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Abstract: Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO)
is an important signaling molecule that mediates diverse processes in the cardiovascular system,
thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs
have been developed to release NO in vivo. However, the clinical application of these prodrugs still
faces many problems, including the low payloads, burst release, and non-controlled delivery. To
address these, various biomaterial-based platforms have been developed as the carriers to deliver
NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize
recent developments of various therapeutic platforms, engineered to release NO for the treatment of
CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are
also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-
based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important
therapeutic benefits for CVD.

Keywords: nitric oxide; controlled release; cardiovascular disease; biomaterials; synergetic therapy

1. Introduction

Cardiovascular disease (CVD) is the most common disease, endangering the health of
people and causing about 19 million deaths globally in 2020, and thus has become the first
killer of human life and health in the world [1]. Patients with CVD sometimes need not
only long-term medication (such as hypertension) but also some high-risk operations (such
as cardiomyopathy and myocardial infarction) in severe cases. According to the report of
the American Heart Association in 2022, the direct and indirect costs of CVD in the United
States from 2017 to 2018 are about USD 378.0 billion, accounting for 12% of the total medical
expenses in the United States [1]. Therefore, CVD is not only a huge medical burden but
also a heavy economic and social burden. How to develop an effective and minimally
invasive treatment under the current medical conditions is an urgent task for researchers.

Nitric oxide (NO) is a small-molecule gas, which has paracrine and autocrine func-
tions and serves as an important regulatory factor of the circulatory system [2]. It was
first found as an endothelium-derived relaxing factor (EDRF), which plays a key role in
vasodilation [3]. Based on this important discovery of NO, Robert Furchgott, Louis Ignarro,
and Ferid Murad shared the Nobel Prize in medicine in 1998 [4]. Besides affecting vascular
tension, NO also has the functions of anti-inflammatory, anti-oxidation, reducing blood
lipid levels, inhibiting vascular smooth muscle cells (SMCs) proliferation, and platelet
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aggregation [5]. Endogenous NO can be generated by catalyzing L-arginine with nitric
oxide synthetase (NOS), including endothelial nitric oxide synthetase (eNOS), neuronal
nitric oxide synthetase (nNOS), and inducible nitric oxide synthetase (iNOS) [6]. For the
cardiovascular system, eNOS is a vital regulator of cardiovascular homeostasis, because it
is the main source of NO synthesis in vascular endothelium [7]. In a physiological state, NO
produced by eNOS can inhibit the expression of adhesion factors and platelet aggregation
to reduce the risk of early atherosclerosis [8]. However, some pathological conditions,
such as continuous cardiac pressure overload, can induce eNOS uncoupling, resulting in a
decrease in NO production and finally aggravating the disease [9]. Therefore, the addition
of exogenous NO can be beneficial to prevent and cure CVD.

How to deliver exogenous NO in vivo is still a challenge, due to the difficulties in
handling and transporting NO gas. For example, NO is a gas molecule with a short
half-life and instability, which makes its influence range only a few microns, limiting the
effectiveness of NO reaching the target site [10]. Moreover, NO can react with several
intracellular targets indiscriminately, excessive reactive oxygen species (ROS) to generate
peroxynitrite, which further leads to nitrite stress and even tissue damage [11–13]. In
addition, the physiological effects of NO are concentration dependent, with a proangiogenic
effect at low concentrations (10−12–10−9 M) and a proapoptotic effect at high concentrations
(10−6 M) [14]. To solve the problems described above and improve the treatment efficacy
of NO, much effort has been focused on developing feasible and effective means for NO
delivery in a timely, targeted, quantitative, and stable manner.

The development of NO donor, which is the pharmacologically active carrier of NO,
can assist in the in situ release of NO in the target tissues [15]. The release of NO from
the donor molecule can be triggered by factors such as light, heat, pH change, or enzyme
activity. For example, sodium nitroprusside (SNP) was the first metal–NO compound
discovered 150 years ago and was first used as an anti-hypertensive drug successfully in
1970 [16]. It is still widely used in modern medicine, as a common vasodilator in cardiac
surgery, hypertension emergency, heart failure, and vascular surgery [17]. NO produced
by SNP can stimulate guanylate cyclase to produce cyclic guanosine monophosphate
(cGMP), thus relaxing smooth muscle, increasing cardiac blood flow, and lowering blood
pressure [17]. However, there are still some shortcomings in the use of NO donors. For
example, although SNP is stable enough to release NO spontaneously under the influence
of light, it cannot release NO continuously for a long time, resulting in the insufficient
release of NO, thus affecting the curative effect of CVD [18,19]. To stabilize the NO release
from donors, it is feasible to load the NO donors onto the biomaterials to prepare a NO
delivery system. At present, however, only a few products of NO delivery have received
approval from the United States Food and Drug Administration (FDA) [20].

Considering the increasingly important role of NO in gas therapy for CVD, this review
aims to highlight recent developments of various therapeutic platforms, engineered to
release NO for the treatment of CVD, including NO drugs and NO-releasing biomaterials.
In addition, two potential strategies to improve the effectiveness of existing NO therapy are
also discussed, including the combination of NO-releasing platforms and either hydrogen
sulfide (H2S)-based therapy or stem cell therapy. Recently, there have been several reviews
on the delivery of NO for treating CVD [14,20,21]. Compared to these review works, this
is the first comprehensive review on different levels of NO-releasing platforms, from NO
donors or NO-related drugs to NO-releasing biomaterials to NO-based synergistic therapy
for the treatment of CVD. Moreover, this review also introduces the most recent research
achievements in this area. Hopefully, some NO-releasing platforms may provide important
therapeutic benefits for CVD.

2. The Mechanism of NO in CVD and NO-Related Drugs

Adults can inhale NO gas for a variety of therapeutic purposes. However, NO gas
therapy efficacy was affected by the characteristics of NO, such as extremely short half-lives,
aimless distribution, and difficulty accumulating in target tissues. To address this issue,
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several NO donors or NO-related drugs that directly release NO or indirectly increase the
concentration of NO have been developed. There are four major types of low-molecular-
weight NO donors that can produce NO exogenously: N-diazeniumdiolates (NONOates),
S-nitrosothiols (RSNO), metal–nitrosyl complexes, and nitrobenzene. Among them, the
most extensively studied NO donor is NONOate, which spontaneously decomposes under
physiological conditions, releasing two moles of NO for every mole of donor [22]. In
comparison, RSNO is an endogenous NO donor and functions as a physiological transporter
of NO in vivo, such as S-nitroso-L-cysteine (CysNO) and S-nitrosoglutathione (GSNO) [23].
RSNO releases NO under a variety of conditions, including the thermal environment,
ultraviolet (UV) light, and metal ions [24,25]. For more than a decade, researchers have
studied the light-induced release of NO donors such as metal–NO complexes [26] and
nitrobenzene derivatives [27]. In addition to NO-releasing donor molecules, there are also
some NO-related drugs which can improve NO production indirectly; for instance, by
increasing the expression of eNOS or activating eNOS. These NO donors or NO-related
drugs have been widely used in the treatment of CVD, including hypertension, myocardial
infarction, left ventricular (LV) hypertrophy, and heart failure (Table 1). The chemical
structures of these compounds are shown in Figure 1.

Table 1. Summary of the NO donors or NO-related drugs for the treatments of CVD.

Name Essence Feature Application Refs.

Sodium nitroprusside NO donor
A direct NO donor
independent of the

endothelium.

Rapid blood pressure
reduction [28]

Clofibrate
PPARα agonist

(indirectly increases
NO prodution)

Increases eNOS protein
expression and enzyme

activity in the left ventricle.
Treatment of hypertension [29]

Nitroglycerin NO donor

Suppresses ST segment
elevation and reduce infarct

size by promoting the
development of collateral

coronary circulation

Controls angina pectoris
and treats myocardial

infarction
[30,31]

Amyl nitrite NO donor

Release NO after the formation
of S-nitrosothiol intermediate

by interaction with
sulfhydryl groups

Lowers blood pressure and
treats angina pectoris [32,33]

Molsidomine NO donor Regulate NO-cGMP signaling
via multiple pathways in vivo

Maintains atherosclerotic
plaque stability and
prevents myocardial

infarction and congestive
heart failure

[34,35]

Rosiglitazone

PPARγ agonist
(indirectly increases

NO by activating
the eNOS)

Upregulates nuclear factor
erythroid-2-related factor 2

(Nrf2) in the positive feedback
loop to maintain transcription

factor expression

Treatment of spontaneous
hypertension in youth [36]

Nebivolol

Third-generation
β-receptor blocker

(indirectly increases
NO prodution)

The β-adrenergic antagonist
that causes vasorelaxation

primarily by activating eNOS

Treatment of LV
dysfunction of myocardial

infarction; antioxidant
properties, preventing

NOS uncoupling;
improving LV function in

chronic heart failure

[37–42]
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Table 1. Cont.

Name Essence Feature Application Refs.

Fenofibrate
PPARα agonist

(indirectly increases
NO prodution)

Increases endothelial eNOS
expression; prevents

endothelial dysfunction;
reconnects eNOS

Protecting atherosclerosis
and endothelial

dysfunction, and finally
preventing

myocardial infarction

[43–45]

LA419 NO donor
The effects of anti-ischemia,

anti-thrombosis and
anti-atherosclerosis

Treatment of myocardial
infarction; the prevention

of the progression of
inadaptable cardiac

hypertrophy

[28,46]

L-arginine A precursor of
NO production

Reversing several markers in
LV hypertrophy and reducing
blood pressure and interacting

with renin–angiotension–
aldosterone system and

sympathetic nervous system
and other systems

Prevents the progression of
LV hypertrophy,

anti-hypertrophic effect
[47–49]

BRL37344
β3-ARs agonists

(indirectly increases
NO prodution)

Increases nNOS protein
expression and NO production,

inhibits superoxide
anion generation

Improves LV systolic and
diastolic dysfunction, used

in the treatment of
cardiac hypertrophy

[37]

Carbachol
M-cholinergic agonist
(indirectly increases

NO prodution)

Mediates the production of
NO from nNOS Prevents heart failure [50]
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2.1. Hypertension

Hypertension is a common cardiovascular disease and a major risk factor for cardio-
vascular and cerebrovascular diseases. Some patients even need to take medication for
a lifetime to control their blood pressure. Hypertension patients usually have the char-
acteristics of increased vascular tension, vascular remodeling, and vascular dysfunction
caused by endothelial cell damage and increased oxidative stress [51–53]. The decrease
in NOS/NO/cGMP cascade activity will lead to hypertension [7]. In patients with hy-
pertension or prehypertension, the effect of endothelium-dependent vasodilators, such
as acetylcholine, is weakened, while SNP is a direct NO donor independent of the en-
dothelium, which releases NO through endothelial cell metabolism. SNP can reduce blood
pressure rapidly and thus is often used to treat hypertension [28]. Patients treated with
SNP can still achieve a good vasodilation effect [7,54]. Although SNP has a rapid anti-
hypertensive effect, it cannot be used in the treatment of chronic hypertension due to
tolerance problems, systemic hypotension, and reflex tachycardia [55].

In recent years, some studies have shown that peroxisome proliferator-activated
receptors (PPARs) play an important role in the regulation of endothelial function. There
are two forms of blood pressure reduction by PPARs: PPARα and PPARγ. PPARα agonists
can improve the expression of eNOS, and then increase the content of NO. They also can
decrease the content of endothelin-1 (ET-1) and inhibit the activity of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, thus reducing blood pressure. PPARγ agonists
can downregulate the angiotensin (ang) II receptor, reduce the content of ET-1, increase
the production of NO, and achieve the effect of lowering blood pressure [56]. For example,
clofibrate is an important PPARα activator that stimulates the expression and activity
of eNOS by activating PPARα in endothelial cells (ECs), thus increasing the production
of NO [43]. It has been proved that clofibrate can significantly increase eNOS protein
expression and enzyme activity in the left ventricle and improve endothelium-dependent
vasodilation in hypertensive rats [29]. PPARγ agonists (rosiglitazone for instance) can
upregulate nuclear factor erythroid-2-related factor 2 (Nrf2) in the positive feedback loop
to maintain transcription factor expression, thus improving the bioavailability of NO in
ECs [36]. The activation of eNOS and increased NO production were observed in young
male spontaneously hypertensive rats (SHR) when treated with rosiglitazone [43].

2.2. Myocardial Infarction

Acute myocardial infarction refers to the myocardial necrosis caused by acute and
persistent occlusion of the coronary artery. It can be complicated with arrhythmia, shock,
or heart failure, and can even be life threatening. The main cause of myocardial infarction
is the rupture of unstable atherosclerotic plaque, which leads to the aggregation of platelets
on the surface of the plaque, followed by the formation of thrombus and the obstruction of
the lumen of the larger coronary artery, ultimately resulting in myocardial ischemia and
necrosis. Treatments with exogenous NO donors benefit patients with atherosclerosis and
myocardial infarction. Nitroglycerin, a classical NO donor drug, has been clinically applied
for more than 100 years and is still a standard vasodilator [30]. It was recently suggested
that intermittent treatment with the short-acting nitroglycerin could significantly decrease
the infarct size by promoting coronary collateral development [31]. Amyl nitrite is another
classical NO donor drug and was first used to treat coronary heart disease in 1867. Its
pharmacological effects are similar to nitroglycerin, lowering blood pressure and treating
angina pectoris [32]. Moreover, molsidomine, a NO-donating drug, can spontaneously
release NO and decrease the plasma level of soluble adhesion molecule ICAM-1, which may
slow down the progression of atherosclerosis [57]. A recent study showed that molsidomine
can improve heart function, enhance the stability of atherosclerotic plaque, and reduce the
occurrence of myocardial infarction [34].

β-adrenergic receptors (β-ARs) play a key role in regulating cardiovascular activ-
ity [58–60]. In some cases, β-ARs can directly affect the production of NO. Nebivolol,
a highly selective third-generation β-receptor blocker and also the β-adrenergic antag-
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onist, causes vasodilatation primarily by activating eNOS, thus having a NO-mediated
effect [37]. A study has shown that nebivolol can treat LV dysfunction after myocardial
infarction in mice [38]. The main mechanism of treatment of early LV dysfunction after
myocardial infarction is that nebivolol can prevent NADPH oxidase activation and enhance
eNOS-dependent NO utilization [38]. Nebivolol also has antioxidant properties, which can
prevent the uncoupling of NOS, thus improving the bioavailability of NO [39–41]. Fenofi-
brate, a PPARα agonist, has been found to increase the expression of eNOS in ECs [44].
Fenofibrate may prevent endothelial dysfunction by reducing ROS production and up-
regulating tetrahydrobiopterin, which is an essential cofactor of NOS [43]. Fenofibrate may
also have the effect of reconnecting eNOS to protect against atherosclerosis and endothelial
dysfunction, and finally preventing myocardial infarction [45]. Furthermore, LA419, a NO
donor, has been proved to have anti-ischemia, anti-thrombosis, and anti-atherosclerosis
effects, so it can be used in the treatment of myocardial infarction [46].

2.3. Left Ventricular Hypertrophy

Patients with hypertension for a long time may suffer from left ventricular hypertrophy
(LVH), which is also a complication of hypertension [61–63]. The pathogenesis of LVH
is multifactorial. On the one hand, the main pathogenesis of hypertensive LVH can be
related to hemodynamic factors, which are correlated with the increase in LV afterload.
Compensatory hypertrophy of cardiomyocytes makes the ventricular wall gradually thicker
in order to overcome resistance and adapt to pressure. On the other hand, some non-
hemodynamic factors, such as the renin–angiotensin system, catecholamine, sexual factors,
and genetic and metabolic factors, can also participate in the pathogenesis of LVH [64,65].
It has been suggested that NO has a certain resistance to the procession of LVH caused
by essential hypertension [66]. L-arginine is a precursor of NO production. When O2,
NADPH, FAD, FMN, and BH4 are present, eNOS forms a complex with Ca2+-calmodulin
to catalyze the conversion of L-arginine to L-citrulline and release NO, which can reverse
several markers in LVH [47,48]. A previous study has confirmed that NO has an effect
of anti-cardiac hypertrophy in spontaneously hypertensive rats (SHR) after long-term
administration of L-arginine [49]. In recent years, it has been demonstrated that L-arginine
administration can enhance the expression of eNOS in the myocardium, resulting in the
amelioration of oxidative and hemodynamic parameters in rats with LVH [67]. NO can
also prevent LVH progression by reducing blood pressure and interacting with the renin–
angiotensin–aldosterone system, sympathetic nervous system, and other systems [68].
LA419, a NO donor, plays a beneficial role in preventing the progression of inadaptable
cardiac hypertrophy [28]. In addition, it has been reported that β3-AR agonists can treat
LVH. For example, BRL37344 (a β3-AR agonist) can improve LV systolic and diastolic
dysfunction and has been used in the treatment of cardiac hypertrophy, due to the increase
in nNOS protein expression and NO production, as well as the inhibition of superoxide
anion generation [37].

2.4. Heart Failure

The final stage of heart disease development is heart failure. Without treatment or
intervention, almost all cases of heart diseases can develop into heart failure. Loss of
NO activity in peripheral and coronary vessels is an important cause of heart failure [7].
Research shows that the bioavailability of NO in the coronary arteries of failing hearts is
decreased [69]. NO regulation can be enhanced by activating the eNOS/nNOS pathway
and reducing oxidative stress, consequently preventing heart failure [69]. For example,
carbachol can mediate the production of NO from nNOS and thus protect the heart [51].
The main causes of chronic heart failure (CHF) are coronary heart disease, hypertension,
and dilated cardiomyopathy. Activation of β3-AR in a NO-dependent manner has a
cardioprotective effect [51,70]. For example, the aforementioned drug nebivolol can treat
myocardial infarction and improve LV function in CHF [42].
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Although NO donors or NO-related drugs have been widely used in CVD treatments,
there are several drawbacks, such as short effective reaction time and poor specificity.
With the deepening of research related to the mechanisms of the NO-soluble guanylate
cyclase(sGC)-cGMP signaling pathway, the clinical application of sGC stimulators in the
cardiovascular system has been widely carried out. The cardiovascular protective effects of
sGC stimulators are independent of NO concentration, and sGC stimulators can activate
sGC directly to catalyze the generation of cGMP, which can regulate the physiological
processes in the cardiovascular system to achieve therapeutic purposes [71]. Recently, a
number of sGC stimulators have been developed and their roles in the cardiovascular
system have been investigated (Figure 2). For example, riociguat, a classic sGC stimulator,
is approved for the treatment of pulmonary hypertension and chronic thromboembolic pul-
monary hypertension by inducing pulmonary vasorelaxation which results in an increase
in pulmonary blood flow and a decrease in pulmonary blood pressure [72,73]. Vericiguat,
a novel sGC stimulator, has been shown to directly stimulate sGC and enhance sGC sen-
sitivity to endogenous NO in a randomized, double-blind, controlled clinical trial [74].
Vericiguat can be used to treat heart failure with reduced ejection fraction [75]. In clinical
trials, Lombardi et al. demonstrated the superior efficacy of vericiguat in patients at high
risk of heart failure, reducing the incidence of cardiovascular death or hospitalization
for heart failure [76]. Recently, Veres et al. found that cinaciguat, an sGC stimulator, has
a protective effect on cardiac ischemia-reperfusion injury in patients with graft vessels.
Cinaciguat can enhance cGMP signaling and significantly reduce DNA breakage and ni-
trogen oxidative stress, and thus may benefit vascular endothelial dysfunction in patients
with arterial bypass graft during cardiac surgery [77].
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In addition to the direct and indirect release of NO by various drugs, some in vivo and
in vitro heart treatment devices are also indispensable. Stents and catheters are commonly
used in the treatment of CVD, which often require the participation of various materials
to meet different treatment needs. Therefore, it is still a hot topic to develop different
biomedical devices. The following will discuss NO-related therapeutics in the treatment of
CVD using biomaterials-based strategies.

3. Application of NO-Releasing Biomaterial Platforms in CVD Treatment

Although these above-mentioned NO donors have been used in clinical applications,
there are many limitations that remain to be addressed, including the short half-life, insta-
bility, cytotoxicity, and limited payload of NO. Thus, researchers are devoted to developing
carrier biomaterials for loading NO donors to release NO accurately and effectively [15].
At present, there are a variety of NO-releasing biomaterial platforms for the treatment of
CVD, such as the surface coating of medical devices such as stents and catheters, polymer-
based nanoparticles with controllable size and good stability, and flexible, hydrophilic, and
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adjustable hydrogels. Their applications in cardiovascular diseases are described in detail
below (Figure 3).
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3.1. Cardiovascular Stents

In the treatment of cardiovascular diseases, interventional therapy is indispensable for
cardiac surgery, such as implanting cardiovascular stents in the diseased area. At present,
bare-metal stents (BMSs) and drug-eluting stents (DESs) are the most commonly used in
interventional therapy for cardiovascular disease, and in previous studies, it was generally
believed that the outcomes of using DESs would be superior to that of BMSs [78]. Although
the use of DESs can effectively reduce the incidence of in-stent restenosis, it also has some
defects, such as the induced risk of late acute thrombosis by delaying re-endothelialization
which reduces the long-term effectiveness of interventional therapy [79]. Therefore, how to
develop safe and effective cardiovascular stents has become a research hotspot. A lot of
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effort has been made to accurately mimic native endothelial functions on cardiovascular
stents, such as NO generation.

Metal–organic framework (MOF) is a new type of coordination material composed of
a metal junction and organic bridging ligand, with the advantages of adjustable pore size,
shape, structure, and biodegradation [15,80]. Excellent MOF porous solid materials such as
MIP-177 not only have a higher NO adsorption capacity than other porous solid materials
but also have the ability to release NO to drive controlled cellular mitochondrial respiration
and stimulate cell migration [81]. MOF also has good storage stability and magnetic
response function of MOF equipped with a NO carrier, with burst and steady release of two
NO release stages [82]. In addition, some MOF materials, after binding with NO donors,
impart MOF-based medical devices with antibacterial properties, which can be used as
an efficient tool for the early prevention of medical device biofilm formation. Garren et al.
developed a multifunctional three-layer composite scaffold with H3[(Cu4Cl)3(BTTri)8-
(H2O)12]·72H2O and a NO donor, S-nitroso-N-acetylpenicillamine (SNAP). This scaffold
exhibited enhanced NO release and had a good antibacterial effect, significantly reducing
the adhesion of Staphylococcus aureus and Escherichia coli [83]. Copper ion (CuII) can promote
the growth of ECs and increase the content of NO in vivo. Fan et al. prepared a kind of
nano Cu-MOF on the surface of titanium, which can catalyze the production of NO and the
transfer of CuII at the same time. This kind of Cu-MOF coating has anti-proliferation ability
against VSMCs and macrophages, thus reducing neointimal hyperplasia. At the same time,
it can promote the re-endothelialization of cells and inhibit the formation of thrombus, so
as to treat cardiovascular diseases [80].

Recently, the emerging bionic surface-modified cardiovascular stents have the function
of improving blood compatibility and reducing the restenosis of stents in the later stages,
which has become a hot topic in recent years [84]. Metal–catecholamine assembly strategy
is a kind of biomimetic coating. Li et al. used 3,4-dihydroxy-l-phenylalanine (DOPA) to
crosslink selenocysteine (SecA) and CuII to prepare a CuII DOPA/SecA coating, which can
mimic the catalytic activity of glutathione peroxidase to realize long-term, stable, adjustable
NO release. This kind of NO-releasing coating can promote re-endothelialization, suppress
thrombosis, and reduce intimal hyperplasia in vivo [85]. In addition, Zhang et al. obtained
a DA-CuII coating by immersing the scaffold in an aqueous solution containing dopamine
(DA) and CuII. The coating can catalyze the decomposition of the natural NO donor RSNO
in the circulating blood, and then release NO in a local stable, long-term, and controllable
way. DA-CuII coating has specific cell selectivity and can inhibit the growth and migration
of VSMCs, which can also promote the re-endothelialization of cells, inhibit the formation
of thrombus, and improve the anti-restenosis performance of stents in vivo [86].

How to realize the continuous and controllable release of NO by coatings is an impor-
tant research focus in the modification of vascular stents. In a recent study, the Huang and
Yang lab reported a durable endothelium-mimicking coating on stents by binding a NO-
producing substance Cu-DOTA (1,4,7,10-tetraazacyclododecane-N,N′,N′ ′,N′ ′ ′-tetraacetic
acid) and bioactive molecule heparin (Figure 4). The surface of the scaffold was first coated
with polydopamine (pDA), followed by surface chemical crosslinking with polyamines
(pAM) to form a long-lasting mussel-inspired amine-bearing adhesive coating (pAMDA),
and then covalently fixed Cu-DOTA with NO release function and heparin with anticoag-
ulant function by a grafting method. The high chemical stability of the pAMDA coating
maximizes the biological activity of heparin while continuing to release NO for up to a
month. Therefore, the functionalized vascular stent exhibits a long-term physiological
effect of mimicking the endothelium in inhibiting thrombosis, inflammation, and immunity,
thereby effectively reducing in-stent restenosis [87].
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Another method of sustained and localized on-demand release of NO, besides en-
dogenous NO, is to incorporate NO donors into biomaterials via physical or chemical
approaches [88]. Zhu et al. developed a bifunctional stent with anticoagulant and endothe-
lial functions. A block copolymer brush with a zwitterionic structure is grafted to the bare
metal coronary stent surface by an atom transfer radical polymerization surface, and the
NO donor diethylenetriamine NONOate (DETA NONOate) is attached to the polymer
brush by reactive epoxy groups to produce NO. The resulting bifunctional stent has good
biocompatibility, anticoagulation, and particularly pro-endothelialization function, show-
ing great potential for reducing postoperative restenosis and late stent thrombosis-related
side effects [89].

3.2. Medical Catheter

Medical catheters are also commonly used in the clinical treatment of CVD. Acute
catheters can be retained for up to 7 days in emergency treatment, while in the case of
long-term nutrition or dialysis, some catheters may be placed permanently [90]. The
biggest risk and common complications of long-term indwelling catheters are infection and
thrombosis. The application of NO-releasing coating in catheters can solve these problems,
due to the anti-platelet, inhibition of platelet adhesion, and anti-infection activities of NO.
It has been proved that adding NO donor to polymer materials not only has no effect
on the basic mechanical properties of the materials but also has the characteristics of no
cytotoxin and anti-hemolysis [91]. For example, Brisbois et al. used poly(lactic-co-glycolic
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acid (PLGA) and diazeniumdiolated dibutylhexanediamine (DBHD/NONO) as additives
in Elasteon-E2As polyurethane (PU) to prepare NO-releasing central venous catheters [92].
In the experiment, it was observed that NO-releasing materials can play an anticoagulant
and antibacterial role in the long-term implantation and optimize the placement effect
of catheters.

SNAP is one of the most frequently used NO donors for in vivo preclinical studies
because it is relatively stable [93]. Researchers prepared a SNAP impregnated catheter by
expanding the silicone rubber tube in a tetrahydrofuran solution containing SNAP [94].
This method can provide NO release at a physiological level for up to 18 days, so it has
a broad application prospect in the manufacture of intravascular biosensors. Hopkins
et al. covalently linked SNAP on poly(dimethylsiloxane) (PDMS) to realize a highly stable
NO release for 125 days. SNAP-PDMS coating showed excellent blood compatibility and
long-term antibacterial properties. It can significantly inhibit the bacterial adhesion of
Staphylococcus aureus after one month of continuous exposure in the bioreactor. After more
than 4 months of NO release, SNAP-PDMS coating still has a certain antibacterial effect
and NO-releasing performance and reduces the risk of thrombosis [95]. This brings a new
insight into the development of long-term NO-releasing materials.

The main reason for catheter-related bloodstream infections (CRBIs) is the long-term
indwelling of the catheter in the body, which causes bacteria to adhere to the catheter,
form biofilms, and resist the bactericidal effect of antibiotics [96]. In order to solve these
problems, researchers have made many efforts to develop a medical catheter that can not
only ensure long-term NO release but also inhibit bacterial adhesion and/or promote
bacterial eradication. Pant et al. prepared a vascular catheter by combining SNAP with
the hydrophobic polymer Elasteon-E2As. The catheter can not only release NO to reduce
the adhesion of blood protein but also significantly inhibit the living bacteria attached to
the polymer surface in the absence of cytotoxicity, showing excellent biocompatibility [97].
In another study, the Meyerhoff lab used a simple impregnation technology to add SNAP
into a copolymer of silicone rubber (SR) and PU with stronger biocompatibility, and the
resulting SNAP-impregnated SR-PU copolymer intravascular catheters exhibited high
stability and long-term NO release performance [98]. The catheters can release NO in
14 days and have the ability to kill Staphylococcus epidermidis and Pseudomonas aeruginosa.
In addition, the lab also proved that SNAP-doped SR-PU copolymer composites had anti-
biofilm activities for Pseudomonas mirabilis [99]. In summary, the solvent impregnation
method is a simple and efficient composite material synthesis method, which can improve
the blood compatibility/antibacterial activity of the venous catheter and provide ideas for
the development of the catheter and other implantable medical device materials.

Because the bionic method may be able to “trick” the organism to make it no longer
have a strong rejection to the foreign body entering the body and control the reaction to the
foreign body surface, thus improving the biocompatibility, the bionic strategy is also crucial
in the development of medical catheters. Xu et al. prepared a kind of dual-functional PU
film by using a bionic strategy. This film was impregnated with SNAP as the NO donor,
and its outer covering was a submicron cylindrical pattern imitating the inner surface of
the blood vessel (Figure 5) [100]. Both NO release and surface texturing reduced platelet
adhesion and activation, thus showing antithrombotic activities. The biomimetic surface
also reduced the bacterial adhesion by the synergistic effect, thereby inhibiting biofilm
formation. Because of its bionic advantages, this biomaterial may be widely used in the
development of medical devices that are directly in contact with blood in the future.
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property. Textured PU is impregnated with SNAP. NO releases from the surface texturing to mimic
the inner surface of blood vessels, inhibiting platelets and bacterial adhesion. Reproduced with
permission from [100], Acta Biomaterialia, 2019.

3.3. Vascular Grafts

In modern medicine, there is an urgent need for durable artificial vascular grafts
with small diameters for treating vascular occlusions. In order to develop effective small-
diameter artificial vessels, one of the most important steps is improving the hemocompat-
ibility of the surface to facilitate rapid endothelialization and avoid thrombosis. In this
context, using NO-releasing biomaterials would be a good strategy for the construction of
vascular grafts. Li et al. synthesized a low-toxicity NO donor S-nitrosated keratin (KSNO)
which could be co-electrospun with poly(ε-caprolactone) (PCL) to fabricate small-diameter
vascular grafts that generate NO under the catalysis of ascorbic acid (Asc) (Figure 6) [101].
NO released from the vascular grafts can enhance the adhesion and growth of human
umbilical vein endothelial cells (HUVECs). At the same time, in the presence of Asc, it can
inhibit the proliferation of human aortic smooth muscle cells. Inhibition of thrombosis and
complete luminal coverage by endothelial cells can be observed after 1 month of carotid
artery replacement in animals. Therefore, PCL/KSNO small-diameter vascular grafts
have the function of rapid endothelialization and vascular remodeling, showing potential
application value in vascular tissue engineering.

Other than loading NO donors in the polymer matrix, modification of NO catalysts
on the surface of vascular grafts has been confirmed to be an effective strategy for NO
release in situ via catalyzing endogenous NO donors in the bloodstream [102]. For instance,
organoselenium-immobilized polyethyleneimine (SePEI) has been used to modify grafts
to catalyze endogenous RSNO for NO release, which can improve endothelialization and
remodeling of vascular grafts [103]. Zhao’s research team reported an enzyme-mediated
approach to realize the in situ NO release. Galactosidase was modified on the surface
of vascular grafts to catalyze the glycosylated NO prodrug, which was intravenously
administrated. The immobilized enzyme can retain biological activity after at least 1 mouth
to gain stable NO release at the implantation site, which can effectively inhibit platelet
adhesion and thrombus formation, whilst also improving endothelialization and vascular
tissue regeneration [104]. Despite good efficacy in the in vivo experiments, this enzyme-
activated approach still faces issues related to the non-specific NO release caused by
the widely distributed endogenous glycosidase. In an effort to address this issue, the
research team used a bump-and-hole strategy to develop a novel NO delivery system
based on galactosidase-galactosyl-NONOate as an enzyme–prodrug pair, which improved
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the targeting of NO delivery [105]. In the hind limb ischemia and ischemia/reperfusion
kidney injury (AKI) models, NO-targeted delivery exhibited improved therapeutic efficacy
in tissue repair and function recovery, while side effects related to the systemic release of
NO were eliminated. It may also be possible to apply this NO delivery system based on
the enzyme–prodrug strategy to vascular stents and vascular grafts.
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3.4. Nanoparticles

To avoid burst release and non-targeted delivery of NO, one effective strategy is to
encapsulate NO donors into nanoparticles (NPs). The application of nanomaterials to
deliver NO has the following advantages: Firstly, the nanomaterials can stably load a
large amount of NO with high bioactivity; secondly, the surface of nanoparticles can be
chemically modified and optimized to meet different medical needs; thirdly, encapsulation
of NO donors in nanocarriers enable controlled and targeted delivery of NO [106,107].
Zhang et al. developed a type of NO-releasing gelatin-siloxane nanoparticle (GS NP) via
modifying RSNO on GS NPs [108]. The synthesized GS-NO NPs not only released NO
continuously for 7 days but also had good water stability and cell compatibility to regulate
the proliferation of SMCs and ECs. The nanoparticles were expected to be used to prevent
restenosis after surgery.

High-density lipoprotein (HDL) is a kind of natural targeting nanoparticle. Its main
function is to transport cholesterol in the human body. In addition, it also has the function of
maintaining vascular homeostasis, similar to the role of NO. To combine the functions of NO
and HDL for biomimetic therapy of CVD, Rink et al. synthesized an S-nitrosylated (SNO)
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phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphonitrosothioethanol), which could be
assembled with S-containing phospholipids, apolipoprotein A-I (the principal protein of
HDL), and Au NPs as a template, to construct NO-delivering HDL-like particles (SNO
HDL NPs) [109]. SNO HDL NPs can reduce ischemia/reperfusion injury in the mouse
kidney transplantation model and decrease atherosclerotic plaque formation in the mouse
atherosclerosis model.

Because of the excessive blood flow rate, the drug utilization rate at the thrombus site
is low in traditional therapy. To solve this problem, Tao et al. developed a biocompatible
NO-driven silica nanomotor by loading L-arginine (LA) and thrombolytic drug urokinase
(UK) in bowl-shaped mesoporous silica NPs (MS) and modifying the arginine–glycine–
aspartic acid (RGD) polypeptide on the surface of NPs for targeting the thrombus surface
(Figure 7) [110]. The loaded L-arginine can be oxidized by excessive ROS in the throm-
bus microenvironment to generate NO, thus decreasing oxidative stress in inflammatory
endothelial cells by eliminating ROS. Meanwhile, the sustained release of NO not only
promoted the movement and penetration ability of nanomotors to thrombosis sites but also
improved the process of endothelialization. This therapeutic agent based on nanomotor
technology is expected to support future research on thrombotic therapy.
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3.5. Hydrogel

For tissue repair following a myocardial infarction, macrophage infiltration and the
underlying inflammatory response are essential. The activated macrophages increase the
expression and activity of iNOS, which generates NO when L-arginine is provided as
substrate. Based on this background, Vong et al. synthesized a triblock copolymer (PArg-
PEG-PArg) that incorporates L-arginine as a NO donor to treat myocardial infarction [111].
Under physiological conditions, the PArg-PEG-PArg copolymer can convert to hydrogel by
its temperature-responsive property, facilitating the in situ release of NO, which can retain
at the injected site for more than 10 days. The converted PArg–PEG–PArg hydrogel signifi-
cantly reduced the infarction size and enhanced heart function in myocardial infarction
model mice by improving angiogenesis and new blood vessel formation.
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Besides adhering to pathological sites of tissues, hydrogels can be used as the coating
and deposited on medical devices such as implants or stents. Chen et al. designed a nitric
oxide-eluting (NOE) hydrogel coating for the surface modification of vascular stents [112].
The NOE hydrogel consisted of gelatin and alginate, which acted as backbones for conju-
gating with SeCA to produce NO by catalyzing endogenous NO donor GSNO (Figure 8).
The hydrogel exhibited good mechanical toughness to withstand balloon expansion during
angioplasty. More importantly, NO released from the hydrogel improved the adhesion of
ECs and inhibited the excessive proliferation of VSMCs. The NOE hydrogel also modulated
inflammatory responses and induced VSMCs relaxation, as revealed by transcriptome
analysis. The NOE hydrogels were able to improve rapid endothelium regeneration, inhibit
intimal hyperplasia, and regulate the inflammatory response in porcine coronary arteries,
showing superior efficacy as compared to DESs.
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NO-releasing biomaterials offer a considerable advantage over traditional approaches
to clinical problems, such as short duration of action and poor targeting. However, these
studies are still in the experimental or preclinical phase. The toxicity issue constrains the
use of NO-releasing biomaterials in the clinic. By-product accumulation of biomaterials
may exceed the tolerable limit, causing undesired toxicity. Therefore, it is important to take
the formation and leaching of toxic by-products into consideration during the material
design process.

4. Methods to Improve the Efficacy of NO-Based Therapy for CVD

Although NO-based therapy has achieved some success in the clinic or in preclinical
animal experiments, novel strategies are still required in order to further improve efficacy.
Combinatorial therapies exhibit synergistic efficacy and may overcome shortcomings, such
as poor efficacy and side effects, found in single-agent treatments. Here, we introduce two
methods, expected to augment the efficacy of NO-based therapy, including the combination
of a NO-releasing platform with H2S-based therapy and stem cell therapy.
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4.1. Synergistic Gas Therapy Based on NO and H2S

H2S, another kind of gasotransmitter, has similar characteristics to NO and performs
biological functions in a variety of physiological systems [113]. Especially in recent years,
it has been found that H2S can also be used in the treatment of CVD. For example, H2S
can reduce the myocardial infarction area by activating Akt, PKC, and eNOS pathways,
and decrease myocardial injury caused by myocardial ischemia-reperfusion by restoring
mitochondrial function [114–116]. Kang et al. reported that exogenous H2S also can protect
the heart through its anti-myocardial fibrotic activity [117]. In addition, H2S has effects
on vasodilation, maintaining homeostasis in the cardiovascular system, and improving
the sensitivity of vascular pressure reflex [118,119]. Besides the direct effect on the cardio-
vascular system, H2S can increase the NO production of ECs by activating eNOS [120].
In turn, NO can also exert this role in the generation of H2S [121]. At present, more and
more evidence has shown that there are crosstalk effects between H2S and NO [122,123].
Especially, H2S can contribute to angiogenesis and vasorelaxation as an enhancer of vascu-
lar NO signaling [124]. Therefore, the synergistic effect of NO and H2S could be used to
treat CVD.

Recent studies have proven that H2S and NO donors can jointly act on CVD. Sun et al.
observed that the reperfusion treatment with NaHS (H2S donor) can significantly reduce
the systolic dysfunction and infarct area after ischemia. The combined use of NaHS and
SNAP for reperfusion treatment exhibited an additive cardioprotection effect, which proved
that the synergistic release of H2S and NO would bolster the treatment effects of CVD [114].
Additionally, researchers have developed multiple gas donors that can release these two
gasotransmitters. Previous studies have reported that the backbone of nonsteroidal anti-
inflammatory drugs (NSAID) was covalently attached with a NO-releasing and an H2S-
donating moiety, resulting in a new class of anti-inflammatory pharmaceuticals, termed
NOSH-NSAIDs, which can release both NO and H2S [125,126]. Similar to its parent
compound, aspirin, NOSH-aspirin showed strong anti-inflammatory properties, anti-
pyretic and analgesic effects, as well as antiplatelet activities (Figure 9) [125,127].
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In recent years, ZYZ-803, a new dual NO-H2S donor, has been developed by combin-
ing the H2S-releasing part (S-propargyl-cystine, SPRC) and NO-releasing part (furoxan)
(Figure 9) [128]. Zhu and coworkers observed that ZYZ-803 can slowly release H2S and NO
under physiological conditions, and its cardiac protective effect is much higher than that
of SPRC and/or furoxan [129]. Results of this study indicated that ZYZ-803 can regulate
vascular tension and achieve effective, stable, and lasting vasodilation by increasing the
concentration of vascular endothelial growth factor (VEGF) and cGMP and opening the
KATP channel, proving that H2S and NO have a synergistic effect on regulating vascular
tension. Zhu and coworkers also reported that ZYZ-803 had the ability to reduce LV remod-
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eling and dysfunction in the development of heart failure and broaden the treatment of
heart failure [130]. Cardioprotective effects of ZYZ-803 exceeded those of H2S and/or NO
donor alone. In addition, ZYZ-803 also significantly improved angiogenesis by increasing
the phosphorylation level of STAT3 (Tyr705) and CaMKII (Thr286) in HUVECs [131]. After
treatment by ZYZ-803, significant increases in the blood perfusion and blood vessel density
were observed in a hind limb ischemia mice model. This not only further revealed the
beneficial role of ZYZ-803 in STAT3/CaMKII-related CVD but also had implications for
the treatment of lower extremity vascular ischemic diseases. Although the synergistic
gas therapy based on H2S and NO has been successful to a certain extent, the underlying
therapeutic mechanism is not fully elucidated. Much work needs to be carried out to
investigate the cross-talk between H2S and NO and clarify the specific targets of gaseous
signaling molecules in CVD. It is believed that synergistic gas therapy has a very broad
development prospect in treatments for CVD.

4.2. Synergistic Therapy Based on Stem Cells and NO

Combining stem cells and NO-releasing biomaterials is an effective and holistic
method to improve tissue regeneration and overcomes the limitations of the individual
components. Both stem cells and NO can actually interact, which would in turn increase
their activities. Numerous studies have demonstrated that mesenchymal stem cells (MSCs)
can improve local NO levels and thus restore endothelial function [132]. One of the studies
confirmed that MSCs derived from skin were capable of enhancing NO production by
secreting VEGF, thereby resulting in increased vasodilation [133]. Furthermore, MSCs can
paracrine factors that are able to increase eNOS expression in the endothelium as well as to
decrease iNOS immunoreactivity through regulation of macrophage polarization in inflam-
matory lipid cores, thus decreasing the risk of plaque rupture [134–136]. In addition, ECs
can be protected by stem cell-derived exosomes by improving NO production [135,137,138].
In light of the function of stem cells in regulating endothelial function by upregulating
the expression of eNOS and inhibiting inflammation by reducing iNOS expression, it is
conceivable to regard stem cells as a powerful and effective method of treating CVD.

Researchers have reported that NO released from biomaterials can affect the function
of stem cells, including changes in paracrine secretion patterns, release of growth factors,
and generation of exosomes [139]. Du et al. studied the effect of a NO-releasing polymer on
the exosome secretion of human placenta-derived MSCs (hP-MSCs) and found that NO can
significantly increase the concentration of VEGF in the exosomes, thus enhancing the angio-
genesis of HUVECs [140]. The discovery of this mechanism is of great significance for the
treatment of myocardial infarction. In addition, the combination of eNOS overexpression
and stem cell transplantation can be used to treat myocardial infarction [141–143]. Chen
et al. found that the myocardial parameters were improved, the infarct area was reduced,
and the number of new capillaries was increased in rats with myocardial infarction treated
by eNOS highly expressed MSCs, which was superior to the treatment with eNOS gene or
stem cells alone, showing the advantage of “one plus one over two” [144]. Therefore, they
concluded that ectopic high expression of eNOS in vivo can enhance the ability of MSCs to
treat ischemic heart injury after coronary artery occlusion.

Adipose-derived stem cells (ADSCs) have the important ability of MSCs, namely,
differentiation into cardiomyocytes, ECs, and VSMCs [145]. Additionally, ADSCs possess
stronger abilities of proliferation, differentiation, and VEGF secretion than bone marrow
mesenchymal stromal cells [146,147]. However, the treatment by ADSCs, like most stem cell
transplantations, still has the problems of poor donor cell implantation and low survival
rate [148]. To solve these problems, hydrogels are absolutely the best choice for synergistic
therapy of NO and stem cells, due to their ability to mimic the native extracellular ma-
trix (ECM), which can support cell survival and coordinate stem cell repair of functional
tissues [149]. Zhao and colleagues developed a naphthalene-peptide hydrogel contain-
ing β-galactose-caged NONOate (NapFF-NO), which releases NO only in the presence
of β-galactosidase [150]. NapFF-NO was co-transplanted with ADSCs into myocardial
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infarction mice models and β-galactosidase was injected into the tail vein at the same time.
The treatment improved cell survival within the engraftment site and fostered a microen-
vironment enriched with VEGF and stromal cell-derived factor-1α (SDF-1α) to facilitate
ECs migration and improve heart function. Besides polypeptide, Zhao and colleagues also
used chitosan as a backbone to graft galactose-caged NO donors, and then the injectable
hydrogel (CS-NO) was obtained [151]. CS-NO enhanced hP-MSC angiogenic and ischemic
potential through controlled NO release [140]. Moreover, NO released from CS-NO can
also induce embryonic stem cells (ESCs) to differentiate into ECs in the case of not adding
growth factor, thereby providing a feasible method for EC-based therapies in vascular
repair [152].

Although this synergistic therapy has achieved a remarkable performance, NO-
releasing hydrogels have the disadvantage of a limited supply of NO, which is unfa-
vorable to the long-term treatment. Wang et al. designed a conductive hydrogel composed
of tetraaniline-polyethylene glycol diacrylate (TA-PEG) and thiolated hyaluronic acid
(HA-SH), which could form a hydrogel in situ (Figure 10) [153]. The hydrogel was used
to load ADSCs and nanocomplexes containing plasmid DNA encoding eNOS, combining
stem cell and gene therapy to overcome the limited payload of NO in the hydrogel. These
hydrogels were applied in the treatment of myocardial infarction, showing a sustained
release of NO to the myocardium, thus maintaining a microenvironment conducive to re-
generation. Consequently, the infarct size and fibrosis were reduced, and the heart function
was improved significantly. The synergistic therapy with stem cells and a NO-releasing
platform has great potential for use in the treatment of CVD because it can not only main-
tain the survival of stem cells injected into the body but also stabilize the production of
NO, which has broad prospects. However, the synergistic therapy based on stem cells
and NO still faces a bottleneck in the development of NO-releasing biomaterials, which
should be suitable for the co-delivery of stem cells and extend the period of NO release in
an on-demand manner during treatment. It is expected that the use of NO donors in stem
cell-mediated therapies will increase as new NO donors are discovered and synthesized.
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5. Conclusions and Outlook

Because CVD is a kind of disease with a high mortality rate in the world, many studies
have been dedicated to exploring efficient drugs or therapeutic devices for CVD. As a
representative gasotransmitter in the cardiovascular system, NO has shown beneficial
effects for the treatment of CVD, and thus attracted many researchers to develop different
NO delivery strategies based on various molecular structures and chemical materials that
enable controllable NO release. It is clear that some progress has been made in recent
years. However, there are still many problems to be addressed. NO concentration plays
a key role in determining therapeutic effects, and inappropriate concentrations may lead
to further deterioration of the disease. In order to treat CVD by promoting angiogenesis
and inhibiting thrombosis, a mild and long-term release of NO is desirable. To give an
example, catalysts, such as Cu-MOF, can produce mild levels of NO for long-term use in
CVD therapies. Moreover, NO prodrugs that respond to enzymes can tune the rate of NO
release and increase specificity and potency at low NO doses. Additionally, future studies
should focus on developing microenvironment-responsive NO donors and biomaterials,
which are capable of sensing pathological microenvironments of CVD, and decomposing
to produce NO in an on-demand and controlled manner. Another concern is that the
substrate materials that cover stents, catheters, vascular grafts, and nanoparticles should
minimize toxicity.

To achieve better treatment of CVD, it is important that NO is delivered to the patient’s
target tissues with the expected dose, location, and time. By using computational modeling,
researchers can evaluate the spatial distribution of NO at pathological locations, thus
enabling the NO-releasing platform to be targeted to the regions that have lower local
NO concentrations than those in healthy states. In addition, biomaterial-based delivery
systems equipped with both diagnostic and therapeutic functions can be used to monitor
NO release as well as visualize the evolution of diseases, which can serve for checking the
efficacy of the treatment and provide valuable information for doctors and patients to make
optimal treatment decisions.

Although NO has long been established as an independent signaling molecule, recent
studies have shown that H2S enhances NO in the cardiovascular system. Gaseous signaling
molecules released from dual NO-H2S donors, such as ZYZ-803, can be far more effective
at treating CVD compared to individual administration of drugs with single gas signaling
molecules. At present, a number of donors have been identified, but it remains unclear
what concentration of gaseous signaling molecules is present in various samples, making
the process more difficult. Thus, the need for an accurate and appropriate method is urgent.
Furthermore, it is also extremely important to determine the specific targets of gaseous
signaling molecules in CVD and to evaluate these features in clinical applications. It is
anticipated that with the progress of scientific research and continuous efforts of researchers,
gaseous signaling drugs will soon enter clinical research.

Recent studies have revealed how NO affects the behavior of stem cells and regulates
the microenvironment. This, in turn, enhances the therapeutic effect and action region of
NO by affecting nearby resident stromal and immune cells to create a highly regenerative
tissue state. NO-releasing biomaterials should be suitable for delivering stem cells, preserv-
ing cell survival, and extending NO release during treatment with on-demand mechanisms.
With the continuous research and development of NO-releasing platforms, we believe that
the synergistic therapy based on NO and stem cells will make great breakthroughs in the
treatment of CVD.

In summary, NO-related gas molecular therapy and synergistic therapy are constantly
evolving, and major strides have been made to treat CVD. NO donors and NO-related
drugs have been commonly administered for the treatment of CVD in the clinic. While
NO-releasing biomaterials are still in the experimental or preclinical phase, many studies
have yielded encouraging results. In addition, the combination of a NO-releasing plat-
form with H2S-based therapy and stem cell therapy has also aroused great interest and
shown promising therapeutic effects, but much work is still in the early exploration and
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experimental research stage. It is hoped that the continuous development of NO-releasing
platforms will advance the treatment strategies of CVD and can be available routinely in
clinical applications.
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