA interface as determined from
Figure 1C. TOX HMG-box domain in orange ribbons, DNA in green ribbons. (b) Molecular surface
presentation of the TOX HMG-box domain, in the same orientation as (a). (c) The TOX HMG-box
domain is rotated by 180◦ to illustrate the small-molecule binding hot spots (red). (d) A total of
200,000 drug-like molecules were docked to the TOX HMG-box domain. The percentage of interacting
small molecules is shown for each protein residue as a bar graph (multiple interactions/contacts are
represented as separate bars for each amino acid). Protein residues, including Gln262, Pro264, Arg273,
Lys313, Glu320, Gln324, and Tyr 328, that interacted with at least 10% of the small molecules, have been
highlighted and mapped to their corresponding locations as hot spots (red surface patches) on the TOX
HMG-box domain.

2.3. In Vitro Experimental Validation

A total of 140 compounds (including 22 compounds selected from the initial in silico screen and
118 compounds from the large-scale screen) were experimentally screened using TOX-dependent
CTCL cells Hut78 cells at 10 µM and 100 µM concentrations. For the 18 compounds that showed
concentration dependent inhibition of cell viability in Hut78 cells, their IC50 values were determined in
3 TOX-high/-dependent CTCL cell lines (Hut78, SZ4, Jurkat), and 3 TOX-low/-independent lymphoid
cell lines (K562, U937, Mac2A) (Table 1 and Supplementary Table S1). These 18 compounds showed
IC50 values that were lower in the TOX-high/-dependent cell lines than the TOX-low/-independent
cell lines, as ranked by the TOX-selectivity index (Table 1). Several of these small molecule inhibitors
(SMIs), such as 190444 and 190414, had IC50 values in the range of ~10–20 µM, more active than the hit
compound 190010 that was identified from the initial in silico screen.
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Table 1. Top candidates for TOX small molecule inhibitors (SMIs).

Compound
VPC-ID Chemical Structure 1

Average IC50
(µM) (TOX-High

Cells) 2

Average IC50
(µM) (TOX-Low

Cells) 3

TOX-Selectivity
Index 4

190444
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Table 1. Cont.

Compound
VPC-ID Chemical Structure 1

Average IC50
(µM) (TOX-High

Cells) 2

Average IC50
(µM) (TOX-Low

Cells) 3

TOX-Selectivity
Index 4

190343
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Table 1. Cont.

Compound
VPC-ID Chemical Structure 1

Average IC50
(µM) (TOX-High

Cells) 2

Average IC50
(µM) (TOX-Low

Cells) 3

TOX-Selectivity
Index 4
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As further illustrated in Figure 3, compounds 190444, 190414, 190447 and 190441 inhibited cell
viability of the TOX-high cells (Hut78, Jurkat) selectively, compared to the TOX-low cells (K562).
In addition, Figure 4 shows that compounds 190444, 190414 and 190441 increased the expression of
SMAD3, which is normally suppressed by TOX [8].
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Figure 3. Viability curves of TOX-high and TOX-low expressing cells. Cells were treated with various
concentrations of compounds, (a) 190444, (b) 190414, (c) 190447 and (d) 190441, for 72 h in a 37
◦C incubator with 5% CO2. Viability was measured by CellTiter-Blue® assay and compared to the
DMSO control, as described in Materials and Methods. Jurkat and Hut78 cells (solid line) were the
TOX-high-expressing cell lines, while K562 (dotted line) was the TOX-low-expressing cell line.
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Figure 4. SMAD3 expression in compound-treated Hut78 cells. Hut78 cells were treated with
compounds 190444, 190414 and 190441 at their corresponding IC50 and half of IC50 concentrations for
72 h before RNA extraction for realtime measurement of the SMAD3 expression level. Primers for
SMAD3 forward—CCC AGA GCA ATA TTC CAG AGA C, reverse—GTC CAT GCT GTG GTT CAT
CT. Expression level of SMAD3 was normalized by internal level of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), as described in Materials and Methods.

3. Discussion

While previous studies [10] have established TOX as a promising drug target for CTCL therapies,
there is a lack of small molecules that can directly inhibit TOX. By utilizing an established computer-aided
drug design (CADD) platform [11] followed by in vitro experimental validation, we discovered a list
of 18 small molecules that can inhibit the viability of TOX-high/-dependent cells with micromolar
IC50 and up to 4-fold selectivity (Table 1). As illustrated in Figure 5, compounds 190444, 190414,
190447 and 190441 can bind at the hot spots located in close proximity to the protein–DNA interface
on the HMG-box domain of TOX. These SMIs interact with TOX protein residues including Gln262,
Pro264, Arg273, Lys313, Glu320, and Gln324 through hydrogen-bond and hydrophobic interactions,
corresponding well to the hot spots as identified from the druggability assessment (Figures 2 and 5).
Most of the active molecules identified share common substructures including diazole, triazole and
imidazolidinedione, the NH group of which forms a hydrogen bond with the residues such as Gln262
and Glu320. These common substructures could be utilized as a part of a pharmacophore model for
selecting new compounds.
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without any computational guidance [11,26]. These 18 hit compounds provide a foundation on which 
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faster than in vitro screening, docking 7.6 million small molecules against TOX still took 15 days 
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subset of molecules pre-calculated as good target-binding candidates [29]. We anticipate the 
application of such a progressive docking algorithm (which would speed up screening 
approximately 50×) to virtually screen 1 billion molecules against TOX. 

We also built a quantitative structure–activity relationship (QSAR) [30] model based on the 140 
compounds which were experimentally tested. The overall accuracy of the model was about 92%. 
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compounds, the accuracy of the active class was 47% and the accuracy of the inactive class was 100%. 
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Figure 5. TOX small molecule inhibitors (SMIs) bind at the hot spots on the protein–DNA interface.
Docking poses are shown for compounds (a) 190444, (b) 190414, (c) 190447, and (d) 190441 on the
HMG-box domain of TOX (PDB: 2CO9). For each panel: (left) molecular surface representation,
SMI in cyan, DNA in green ribbons, hot spots as red surface patches; (right) in-depth molecular
interactions between SMI (cyan) and protein residues of TOX (orange), hydrogen bonds in red dotted
lines, hydrophobic interactions in green dotted line. The PDB structure 2CO9 was used in docking.
The DNA is shown here for illustration purpose (superimposed from 3TMM, as in Figure 1C), but not
included in docking.

It is likely that such small molecule binding could interfere with TOX–DNA interactions and
thus inhibit the transcriptional activity of TOX. This hypothesis is partially supported by the
experimental results where compounds 190444, 190414 and 190441 increased the expression of
SMAD3, which is normally suppressed by TOX (Figure 4). To establish the hypothesis further,
additional experiments, including direct binding, DNA competition, and luciferase reporter assays
are required. Future development of drug candidates inhibiting TOX–DNA interactions could follow
previous studies where SMIs have been successfully developed via CADD to target the DNA-binding
domains of other cancer drug targets, such as AR [12], ERG [14], and MYC [15].

Drug discovery is an expensive process, taking an average of 3 billion dollars and at least 10 years
to bring a drug from laboratories to patients [25]. As demonstrated here, the use of virtual screening has
significantly reduced the time and cost required during the drug discovery phase. By experimentally
testing only 140 compounds, as selected from molecular docking of 7.6 million chemical structures,
a total of 18 active hits were identified, thus achieving a hit rate of 13% (18/140), much higher than the
hit rate (<1%) from conventional, experimental high-throughput screening without any computational
guidance [11,26]. These 18 hit compounds provide a foundation on which more potent TOX-SMIs can
be developed through 2D/3D similarity searches of chemical analogs against the entire ZINC database,
which has grown exponentially from 700,000 compounds in 2005 [27] to over 1 billion molecules
in 2019 [28]. This database of chemicals provides tremendous opportunity for TOX drug discovery,
where virtual screening by molecular docking can be expanded from the initial 7.6 million to all
of the 1 billion molecules. While molecular docking is already much faster than in vitro screening,
docking 7.6 million small molecules against TOX still took 15 days (using 100 CPU cores). Applying the
same docking algorithm (with the same amount of CPUs) on 1 billion chemical structures would take
2000 days or 5 years. We have previously developed a method of progressive docking that trains
a machine learning model to efficiently predict binding scores based on chemical structures; thus,
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computer-intensive docking only needs to be performed on a subset of molecules pre-calculated as
good target-binding candidates [29]. We anticipate the application of such a progressive docking
algorithm (which would speed up screening approximately 50×) to virtually screen 1 billion molecules
against TOX.

We also built a quantitative structure–activity relationship (QSAR) [30] model based on the
140 compounds which were experimentally tested. The overall accuracy of the model was about
92%. However, due to the small sample size and imbalance between the number of active vs.
inactive compounds, the accuracy of the active class was 47% and the accuracy of the inactive class
was 100%. While these accuracy values were better than random chance (active: 7% and inactive:
93%), the QSAR model needs to be further improved. Both of the approaches discussed above
(similarity search and progressive docking) could greatly expand our current collection of TOX hit
compounds and enable us to improve the QSAR model, which could guide future development for the
next generation of potent and selective TOX drug candidates.

4. Materials and Methods

4.1. Structural Evaluation of TOX Druggability

The full-length protein sequence of the TOX protein (UniProt ID: O94900-1) was searched against
the Protein Data Bank (PDB) [16] and a NMR structure of mouse TOX (PDB ID: 2CO9) was identified
as the best matching template, with 100% sequence identity across the 87 amino acids of the HMG-box
domain compared to the human TOX protein (from K251 to Y337, with residue numbering based on
O94900-1).

To identify suitable sites for small molecule binding on the HMG-box domain of TOX, a total
of 200,000 drug-like molecules (in-stock, 3D representation, with molecular weights from 375 to 400
Dalton, and logP = 1.5 +/−1) were extracted from the ZINC15 database [17]. The protein structure for
the HMG-box domain of TOX (PDB ID: 2CO9) was then prepared using the Protein Preparation Wizard
of Schrodinger 2016-3 software (with OPLS3 force field) [31]. A docking grid was set up to cover
the entire TOX HMG-box domain, enabling ‘blind docking’ where no binding site was pre-defined.
Each of the 200,000 small molecules was docked against the entire protein grid using the program
Glide [18] (standard precision mode with default parameters) from the Schrodinger 2016-3 package
(Schrödinger, New York, NY, USA). The top docking pose of each molecule was imported into the
molecular operating environment (MOE, Chemical Computing Group, Montreal, Québec, CA) [32],
and the Protein Ligand Interaction Fingerprints (PLIF) module was applied to all the 200,000 docking
poses to calculate the frequency of interactions of each protein residue on the TOX HMG-box domain.
Hot spots were determined as those protein residues with frequencies of interactions greater that or
equal to 10%.

The 2CO9 structure from PDB was not in complex with DNA. Thus, to determine the
TOX–DNA interface, 2CO9 was superimposed onto the HMG-box protein Transcription factor A,
mitochondrial (TFAM) in complex with DNA (PDB ID: 3TMM) [33] using the protein alignment tool in
the MOE [32].

4.2. In Silico Screening (Initial)

The top 10% or 20,000 virtual molecules (as ranked by the Glide docking scores [18]) were
re-docked using another program, eHiTs [19] (default parameters). Similarly to the blind docking setup
in Glide, no binding site on the TOX HMG-box domain was pre-defined in eHiTS. The top eHiTS pose
was reported for each of the 20,000 molecules and compared to its corresponding Glide pose. It was
identified that a total of 136 molecules demonstrated consistent docking poses with RMSD≤ 3A between
Glide and eHiTS. These 136 structures were re-docked again by the third program, ICM (Molsoft LLC,
San Diego, CA, USA) [20] (default parameters), with a blind docking setup. Among the processed
compounds, 22 demonstrated docking consistency with all three programs: Glide, eHiTS, and ICM.
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Through in vitro testing on TOX-expressing Sezary cell lines, one of the candidates, VPC-190010,
showed inhibition activity with IC50 lower than 50 µM in all the TOX-expressing Sezary cell lines
(data not shown).

4.3. In Silico Screening (Large-Scale)

The binding site for large-scale in silico screening was chosen based on the docking pose of the
initial hit compound VPC-190010, which interacts with TOX hot spot residues including Gln262, Pro264,
Arg273, Lys313, Glu320, and Gln324. The process of molecule screening was divided into two rounds
for (1) oral and (2) topical modes of delivery. Out of the entire ZINC15 database [17], molecules were
filtered based on the already known properties for oral and topical applications, as well as information
obtained from the initial in silico screening.

The first round of large-scale in silico screening focused on an oral mode of delivery. The molecules
with molecular weights greater than or equal to 350 Dalton and logP ≥ −1 were extracted from the
ZINC15 database. These molecules were subjected to drug-like filtering criteria from FAF-Drugs4 [23,34],
and the number of rings was set to be between 4 and 6. As a result, a total of about 3 million molecules
were retained and then docked with Glide (standard precision mode with default parameters) [18].
Molecules with docking scores lower than −5 (lower is better) were further docked with the FRED
program, OEDocking (OpenEye Scientific Software, Santa Fe, NM, USA) [21] (up to 500 conformers
were generated for each molecule and were docked using FRED with default parameters), and the
corresponding RMSD values were calculated for the top poses. All the molecules with a RMSD≤ 3A were
retained and were docked again using ICM [20]. For the poses predicted by ICM (default parameters),
RMSD values were calculated against Glide and only the molecules with RMSD ≤ 3A were retained.
Within this set, predicted docking pKi was calculated for each molecule using a custom MOE SVL
script [32]. Other properties like ADMET (absorption, distribution, metabolism, excretion, toxicity)
and pharmacokinetics predictions were also calculated using computational programs such as ADMET
Predictor (Simulations Plus, Lancaster, CA, USA) [22], FAF-Drugs [23], and quantitative estimate of
drug-likeness (QED) [24]. In the next step, a consensus scoring method was used, based on the criteria
mentioned in Supplementary Table S2. Molecules with total consensus scores greater than or equal to
7 were retained and then clustered together to remove the similar compounds (70% similarity). Finally,
a total of 66 compounds were chosen for experimental validation.

The next round focused on finding the molecules for topical mode of delivery. From the ZINC15
database, molecules with weights lower than 350 Dalton and logP ≥ −1 were extracted. This set of
molecules was subjected to filters based on lead-like properties from FAF-Drugs4 [23,34], as well
as filters specific to topical application where only the molecules with charge = 0 and 2 ≤ LogP ≤ 4
were retained [35,36]. Apart from the above-mentioned filters, molecules with chiral centers ≤ 1
(vendors usually sell the racemic mixture), 2 ≤ number of rings ≤ 4 (molecules with 1 ring are too
simplistic), rotatable bonds≤ 6, and 2≤hydrogen bond acceptors≤ 7 were retained. A total of 4.6 million
molecules were retained after applying all the filters. These molecules were docked using the Glide
program, standard precision with all other parameters default. Molecules with docking scores lower
than−5 (lower is better) were further docked with the FRED program, OEDocking (up to 500 conformers
were generated for each molecule and were docked using FRED with default parameters). RMSD values
were calculated between the poses predicted by FRED and Glide. All the molecules with a RMSD ≤ 3A
were retained and were docked using ICM (default parameters). For the poses predicted by ICM,
RMSD values against Glide were calculated, and only the molecules with RMSD ≤ 3A were retained.
Within this set, predicted docking pKi was calculated for each molecule using a custom MOE SVL
script. Other properties like ADMET and pharmacokinetics predictions were also calculated by using
computational programs such as ADMET Predictor [22], FAF-Drugs [23], and quantitative estimate of
drug-likeness (QED) [24]. In the next step, a consensus scoring method was used based on the criteria
mentioned in Supplementary Table S3. Molecules with total consensus scores greater than 5 were
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retained and then clustered together to remove similar compounds (70% similarity). Finally, a total of
52 compounds were chosen for experimental validation.

4.4. In Vitro Screening

All compounds were dissolved in DMSO as 50mM stock solution and diluted into treating
concentration with growth medium (RPMI 1640 (Hyclone, GE) containing 10% FBS (Thermo Fisher
Scientific, Waltham, MA, USA) and 1× anti-anti (Antibiotic-Antimycotic, Thermo Fisher Scientific,
Waltham, MA, USA)).

Suspension cell lines Hut78, Jurkat, K562, and U937 were purchased from ATCC. SZ4 and Mac2A
cell lines were generous gifts from Dr. Ivan Litvinov [37]. Cell were cultured in the growth medium
and collected at logarithmic growth phase (about 5–10 × 105 cells/mL). Cells were seeded into 96 well
culture plates (Nunc, Thermo Fisher Scientific, Waltham, MA, USA) with 104/well. Cells were cultured
with various concentrations of the testing compounds in 0.2% DMSO or DMSO control only (as 0 µM)
in growth medium for 64–68 h in an incubator containing 5% CO2 at 37 ◦C.

Viability assay was performed using CellTiter-Blue® Cell Viability Assay (Promega, Madison, WI,
USA), and fluorescent signal (579 Ex/584 Em) was recorded after 2 h and 4 h of incubation time using a
Glomax Multi detection System (Promega, Madison, WI, USA).

All treatments were done in triplicate, and the final value was calculated as mean of the three
datasets after subtracting medium only background. Net fluorescent signals at various concentrations
were then compared to the DMSO only control and calculated as percentage of surviving population.
IC50 values were determined using AAT Bioquest IC50 calculator (https://www.aatbio.com/tools/ic50-
calculator/) with proportion of cells surviving at a range of concentrations of each drug present in the
culture medium.

RNA expression of TOX was measured using the dye intercalated Realtime PCR method
described previously [8]. RNA was extracted from cells using a RNAeasy purification kit
(Qiagen, Hilden, Germany), and cDNA template was produced using SuperScript™ VILO™
cDNA Synthesis Kit (Invitrogen, Thermo Fisher Scientifict, Carlsbad, CA, USA). Gene expression
levels were expressed as mRNA copies per 1000 glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) copies by standardizing to internal housekeeping gene GAPDH. The primers used
for realtime measurement were as follows: GAPDH forward AAGATCATCAGCAATGCCTCC,
GAPDH reverse TGGACTGTGGTCATGAGTCCTT; TOX forward GTGCAGAAATCCTCCCCCAC,
TOX reverse TTTGTCCCTCTGCATGCCC.

5. Conclusions

In recent years, TOX has been characterized as a promising drug target in cutaneous T cell
lymphoma. To address the lack of anti-TOX therapies, we engaged a computer-aided drug
design pipeline to virtually screen 7.6 million compounds against the protein–DNA interface on
the HMG-box domain of TOX. As a result of the computational screen, a total of 140 compounds
were selected for experimental validation, with 18 of them demonstrating sufficient inhibition of
viability of TOX-high/-dependent CTCL cells with micromolar potency and up to 4-fold selectivity
over TOX-independent cells. The success of the current stage highlights the need to screen the
remaining (approximately 1 billion) drug-like compounds in the ZINC databases for the identification
of additional molecules with anti-TOX activities. The compounds identified in this study will serve as
prototypical TOX-inhibitors for developing the next generation of more potent and selective CTCL
therapeutics through further chemical optimization.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/19/3459/s1,
Table S1: IC50 summary from cell viability assays for the 18 TOX small molecule inhibitors, Table S2: Consensus
Matrix for molecules with MW ≥ 350 Dalton (oral application), Table S3: Consensus Matrix for molecules with
MW < 350 Dalton (topical application), PDB files for each of the 18 small molecules docked on the HMG-box
domain of TOX (PDB: 2CO9).

https://www.aatbio.com/tools/ic50-calculator/
https://www.aatbio.com/tools/ic50-calculator/
http://www.mdpi.com/1420-3049/24/19/3459/s1
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