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Different model organisms, such as Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster,
mouse, cultured human cell lines, among others, were used to study the mechanisms of several human diseases. Since human
genes and proteins have been structurally and functionally conserved in plant organisms, the use of plants, especially Arabidopsis
thaliana, as a model system to relate molecular defects to clinical disorders has recently increased. Here, we briefly review our
current knowledge of human diseases of nuclear and mitochondrial origin and summarize the experimental findings of plant
homologs implicated in each process.

1. Introduction

Sequencing of the human genome has been fundamental to
progress in the study of genetic diseases. In recent years, the
research on various human disorders and the influence of
protein and gene interactions to disease state have increased.
Several model systems have been used to investigate different
human diseases such as cell lines (i.e., fibroblasts, human,
and mammalian cell lines), yeast (i.e., Saccharomyces cere-
visiae), as well as other organisms such as Caenorhabditis
elegans and Drosophila melanogaster [1]. Besides these organ-
isms, plants, especially Arabidopsis thaliana, have proven to
be a powerful additional model system to study eukaryotic
mechanisms that might act similarly in the onset of human
diseases [2]. In fact, Arabidopsis encodes several orthologs
of human proteins [2]. In addition, Arabidopsis present
some advantages for the study of human diseases: (i) short
life cycle, (ii) fast and simple growth on MS medium, (iii)
availability of mutants and homozygous lines for almost all
genes, (iv) fast and simple plant transformation techniques,

(v) fast and easy cell culture methods, and (vi) few ethical
requirements [1].

The following sections review aspects of some human
diseases of nuclear and mitochondrial origin and describe
experimental advantages and recent studies of plant homo-
logs implicated in each process.

2. DNA Repair Genetic Disorders

2.1. MMR Pathway

2.1.1. Hereditary Nonpolyposis Colon Cancer. Hereditary
nonpolyposis colon cancer (HNPCC) or Lynch syndrome is
an autosomal dominant disease characterized by the early
occurrence of cancers of colon, endometrium, and other
organs. Tumors are recognized by a high occurrence of
microsatellite sequence instability (MSI) [3]. Microsatellites
are tandem repeat nucleotides comprising 1–6 bp that occur
ubiquitously throughout the genomes. These sequences
undergo changes in the number of repeat units due to
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slippage and inefficient proofreading activity of replicative
DNA polymerases and to failure of mismatch repair (MMR)
system.

The MMR system is best known for its role in the
correction of mispaired and unpaired bases that arise during
DNA replication and genetic recombination [4–10]. The
system involves several nuclear proteins, which function in
sequence. First, MutS proteins recognize DNA damage. Sub-
sequently, MutS proteins recruit MutL proteins at the DNA
lesion site in the presence of ATP. Then, proteins implicated
in multiple DNA metabolic pathways (exonuclease I (Exo I),
proliferating cell nuclear antigen (PCNA), replication factor
C (RFC), single-strand binding protein RPA, high-mobility
group box 1 (HMGB1), DNA polymerase δ and DNA ligase)
excise the damaged DNA section and resynthesize the correct
DNA sequence.

MutS and MutL proteins form heterodimers in eukary-
otes. MutS heterodimers are composed of MutS homologs
(MSH) subunits, which assemble as MSH2-MSH6 (MutSα)
and MSH2-MSH3 (MutSβ). MutSα recognizes base-base
mismatches and short insertion/deletion loops (IDLs) [11–
16], while MutSβ binds larger IDLs [11, 14, 17–20]. MutL
heterodimers are composed of MutL homologs (MLH) and
postmeiotic segregation (PMS) subunits, which in humans
assemble as MLH1-PMS2 (MutLα), MLH1-MLH3, and
MLH1-PMS1 [7, 21, 22].

Inherited mutations in one of four different MMR
genes (MSH2, MSH6, MLH1, and PMS2) are responsible
for predisposition to HNPCC development [23]. Germline
mutations in MSH2 or MLH1 lead to complete loss of
DNA MMR activity, whereas inactivation of MSH6 or
PMS2 shows a less severe form of cancer associated to
the functional redundancy of MSH3 and MLH3 genes,
respectively (Table 1). Once MMR activity is reduced, genes
are prone to base and frameshift mutations and loss of
function. The most critical mutated genes are either involved
in the regulation of growth, the regulation of apoptosis, or in
MMR system itself, which leads to a progressive inactivation
of the entire system [23].

Consistent to the essential genome maintenance func-
tion performed by MMR system, evolutionary conserva-
tion of MMR genes in plants is not surprising. Besides
MSH2, MSH3, MSH6, MLH1, MLH3, and PMS1 (ortholog
to human PMS2), plants encode a unique mismatch-
recognition protein named MSH7 [24–29]. MSH7 forms
heterodimers with MSH2 leading to the formation of MutSγ.
MutSγ preferentially recognizes some base-base mismatches
and plays a specific role in meiotic recombination [25, 30–
32]. Like human MMR proteins, plant counterparts are
critical to efficiently promote genomic stability (Table 1).
Inactivation of Arabidopsis MSH2 by T-DNA insertion or
RNA interference generated microsatellite instability at sev-
eral dinucleotide repeat alleles [33]. These insertion/deletion
mutations accumulated during propagation since the fifth
generation of mutant plants showed up to 3-fold more
allele shifts per plant than the first generation [34]. Cumu-
lative mutations over generations produced abnormalities
in morphology and development, fertility, germination effi-
ciency, seed/silique development, and seed set [34]. Loss of

a functional Arabidopsis MLH1 gene also led to a significant
reduction in fertility in both homozygotes and heterozygotes
[35].

Some advantages of Arabidopsis as a model system
to study DNA repair mechanisms are worth mentioning:
(i) short generation time for propagating progeny, (ii)
availability of both homozygous and heterozygous seeds
for comparison, and (iii) different reporter systems based
on histochemical staining, bioluminescence generation, or
herbicide resistance for mutagenesis analysis. In this regard,
several reporter constructs were developed to examine
Arabidopsis thaliana MMR function in vivo (reviewed in
[36]). Assays were designed to analyze microsatellite insta-
bility or monitor the frequency of somatic recombination
by restoring β-glucuronidase activity or conferring toler-
ance to the herbicide phosphinothricin. Results confirmed
that frameshift mutations were dependent on MSH2 [37].
In addition, MSH2, MLH1, or PMS1 were suggested to
play essential roles in suppressing recombination between
diverged sequences and indicated the involvement of MLH1
and to a lesser extent MSH2 in the stimulation of plant
homologous mitotic recombination [35, 38–41].

Research in Arabidopsis MMR also included overexpres-
sion of functionally impaired mutated proteins. Transgenic
plants harboring a truncated form of human PMS2, first
identified in kindreds affected with HNPCC, exhibited a
dominant negative effect [42]. A similar strategy was used to
analyze the role of the highly conserved ATP binding domain
of AtPMS1. Introduction of mutant alleles were shown to
inhibit the MMR system in Arabidopsis [43].

A better understanding of MMR genes, and the mech-
anisms in which they contribute, requires the isolation and
characterization of the proteins they encode. We successfully
overexpressed AtMSH2 and AtPMS1 en Escherichia coli and
raised polyclonal-antibodies against these subunits [44,
45]. In addition, in studies to be reported elsewhere, we
found that expression of MutLα or MutSγ in Saccharomyces
cerevisiae leads to a clear increase in yeast mutator rate,
suggesting that the expression of the plant proteins somehow
affects yeast MMR mechanism.

Taken together, the above-cited studies indicate that
MMR system shows high conservation from humans to
plants. Disruption of plant MMR genes, either by inactiva-
tion or dominant negative inhibition, confirmed the func-
tion of their orthologs in humans. Studies can be further
extended to analyze DNA damage induction and repair.
Considering that human MMR proteins also recognize
modified bases generated in response to endogenous or
exogenous DNA damaging agents and that Arabidopsis
seedlings are relatively sensitive to chemical mutagens and
reasonably transparent to UV light, Arabidopsis MMR
research promises to yield insights into the processing of
such lesions. Recently, the contribution of Arabidopsis and
maize MutSα (MSH2–MSH6) to UV-induced DNA lesion
repair was investigated [46]. MSH2 and MSH6 genes were
reported to be upregulated by UV-B. Consistent with these
results, Atmsh2 and Atmsh6 mutant plants accumulated
more DNA lesions relative to wild-type plants. These data
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Table 1: Overview of studies linking DNA repair pathways and disorders in humans and plants.

Genetic deficiencya DNA repair pathway
defectb Human diseasec Reference Plant disorderd Reference

MSH2
MSH6
MLH1
PMS2(1)

MMR HNPCC [23] MSI Homeologous recombination [33, 34, 37–41]

XPA
XPB
XPC
XPD
XPE
XPF
XPG

NER XP [48] Hypersensitivity to UV [90, 93–95, 97, 98]

ATM DSB AT [101]
Hypersensitivity to γ radiation,

X-ray, radiomimetic agents
[115, 117, 118]

a
MSH: MutS homolog; MLH: MutL homolog; PMS: postmeiotic segregation; XPA-XPG: xeroderma pigmentosum A-G; ATM: ataxia telangiectasia mutated.

bMMR: mismatch repair; NER: nucleotide excision repair; DSB: double-strand break.
cHNPCC: hereditary nonpolyposis colon cancer; XP: xeroderma pigmentosum; AT: ataxia telangiectasia.
dMSI: microsatellite instability.

provide evidence that plant MutSα is associated with the
repair of UV-induced DNA lesions.

2.2. NER Pathway

2.2.1. Xeroderma Pigmentosum. Xeroderma pigmentosum
(XP), meaning parchment pigmented skin, is a rare, auto-
somal inherited neurocutaneous disorder. XP patients are
extremely sensitive to sun exposure (ultraviolet radiation,
UV): 45% develop skin cancer, comprising mostly basal and
squamous cell carcinomas, and to a lesser extent melanomas,
angiomas, and sarcomas [47–49]. Besides skin cancers, 20%
of the XP patients can develop progressive neurological
disabilities. These patients are unable to repair UV-induced
DNA damage because they are deficient in nucleotide-
excision repair pathway (NER). Different genetic variants
occur, thus patients are classified into eight complementation
groups of XP named XP-A through XP-G for the respective
mutated gene and XP-V for the variant form (Table 1). XP-
C and XP-A are the most common complementation groups
[50].

The NER pathway removes bulky DNA adducts, includ-
ing cyclobutane pyrimidine dimers (CPDs) and pyrimidine
(6-4) pyrimidinone dimers (6-4 PPs) caused by UV radia-
tion. The repair of DNA damage occurs through different
steps: (i) damage recognition, (ii) assembly of a preincision
complex, (iii) excision of the damaged strand, and (iv) gap-
filling DNA synthesis. Two subpathways that differ in the
initial damage recognition step operate in parallel. The global
genome NER (GG-NER) removes lesions throughout the
genome, while the transcription-coupled NER (TC-NER)
functions on actively transcribed strands [51, 52].

The GG-NER subpathway involves recognition of the
lesion by a heterotrimeric complex containing XPC, HR23B,
and centrin together with damaged DNA-binding protein

1 and 2 (DDB1, DDB2, or XPE) [53]. The initial damage
detection process involves cycles of XPC (together with
DDB1 and DDB2) binding and dissociation from the DNA
in search of structure distortions [54–57]. Once a lesion is
encountered, XPC changes its conformation and binds DNA
with single-stranded character opposite the lesion [56, 58–
62].

The TC-NER involves recognition of the lesion through a
stalled RNA-polymerase II, which triggers the recruitment of
Cockayne syndrome type A (CSA), Cockayne syndrome type
B (CSB), and XPA binding protein 2 (XAB2) to the damage
[59, 63].

After DNA recognition, the ten-subunit complex tran-
scription factor IIH (TFIIH, comprising XPD and XPB
among others) is recruited and GG-NER and TC-NER
converge into the same pathway. The DNA helicases XPB
and XPD facilitate the partial unwinding of the DNA duplex
leading to the recruitment of XPA, RPA, and XPG proteins
and formation of a stable preincision complex around the
damage site [64–69]. Then, ERCC1-XPF and XPG make
DNA incisions, which result in the excision of a 24–32
nucleotide single-strand fragment containing the damaged
site [70]. The gap formed is filled by DNA polymerases δ, ε,
or κ and associated factors [71]. NER is completed by nick
sealing by DNA ligase I or IIIα [72].

Plants have developed different strategies to counter-
act UV-induced DNA damage: the accumulation of UV
absorbing flavonoids and related phenolic compounds in the
upper epidermal layers of leaves [73–77], and the excision
of UV-induced DNA adducts by photoreactivation or NER
[2, 78–81]. Photoreactivation is mediated by photolyases.
Arabidopsis contains two photolyase genes, the UVR2 gene
which encodes a CPD photolyase [82, 83], and the UVR3
gene, which encodes a 6-4 PP photolyase [84]. In addition to
this direct repair process, NER also contributes to maintain
genome integrity in plants [85]. Orthologs of XPB and
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XPD helicases have been isolated. Unlike other eukaryotic
organisms, A. thaliana genome contains two XPB copies,
named XPB1 and XPB2, arranged as tandem repeats in head-
to-tail fashion [86–89]. Expression of both genes varies with
developmental stages and across tissues and is modulated by
light [88]. Atxpb1 mutant plants are viable but exhibit growth
delay, lower seed viability, and loss of germination synchrony,
indicating a partially functional redundancy of both XPB1
and XPB2 in DNA repair and transcription [87].

XPD was also shown to function in plant DNA repair.
Liu et al. [90] characterized two Arabidopsis mutant lines.
A T-DNA disruption of XPD was found to be homozygous
lethal. However, plants harboring a point mutation in the
XPD gene, which resulted in a substitution of a highly
conserved glycine residue (G521E), are viable. These plants
show growth defects, decreased UV resistance, and excision
of UV photoproducts [90]. Results thus suggest that XPD
gene is essential for plant development and is required for
UV resistance.

DDB2 (XPE) is also critical for UV-B tolerance in
plants. The transcript was reported to be expressed in rice
and Arabidopsis proliferating tissues [91, 92] and anthers
of Arabidopsis flowers [92]. These transcripts are rapidly
induced after UV irradiation [91, 92]. Consistent with these
results, ddb2 mutant plants demonstrated a hypersensitivity
to UV radiation [93, 94] and a dark repair deficiency of UV-
induced DNA damage [94]. Combining the ddb2 mutation
with a CPD photolyase mutation (uvr2) further sensitized
the plants to UV. These findings suggest the involvement of
NER system besides photolyases for the repair of UV-induced
DNA damage in plants.

Orthologs of human XPF (AtRAD1/UVH1) and XPG
(AtRAD2/UVH3) endonucleases have also been character-
ized in Arabidopsis. AtRAD1 transcript is expressed in all
tissues but strongly accumulates in meristems and flowers
[95, 96]. AtRAD1 defective plants (uvh1) display a higher
sensitivity to DNA damaging agents than wild-type [95, 97,
98]. More specifically, γ radiation of uvh1 plants generated
cell expansion but inhibited cell division [98]. This response
was reported to be due to a G2-phase cycle arrest [97].

Finally, AtRAD2 transcript appears to be ubiquitously
expressed at moderate levels [99]. Plants deficient in AtRAD2
(uvh3 mutant) are substantially more UV-sensitive than the
wild-type parent, exhibiting severe leaf yellowing and tissue
damage after UV irradiation [99].

Overall, these findings indicate essential roles of XP
genes in suppresing toxic effects of UV and another DNA-
damaging compounds (Table 1). There are, however, differ-
ences among human and plant NER pathways. Arabidopsis
has 2 copies of XPB and seems to lack XPA. In addition,
AtXPF confers sensitivity to γ radiation while the corre-
sponding human gene does not. Further studies are needed
to understand NER pathway in higher plants.

2.3. Double-Strand Break Repair

2.3.1. Ataxia Telangiectasia. Ataxia telangiectasia (AT) is a
rare human autosomal recessive neurodegenerative disorder
that is characterized by ataxic movements due to cortical

cerebellar degeneration and ocular and cutaneous telang-
iectasia (dilation of small blood vessels) [100, 101]. Other
features of the disease include increased risk of cancer,
with ∼70% of malignancies being lymphomas and T cell
leukemias [100], immunodeficiency [102], sterility, and
extreme cellular and chromosomal sensitivity to ionizing
radiation [103].

AT cells are defective in the ataxia telangiectasia-mutated
(ATM) gene [101, 103, 104] (Table 1). ATM is a mem-
ber of the family of phosphatidylinositol-3-OH-kinase-like
kinases (PIKK) of serine/threonine protein kinases [105].
Activation in response to double-strand break (DSB) damage
involves autophosphorylation and dimer dissociation [106,
107]. Activated ATM phosphorylates different downstream
proteins involved in cell cycle arrest and/or apoptosis [100,
108]. Failure to activate ATM in response to DNA damage
might attenuate repair and prevent apoptosis. This would
then cause an accumulation of genetic lesions that eventually
compromise cellular function and viability leading to neu-
rodegeneration [109]. Recently, ATM has also emerged in the
general response to reactive oxygen species [110–113].

Arabidopsis also possesses ATM orthologs [114]. AtATM
is expressed ubiquitously at low levels, slightly higher in
flower buds than in other tissues [114]. atm knockout
mutants are particularly sensitive to DNA DSB induced
by γ radiation, X-ray treatment, and radiomimetic agents
(Table 1) [115, 116] and are defective in the transcriptional
induction of genes involved in DNA metabolism, repair,
chromatin, and chromosome structure in response to γ
irradiation [115, 117, 118]. While ATM function appears to
be conserved in plants and humans, the signal transduction
pathways in these organisms are not precisely the same.
Plants lack apoptotic counterparts of downstream regulators.
Transmission of signal from ATM depends on a plant-
specific transcription factor SOG1 (suppressor of gamma
response 1) [119, 120]. Recent reports have demonstrated
that Arabidopsis root and shoot stem cells undergo cell death
as a downstream response to DNA damage mediated by ATM
[116, 121].

Taken together, the above-cited studies demonstrate that
the mechanisms connecting DNA damage to downstream
effectors in plants do not mirror those in human cells. In fact,
plants are continuously exposed to environmental mutagens;
thus plants have evolved different strategies to sustain growth
under genotoxic stress.

3. Mitochondrial Disorders

3.1. Friedreich’s Ataxia. Friedreich’s ataxia (FA) is an auto-
somal recesive disease in humans [122–124]. FA causes
progressive cardio- and neurodegeneration as well as skeletal
muscle abnormalities, increased risk of diabetes, and some-
times liver and renal failure [123, 125–128].

This disorder is caused by a GAA triplet expansion,
and/or a point mutation in the FA gene, resulting in a
deficiency in the expression of frataxin [122, 129, 130].
Frataxin is a nuclear-encoded mitochondrial protein highly
conserved across the evolution and with homologues found
in prokaryotes and eukaryotes (Figure 1). This protein is
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Figure 1: Sequence alignment of frataxin homologues from different organisms. The amino acid sequence of Homo sapiens (accession no.
Q16595), Mus musculus (accession no. O35943), Bos taurus (accession number NP 001074196.1), Drosophila melanogaster (accession no.
Q9w385), Caenorhabditis elegans (accession no. Q9TY03), Saccharomyces cerevisiae (accession no. Q07540), Arabidopsis thaliana (accession
no. NP 192233.2), Triticum aestivum (accession no. CN010373), Oryza sativa, (accession no. BE040598), and Zea mays (accession no.
CA830057) is shown. Alignment was performed by using the CLUSTALW2 method (Protein Weight Matrix Blosum, clustering NJ)
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Identical residues (∗) are marked in black, and conserved substitutions (:) are shaded in gray.

predominantly expressed in tissues with a high energetic
demand such as neurons and cardiac muscle [131, 132].
In addition, frataxin is highly expressed in flowers, a high
energy demand tissue in plants [133]. The function of
frataxin has not been established yet, but its deficiency was
associated with oxidative stress, iron accumulation, decrease
activities of several Fe-S containing proteins and a deficiency
in oxidative phosphorylation [129, 134–140]. In addition,
it was recently described that frataxin would participate in
heme metabolism [141–143].

The high conservation of the structure of frataxin
allowed the development of models using different organ-
isms such as Saccharomyces cerevisiae, mouse, Caenorhab-
ditis elegans, Drosophila melanogaster, Candida albicans,
Escherichia coli, and Salmonella enterica [126, 129, 144–
148]. In addition, our group has developed two different
Arabidopsis lines with reduced expression of frataxin; (i)
atfh-1, a homozygous mutant line carrying the T-DNA in the
5′UTR region of the AtFH gene, which shows a decrease of
about 50% in AtFH expression [140] and (ii) as-AtFH, an
antisense line showing a decrease of about 70% in frataxin
expression [142].

One of the proposed roles of frataxin is its involvement in
the maturation of cellular Fe-S proteins. It has been described
that the synthesis of Fe-S clusters requires a complex machin-
ery and the participation of several genes [149, 150]. Most of
these genes are conserved in bacteria, mammals, and yeasts.
In addition, The presence of homologue gene sequences in
photosynthetic organisms was recently identified, especially
in mitochondria and plastids of Arabidopsis.

Several studies reported the role of yeast frataxin (Yfh1)
in the assembly of Fe-S clusters, and the deficiency of frataxin
results in decreased activity of Fe-S proteins such as aconitase
and succinate dehydrogenase [135, 136]. Similar results were

found in other models of frataxin deficiency such as knock
out mice and cultured human cells [126]. Moreover, we
recently found that the frataxin-deficient Arabidopsis lines
atfh-1 and as-AtFH also have less than 5% of total aconitase
activity and also a decrease of about 40% in succinate
dehydrogenase (SDH) activity. In addition, these plants
show also increased ROS and Fe levels and upregulation of
transcripts involved in ROS stress responses [140]. We have
also reported that AtFH can participate in heme formation
in plants. We found that as-AtFH line shows a decrease
level of total heme and also shows downregulation of genes
involved in heme metabolism such as HEMA1 and 2, GSA1
and 2, HEMB1 and 2, and AtFC-1 and 2. Furthermore,
the deficiency of catalase activity was rescued with the
addition of hemin [142]. These results are in agreement with
those reported in neuronal cells about the hemin rescue of
adrenodoxin, heme A levels, and cytochrome oxidase activity
[151]. Taking together, these results allow us to propose
Arabidopsis AtFH-deficient lines as interesting models to
investigate the biogenesis of Fe-S clusters, Fe-S- and heme-
containing proteins, as well as for better understanding the
FA human disease.

3.2. Mitochondrial Respiratory Chain Diseases. CI Subunit
Mutations. The mitochondrial respiratory chain is com-
posed by about 90 proteins encoded by the nuclear genome
and 13 proteins encoded by the mitochondrial DNA. These
proteins are organized into five macromolecular complexes
(CI to V) and play a central role in energy production,
generating most of the cellular ATP [152, 153].

Most of the about 1500 mitochondrial proteins are
nuclear encoded and participates in several pathways such as
oxidative phosphorylation, Krebs cycle, fatty acid oxidation,
heme and Fe-S groups synthesis, Fe and Ca homeostasis,

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 2: Sequence alignment of NDUFS4 homologues from different organisms showing the high conservation in the flanking region
of D119. The amino acid sequence of Homo sapiens (accession no. NP 002486.1), Mus musculus (accession no. NP 035017.2), Bos taurus
(accession no. DAA17925.1), Drosophila melanogaster (accession no. NP 573385), Arabidopsis thaliana (accession no. Q9FJW4), Populus
trichocarpa (accession no. XP 002310893), Hordeum vulgare (accession no. BAK01929), Zea mays (accession no. NP 001132398), Oryza
sativa (accession no. NP 001060126) and Glycine max (accession no. NP 001235335) are shown. Alignment was performed by using the
CLUSTALW2 method (Protein Weight Matrix Blosum, clustering NJ) (http://www.ebi.ac.uk/Tools/msa/clustalw2/). The conserved Asp
residue is shown in grey.

aging and cell death, among others [152]. Defects in any of
the different mitochondrial pathways can cause mitochon-
drial diseases. In most of these diseases, the muscle and
cerebral function is affected, and because of this, disorders
are known as mitochondrial encephalomyopaties [154].

In addition, it has been described that many mutations
on the mitochondrial genome can cause a wide variety
of clinical syndromes such as LHON (Leber’s hereditary
neuropathy), LS (Leigh’s syndrome), MELAS (mitochondrial
encephalomyopathy), sporadic anemia, encephalomyopathy,
among others [154].

Due to the evolutionary conservation of several human
proteins that are part of the respiratory complexes, it
was possible to develop different models such as yeast
mutants [155, 156] and C. elegans mitochondrial mutants
for CI, CII, and CIII [157] to study the pathogenesis of
mitochondrial dysfunction in humans. In addition, the
presence of homologous proteins in Arabidopsis plants
allows us to propose this as a model plant for the study of
several mitochondrial diseases related to the mitochondrial
respiratory chain dysfunction.

Dysfunction of CI of the mitochondrial respiratory chain
is the most common enzyme defect of mitochondrial disor-
ders, and it is involved in more than 30% of the hereditary
mitochondrial encephalopaties, including Leigh’s syndrome.
[158, 159]. CI (NADH: ubiquinone oxidoreductase) is the
largest complex of the OXPHOS system. Human CI contains
at least 45 protein subunits, 7 encoded by the mitochondrial
genome, and 28 by the nuclear DNA [160]. This complex is
located on the mitochondrial inner membrane and catalyzes
the oxidation of NADH by ubiquinone.

One of the most studied OXPHOS deficiencies is the
mutation in the NDUFS4 gene, a small 18 kD protein of
CI highly conserved in different organisms. Mutations in
NDUFS4 result in a loss of the last 10–15 amino acids
of its final fifth exon and lead to mitochondrial diseases
such as Leber’s hereditary optic neuropathy (LHON), Leigh’s
syndrome (LS), and mitochondrial encephalomyopathy,
lactic acidosis, and stroke (MELAS). The mutation affects
OXPHOS and metabolism by limiting respiratory substrates
such as NADH due to the deficiency in CI function [161].

The first mutation found in NDUFS4 was a 5-bp duplica-
tion in the ORF of the gene that impairs the phosphorylation
of the protein leading to an inactivation of the complex
[162, 163]. Other mutations in patients with Leigh syndrome
were found in NDUFS4 such as a homozygous G-A transition
at nucleotide +44 of the coding sequence [164]. The G44A
mutation results in the change of a TGG codon, which
encodes for a tryptophan residue, to a TAA stop codon,
which causes the premature termination of the protein, thus
obtaining a truncated form of NDUFS4. A third mutation
in NDUSF4 was reported, a single-base deletion at position
289/290 [165]. Recently, two novel mutations in NDUFS4
causing Leigh syndrome has been reported [166]. One of
these mutations, D119H, is in a conserved region of the
protein. Interestingly, the D119 is highly conserved within
human, mammals, nematodes, and plant species (Figure 2).
All the mentioned mutations were found to be associated
with a defect of the assembly of a functional complex in
the inner mitochondrial membrane. These data suggest that
NDUFS4 has an essential role in the structure and function
of CI.

Recently, Meyer et al. [167] reported the characterization
of an ndufs4 mutant of A. thaliana. As mentioned above,
AtNDUFS4 is highly conserved, showing a 41% identity
respect to the human homolog. NDUFS4-deficient plants
show low phosphorylation efficiency, sucrose-sensitive ger-
mination, delayed growth, a modified respiration pathway,
and altered stress responses. The lack of CI has no major
influence on the mitochondrial proteome or transcriptome
but leads to a lowering of growth-related nuclear transcripts
and clearly influences central metabolism [167]. In addition,
the deletion of NDUFS4 prevents the assembly of CI and
alters the adenylate control of cellular metabolism without
pleiotropic effects on other respiratory components [167].
Taken togheter, these observations show the essential role
of the NDUFS4 gene in the structure and function of CI.
Moreover, due to evolutionary conservation of this protein,
it is possible to use different models, including Arabidopsis,
in order to better understand the mechanism of assembly of
this respiratory complex, whose dysfunction is responsible
for many mitochondrial human diseases.

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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4. Concluding Remarks

Plants have preserved most of the pathways essential for life
and then represent complementary resources within human
disease research. As described in this paper, observations
demonstrate that plants encode orthologs of human pro-
teins, which function in mechanisms reminiscent of those
in other eukaryotes. Thus, plant research opens new areas
regarding drug development and disease therapy, which are
crucial to human health.
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