
© 2012 Landes Bioscience.

Do not distribute.

p70 S6 kinase and actin dynamics
A perspective

Carman K.M. Ip and Alice S.T. Wong*

School of Biological Sciences; University of Hong Kong; Hong Kong, China

Keywords: p70 S6 kinase, cancer, actin, Rac1, Cdc42, testis, spermatogenesis, germ cell

p70 S6 kinase (p70S6K), a member of the AGC serine/threonine
kinase family, was initially identified as a key player, together
with its downstream effector S6, in the regulation of cellular
growth and survival. The p70S6K protein has emerged in recent
years as a multifunctional protein which also regulates the
actin cytoskeleton and thus plays a role in cell migration. This
new function is through two important activities of p70S6K,
namely actin cross-linking and Rac1 and Cdc42 activation. The
testis is critically dependent on an intricate balance of funda-
mental cellular processes such as adhesion, migration, and
differentiation. It is increasingly evident that Rho GTPases and
actin binding proteins play fundamental roles in regulating
spermatogenesis within the testis. In this review, we will dis-
cuss current findings of p70S6K in the control of actin cyto-
skeleton dynamics. In addition, the potential role of p70S6K in
spermatogenesis and testicular function will be highlighted.

Introduction

Cell migration is an essential component of a variety of processes
including wound repair,1 angiogenesis,2 immunity,3 and meta-
stasis.4 Coordinated changes in actin cytoskeleton reorganization
in response to microenvironmental signals result in migration.
Thus, much effort has been made to understand the molecular
machinery that drives the movement of the cell and has focused
on the nature of cytoskeletal structures. Indeed, the actin
cytoskeleton is essential and central to every step of the migration
process.5 The 70 kDa ribosomal S6 kinase (p70S6K) is a serine/
threonine kinase with a well-established role in protein synthesis.6

Although it was originally described as being exclusively involved
in cell growth, our laboratory has recently published data
describing p70S6K in other key aspects of cell functions, such as
cellular migration. In this new role for p70S6K, the protein
interacts with the actin cytoskeleton and activates the Rho
GTPases to catalyze the formation of lamellipodia and filopodia.7

In this article, we will review the current data that may provide
new insights to the potentially important role for p70S6K as a
possible regulator of actin dynamics in the testis.

Overview of p70S6K

p70S6K belongs to the AGC subfamily of serine/threonine kinases,
which also includes other important signaling molecules like Akt,
protein kinase A and protein kinase C. p70S6K is encoded by the
ribosomal protein S6 kinase, 70 kDa, polypeptide 1 gene (RPS6KB1),
which is located on chromosome 17q23.1 in humans. p70S6K, with
an apparent electrophoretic mobility of 70 kDa,8 consists of
502 amino acids and a molecular weight of 56,153 Da. The amino
acid sequence of p70S6K has 100% similarity in all mammalians
so far examined.9 S6K gene has also been identified in several
invertebrate species, including Drosophila melanogaster10,11 and
Caenorhabditis elegans.12 A novel S6K was recently found in the
yeast Schizosaccharomyces pomba.13 All these indicate that S6K is
evolutionary conserved among eukaryotes and therefore may
represent a significant functional component.

Structure of p70S6K. p70S6K can be divided into five functional
domains/regions: (1) the amino (N)-terminal domain, (2) the
AGC-kinase conserved catalytic domain, (3) the linker region,
(4) the putative autoinhibitory domain, and (5) the carboxyl
(C)-terminal domain.14 At least eight phosphorylation sites have
been mapped in endogenous kinase, including Ser411, Ser418,
Thr421 and Ser424 in the autoinhibitory domain,15,16 Thr229 in the
catalytic domain17 and Ser371, Thr389 and Ser404 in the linker
region (Fig. 1).15 The kinase exists in two conformations, inactive
and active state. In the inactive state of p70S6K, the carboxyl-
terminal autoinhibitory domain, which has sequence similarity
to the substrate region of the S6 protein, may act as a pseudo-
substrate and interacts with the N-terminus (Fig. 1).14 According
to the current model, p70S6K activation is initiated by the release
of the autoinhibition exerted by the autoinhibitory domain.18

This is then followed by a series of phosphorylation of eight or
more serine or threonine residues at the autoinhibitory domain,
the linker region, and then the catalytic domain, to obtain full
kinase activation.6,19-23

Regulation of p70S6K. The activity of p70S6K is regulated
through phosphorylation/dephosphorylation events. The phos-
phorylation events are stimulated by a variety of mitogenic
factors.24,25 Several upstream in vivo signaling pathways have
been identified to regulate the phosphorylation and activation of
p70S6K. One pathway that has been widely accepted is the phos-
phatidylinositol 3-kinase (PI3K)/Akt pathway.26-28 Following
stimulation, PI3K is recruited to plasma membrane and activated
by G-protein coupled receptors or receptor tyrosine kinase.
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Active PI3K then phosphorylates the membrane lipid phos-
phatidylinositol 4,5-biphosphate PIP2 to produce phospha-
tidylinositol 3,4,5-biphosphate PIP3 which recruits and activates
3-phosphoinositide-dependent kinase 1 (PDK1). PDK1 has
been shown to markedly phosphorylate p70S6K to acquire full
kinase activation.18,26,29,30 Alternatively, PDK1 phosphorylates
and activates Akt, which is recruited by PIP2/PIP3 to plasma
membrane, and active Akt subsequently activates p70S6K.31

Mammalian target of rapamycin (mTOR) is another signaling
protein downstream of PI3K pathway that phosphorylates p70S6K

in vivo.20,32 Dunfner et al. has proposed that an additional
signaling pathway is required for full p70S6K activation as PI3K,
PDK1, and mTOR only partial activate p70S6K in vivo.26

Extracellular signal-regulated kinases 1/2 (ERK1/2) under the
mitogen-activated protein kinase (MAPK) signaling has been
shown to phosphorylate p70S6K in vivo.33 However, the involve-
ment of ERK1/2 in p70S6K activation is controversial since there
are studies providing evidence that ERK1/2 is neither necessary
nor sufficient for p70S6K activation.34,35 As the serine/threonine
sites in the autoinhibitory domain of p70S6K are of consensus
sequences similar to those recognized by MAPKs and that
phosphorylation at the autoinhibitory domain is an early step
required for p70S6K activation, MAPK has been suggested to be
essential for p70S6K activation similar to PI3K.27,36 Moreover,
there are reports revealing that p70S6K can be activated by the Raf/
MEK/ERK signaling under specific physiological conditions.27,37

In addition to ERK1/2, p38 MAPK and Jun N-terminal kinase

(JNK) are also putative kinases regulating p70S6K activation in
the cell.18,38

Functions of p70S6K. 1. Protein synthesis. Ribosomal S6 protein
(S6), a component of the 40S ribosomal subunit, is the first
identified downstream target of p70S6K.6 Through phosphoryla-
tion of S6, p70S6K regulates the translation of a subset of mRNA
containing an oligopyrimidines tract at the 5' untranslated region,
5' TOP mRNA.39 These 5'TOP mRNAs account for 20%
of total cellular mRNA and most of them encode ribosomal
proteins, elongation factors, and poly(A)-binding protein, which
are essential components for the translation machinery.40,41 In
addition to S6, p70S6K also regulates both the initiation and
elongation phases of translation by phosphorylating eukaryotic
translation initiation factor 4B (eIF4B), a cofactor of an RNA
helicase, eukaryotic translation initiation factor 4A (eIF4A).42

Phosphorylation of eIF4B leads to the assembly of eIF4A to form
the translation initiation complex, which subsequently increases
the rate of translation. Furthermore, p70S6K can regulate transla-
tion elongation by inhibiting the kinase activity of eukaryotic
elongation factor 2 kinase (eEF2K), a negative regulator of
eukaryotic elongation factor 2 (eEF2).43

2. Cell growth and cell size. The regulation of p70S6K on cell
growth has been studied in Drosophila and mice. Montagne et al.
has demonstrated that loss of S6K gene is semi-lethal to
Drosophila, in which the few surviving adults had a severely
reduced body size due to a decrease in cell size rather than a
decrease in cell number.44 However, in mice the deficiency of the
S6K gene is not lethal, although their body size at birth was
reduced due to a decrease in organ weight, including the testis.45

Cell growth modulated by p70S6K may be independent of
S6-mediated protein translation because the level of S6 phos-
phorylation remains intact in the S6K knockout mice.45 S6K1
Aly/REF-like target (SKAR), a mRNA processing protein, is later
revealed as a downstream regulator of p70S6K on cell growth.46

3. Cell cycle progression. Evidence for a role of p70S6K in cell
cycle progression comes from studies using the p70S6K neutraliz-
ing antibodies47 or the immunosuppressant rapamycin.48-50 These
inhibitory effects cause G1 arrest and significantly delay S phase
entry. p70S6K may also promote G1 to S phase transition by
increasing the translation of cyclin D1 and p21 which are critical
proteins forming the cyclin-CDK complex in G1 phase required
for Rb phosphorylation and the subsequent entry of S phase.51

4. Cell survival. Bcl-2-associated death promoter (BAD), a
proapoptotic protein, is a downstream effector of p70S6K that
regulates cell survival. The apoptotic effect of BAD can be
abrogated upon phosphorylation.52 BAD would be hypophos-
phorylated in the absence of p70S6K.53 Moreover, overexpression
of p70S6K can rescue cell from apoptosis by expressing either BAD
wildtype or S112A.53 p70S6K may also promote cell survival
through phosphorylation of Mdm2, a p53 ubiquitin ligase.54

In addition to the major functions mentioned above, p70S6K

can regulate other cellular functions through downstream effec-
tors, such as cAMP-responsive element modulator t (CREMt) for
gene transcription55 and insulin receptor substrate 1 (IRS1) for
homeostasis.56

Figure 1. A model to illustrate domains and phosphorylation sites
of p70S6K. p70S6K can be divided into five functional domains/regions:
(1) the amino (N)-terminal domain (blue), (2) the AGC-kinase conserved
catalytic domain (yellow), (3) the linker region (green), (4) the putative
autoinhibitory domain (red), and (5) the carboxyl (C)-terminal domain
(purple). Eight phosphorylation sites have been mapped.
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Actin Filament Dynamics

A dynamic actin cytoskeleton is essential for many cellular
functions, such as maintenance of cell shape,57 cell junction,57 and
cell motility.5 Actin in cells exists in three different forms:
monomeric (globular-actin; G-actin), oligomeric, and polymeric
(filamentous actin; F-actin).58 F-actin is polarized with a fast-
growing plus end, also known as barbed end, and a slow-grown
minus end, also known as pointed end.59 Reorganization of the
actin cytoskeleton, including polymerization, depolymerization,
nucleation, bundling/ cross-linking, capping, severing, and
branching, is facilitated by the actin binding proteins.58 The
Rho family GTPases, including Rac1–3, Cdc42, and RhoA-C,
play a central role in coordinating the actin binding proteins for
cytoskeleton reorganization.60 Rac1 and Cdc42 transduce signals
to the actin binding proteins through two major types of inter-
acting proteins: (1) Wiskott-Aldrich syndrome protein (WASP)/
suppressor of cAMP receptor (Scar)/WASP family verprolin
homology protein (WAVE) and (2) p21-activated kinase 1
(PAK1). WASP/Scar/WAVE promotes F-actin nucleation upon
Rac1 and Cdc42 activation. While WASP family protein is
activated by Cdc42,61,62 Scar/WAVE family protein is indirectly
activated by Rac1 through the Nck-adaptor complex.63,64 Active
WASP/WAVE then undergoes conformational change and binds
with the ATP-G-actin binding protein, profilin, and the actin-
related protein2/3 (Arp2/3) complex. These work synergistically
to speed up actin branching and polymerization through actin
nucleation of ATP-G-actin to the pre-existing actin filaments,65,66

thereby facilitating the building of the dendritic actin network.67

On the other hand, PAK1, a downstream effector of Rac1 and
Cdc42, phosphorylates and activates LIM kinase (LIMK). LIMK

phosphorylates cofilin, an actin filament serving protein,68,69

leading to its inactivation, which in turn inhibits depolymeriza-
tion and severing of actin filaments. LIMK can also be phos-
phorylated by p160 Rho-associated coiled-coil-containing protein
kinase (ROCK), a downstream effector of Rho.70 Apart from the
LIMK, Rho can also regulate actin polymerization through
another downstream effector diaphanous-related formin, which
promotes the polymerization of unbranched filaments.71,72

p70S6K in the control of actin cytoskeleton. The Rho GTPases
and p70S6K were first shown to coexist in the same pathway in a
study by Chou et al.73 Rac1 and Cdc42, but not RhoA, complex
with and activate p70S6K, which can be blocked by the mTOR
inhibitor, rapamycin and the PI3K inhibitor, wortmannin.73 A
role of p70S6K in actin cytoskeleton reorganization was further
hinted by Berven et al. and through to colocalize with the stress
fibers and actin arc at the leading edge of Swiss3T3 fibroblasts
under growth factor stimulation.74 This colocalization of p70S6K

and stress fibers was suggested to regulate actin polymerization as
rapamycin treatment could inhibit the elongation and organiza-
tion of actin stress fibers via inhibition of p70S6K.75 However, the
biological function of such an interaction is not known. Recently,
our lab not only identified p70S6K as a critical regulator of the
actin cytoskeleton but also showed that it is pivotal for the
directional migration of cancer cells, which is a prerequisite of
metastasis (Fig. 2).7 Our findings provide several insights into the
regulation of p70S6K on the actin cytoskeleton. First, we have
demonstrated for the first time that p70S6K can directly bind with
and cross-link F-actin in vitro. Moreover, active p70S6K colocalizes
with the actin filaments at the leading edge of motile cells in vivo
and p70S6K-F-actin colocalization is cytochalasin D-sensitive.
However, unlike some actin bundling/cross-linking proteins,

Figure 2. Schematic illustration on the mechanism by which p70S6K regulates actin cytoskeleton in ovarian cancer cells. p70S6K directly binds/cross links
with F-actin and activates PAK1 through Rac1 and Cdc42 to modulate actin cytoskeleton dynamics for cell migration.
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p70S6K does not change the rate of actin polymerization, but
stabilizes actin filaments by decreasing the rate and extent of
ADP/cofilin-dependent actin depolymerization.

Second, our results suggest that the correlation of p70S6K with
Rho GTPases and cell migration depends on the cell type or on
the signaling context, leading to differential functions. In fibro-
blasts, p70S6K acts as a downstream effector of Rac1 and Cdc42.
It is interesting to note that this activation of p70S6K by Rac1 and
Cdc42 appears to be independent of the ability of these Rho
GTPases to regulate the cytoskeleton during cell cycle progres-
sion.73 By contrast, in carcinomas and epithelial cells, we have
shown that p70S6K functions upstream of both Rac1 and Cdc42
to regulate actin cytoskeleton reorganization and thus cell
migration, in which Rac1 and Cdc42 are known to function.
We also show an essential role for PAK1 in this process.

Third, the regulation of the actin cytoskeleton by p70S6K reveals
that many oncogenic signals could mediate cancer cell invasion
and metastasis by modulating p70S6K activity. For example, p70S6K

is a downstream effector of the PI3K/Akt pathway, which is
frequently activated in human cancers. Moreover, p70S6K is also
well known to be activated by hormones, cytokines, and growth
factors. Our finding that p70S6K binding to the actin cytoskeleton
is more effective in the presence than in the absence of p70S6K

phosphorylation indicates that it is a dynamic regulation of the
actin cytoskeleton, reinforcing the notion that cell migration is
a finely tuned event. This also implies that the actin-binding
domain in p70S6K in an inactive conformation may be unseen and
suggests an additional regulation inside the cell.

Actin Cytoskeleton Reorganization
and Spermatogenesis

Spermatogenesis is a process in which diploid spermatogonia
(germ cells) go through a series of stages and differentiate into
mature spermatozoa between Sertoli cells within the seminiferous
tubule. Many cellular events are involved in this process, includ-
ing cell division, differentiation, cell movement, reconstructing of
cell junctions,76 changes in cell shape and size such as differ-
entiation of elongated spermatids from round spermatocytes,
all of which require dramatic reorganization of the actin cyto-
skeleton. Since actin cytoskeleton dynamics and some of the
regulatory proteins in spermatogenesis have been comprehensively
reviewed,76,77 we will focus on the activities of actin bundling/
cross-linking and Rho GTPases.

Actin cytoskeletal network in Sertoli cell. Sertoli cells in the
seminiferous tubule extend from the basal lamina to the lumen of
the tubule and are able to alter their cell shape to accommodate
morphological changes of germ cells, thereby providing both
structural and nutritional support to the germ cells throughout
their development.78 In Sertoli cells, F-actin are abundantly
detected and are concentrated at the adherens junctions (AJ), the
ectoplasmic specialization (ES) and the tubulobulbar complex
(TBC).79 The arrangement of F-actin in the AJs, ES and TBC, is
drastically different from that in other polarized epithelia which
will be discussed in the following sections.

Ectoplasmic specialization (ES). ESs are localized at two sites in
seminiferous epithelium: (1) junctions between adjacent Sertoli
cells near the basal lamina of the seminiferous epithelium, namely
basal ES; (2) and adhesion between Sertoli cells and elongating/
elongated spermatids at the apical region of the seminiferous
epithelium, namely apical ES. F-actin at the ES forms a hexagonal
array between the plasma and endoplasmic reticulum membranes
of Sertoli cells.80 Although myosin VIIa, an actin motor protein,
has been found to be enriched at the apical ES, the actin bundles
at ES are thought to be non-contractile. Instead, these actin
bundles may structurally contribute to the stability of the inter-
cellular adhesion at ES. The mechanisms underlying the above
processes are largely unknown. However, based on the actin
bundle structure at the ES, formin that has been shown to be
abundant in Sertoli cells has been proposed to be important in
the regulation of actin polymerization at the ES.79,81 Ena/VASP
family proteins that promote actin elongation at pointed end by
tethering the filaments to sites of active actin assembly may also
be involved. While the localization of formin and Ena/VASP
at the ES is still unknown, several actin bundling/crosslinking
proteins have been found at the ES site. These include espin,82

fimbrin,83 vinculin,83 Eps8,84 and a-actinin.85 The temporal and
spatial expression of Eps8 and Arp2 at the Sertoli cell-spermatid
interface (apical ES) coincides with the onset of spermatid
elongation.82 The expression of Eps8 at the blood-testis barrier
(BTB) is high at all stages of the epithelial cycle, except at
stage VIII when the BTB undergoes extensive restructuring to
facilitate the transit of preleptotene spermatocytes.84 Interestingly,
the expression of Arp3 is also significantly induced at the BTB
at stage VIII of the spermatogenesis cycle.86 Although the activity
of actin bundling proteins at the ES has not been directly
demonstrated, treatment of developing rats with adjudin, a drug
that disrupts AJ at the Sertoli-germ cell interface, showed that
espin appears to function with establishment of BTB.87 Small
Rho GTPases known to regulate actin are also implicated in
regulating spermatogenesis within the testis. For example, RhoB
was found at the apical ES in region in association with elongating
spermatids. RhoB expression was decreased markedly surrounding
the elongated spermatids at late stages VII to VIII of the cycle.88

Tubulobulbar complex (TBC). Similar to ES, TBC is localized to
both the basal and apical region of the Sertoli cell: (1) basal TBC
is between Sertoli cells near the basal lamina of the seminiferous
epithelium; (2) apical TBC is at adhesions between Sertoli cells
and the concave side of the head of elongated spermatids at the
apical region of the seminiferous epithelium and appears just a few
days before spermiation at late stage VIII.89 Various functions of
TBC has been proposed, such as to anchor spermatids to the
Sertoli cells, to remove cytoplasm from spermatids,90 to facilitate
shaping of spermatid heads,91 and to internalize junction proteins
during movement of spermatocytes through basal TBC and the
release of sperms.92 F-actin at the TBC exists as three-dimensional
highly branched networks.79,93 Although the detailed mechanism
mediating the actin network at TBC is still unknown, Arp2/3-
based branching of actin filaments has been proposed to play a
role in the formation of the actin network. Arp3 and WASP that
are essential for actin branching have been shown to localize to the
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apical TBC,94 supporting the proposed mechanism of the actin
network formation. Rac1 and Cdc42 that activate the Arp2/3
mechanism have been detected in the cytoplasm of Sertoli cells
around the spermatid head95and inactivation of Rho GTPases by
toxin A causes disaggregation of actin cytoskeleton in Sertoli
cells.96 In addition to the actin binding proteins mentioned above,
cofilin,97 and Eps884 have also been shown to localize to the TBC,
suggesting that actin bundling and actin severing and/or
depolymerization are required in the formation of actin network
at the TBC.

Actin regulatory proteins in germ cells. During spermato-
genesis, round germ cells undergo dramatic morphological
changes and remodel into mature spermatozoa with head and
tail. F-actin in spermatids is concentrated in the intercellular
junctions, the subacrosomal space, the acroplaxome, and the
manchette. Actin and its regulatory proteins therefore have
important functions in regulating the development and morpho-
genesis of germ cells. The actin bundling protein testis fascin has
been shown to express in the head of elongating spermatids.
Another actin bundling protein Eps8 has also been detected in
germ cells although its expression is less than that in Sertoli cells.84

In addition to the actin bundling proteins, the actin polymeriza-
tion and branching promoters mDia1/281 and WAVE198 have
also been detected in spermatocytes or spermatids, suggesting
actin bundling, polymerization, and branching may be involved in
spermatid development.

p70S6K in Spermatogenesis

Several studies have suggested that p70S6K may have a role in
spermatogenesis by regulating the development of primary Sertoli
cells under follicle stimulating hormone (FSH) and luteinizing
hormone (LH) stimulation.99,100 Although there are no studies
demonstrating that p70S6K may play a role in actin cytoskeleton

reorganization in Sertoli cells, a report by Riera et al., which
focused on the interleukin (IL)-1β-stimulated lactate production
in Sertoli cells,101 may provide hints on this role. The results
showed that IL-1β increases phosphorylation of p70S6K, but the
activation is not related to lactate production. Recent studies
have also shown that IL-1 can regulate the dynamics of actin
cytoskeleton and cell junctions in addition to its well-known
role in innate immunity102 and tissue homeostasis,103 suggesting
that p70S6K may be a regulator of IL-1 on actin cytoskeleton
reorganization. Some other cytokines and growth factors which
are potent activator of p70S6K in other cell types, such as trans-
forming growth factor (TGF)-β, and hepatocyte growth factor
(HGF), also have important functions in testicular development
and spermatogenesis (Table 1). Cytokines involved in spermato-
genesis have been reviewed by Xia et al.89 These cytokines mostly
activate p70S6K through PI3K/Akt and MAPK pathways, which
have been shown to regulate AJ dynamics and spermatogenesis.
The expression or activities of the key components in PI3K/Akt
and MAPK pathways, including the 85a and p110a subunits of
PI3K, Akt, and ERK1/2, have been shown to increase during the
AJ assembly of Sertoli cells and germ cells (i.e., apical ES).104 Both
PI3K and active Akt are abundant at the site of apical ES from
stages IV to VIII and are detected at the basal ES.104 Inhibition of
PI3K using inhibitors is able to disrupt the AJ.105 All these suggest
that the PI3K/Akt and MAPK pathways may be required for AJ
assembly (for ERK pathway review, ref. 106). Siu et al. has also
shown the expression of PAK2 during AJ assembly and suggested
a role of PAK in AJ formation. Although the expression of PAK2
but not PAK1 increases during AJ assembly, the activity of PAK1
was not detected in the study.104 Recently, Wong et al. has
revealed that Cdc42 mediates TGF-β3-induced BTB disruption
by enhancing endocytosis of integral membrane proteins at
BTB.107 This suggests a possible mechanism by which p70S6K may
regulate the BTB restructuring at stage VIII through mediating

Table 1. Potent activators of p70S6K in testis

Function of cytokines in testis Activation of p70S6K in testis References

Hormones

FSH Regulate the development of Sertoli cells Yes 100

Cytokines

IL-1a Regulate Sertoli-germ cell adhesion n.d. 99,100

IL-1b Regulate lactate production in Sertoli cells Yes 101

BMP-4 Maintain spermatogenesis; promote differentiation of spermatogonia n.d. 110–112

Growth factors

EGF Enhance spermatogonia proliferation and differentiation n.d. 113,114

FGF2 Induce testosterone production in Leydig cells Yes 115

HGF Modulate Sertoli-Sertoli tight junction dynamics;
increase steroidogenetic activity of Leydig cell

n.d. 116–118

PDGF Regulate the development of the Leydig cell lineage and spermatogenesis n.d. 110,111

SCF Promote spermatogonia proliferation Yes 109

TGF-b1 Inhibit steroidogenesis in Leydig cells n.d. 119,120

Abbreviations: BMP-4, bone morphogenetic protein-4; EGF, epidermal growth factor; FGF2, fibroblast growth factor 2; FSH, follicle stimulating hormone;
HGF, hepatocyte growth factor; IL-1b, interleukin-1b; n.d., not determined; PDGF, platelet-derived growth factor; SCF, stem cell factor; TGF b1, transforming
growth factor-b1.
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the activation of Cdc42. Thus, extracellular stimuli may activate
p70S6K via PI3K/Akt and MAPK pathways, which in turn may
lead to actin cytoskeleton reorganization at AJs and BTB
restructuring through Rac1/Cdc42 activation. A possible per-
spective of p70S6K in regulating the actin cytoskeleton dynamics
of spermatogenesis in Sertoli cells is shown in Figure 3.

In germ cells, the expression of p70S6K is relatively constant
during its maturation; however, the kinase activity of p70S6K is
increased. Immunohistochemistry detection of p70S6K also
showed that there is a nucleus-to-cytoplasm translocation of
p70S6K during spermatogenesis.108 Moreover, p70S6K has been
shown to mediate cytokine-induced signaling to stimulate pro-
liferation of type A spermatogonia, which may play a role in the
biosynthesis and preparation of germ cells for fertilization.109

Concluding Remarks and Perspectives

The regulation of ES recently has received a great deal of atten-
tion because they may shed light on male contraceptive deve-
lopment. However, the signaling pathways that regulate actin

polymerization and depolymerization at the ES have not been
studied in detail. It is suspected that different cytokines and
hormones may be involved in changes in the dynamics of actin
filaments in the testis. Our new findings have linked p70S6K to
the actin cytoskeleton and have led to the suggestion that this
widely studied kinase may play a key role in epithelial cell
motility. Altered expression of p70S6K and several actin bundling/
cross-linking proteins are being reported in the testis. Rho
GTPases activities are important for the maintenance and
formation of the actin cytoskeleton in Sertoli cells. Further
demonstration of this intriguing phenomenon of a new role
for p70S6K in regulating the actin dynamics in the testis would
have interesting and important consequences. In addition, a
better understanding of how the different networks of p70S6K

functional interactions are orchestrated in a stimulus or context-
specific way, as well as the functional roles on actin reorganiza-
tion in specific cellular and animal experimental models are
essential. This knowledge likely will contribute to a new and
important piece in the complex jigsaw of spermatogenesis and
male infertility.

Figure 3. Schematic perspective of p70S6K on spermatogenesis regulation in Sertoli cells. p70S6K activation through the PI3K/Akt or MAPK pathways may
have a possible role in regulating the actin cytoskeleton at AJ and BTB restructuring through Rac1/Cdc42-activating activities.
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