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To study the host–pathogen interactions with medical and veterinary relevance, researchers

have recently applied organoid technology. Organoids revolutionized biomedical research in

the last decade due to their ability to recapitulate the physiological properties of whole organs

in cell culture. For the field of microbiology, organoids have allowed the study of previously

recalcitrant pathogens that would only replicate in their natural host. Nowadays, a large list of

viruses, bacteria, fungi, and parasites have been studied using organoids. Here, we describe

breakthrough studies that have had or are predicted to have major impacts in the microbiology

field, which would not have been possible without the use of organoid technology.

OAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:rganoids: What are they, and what are they used for?

While the two-dimensional (2D) culture of host cells has provided valuable insights for the

microbiology field, they lack many of the components needed to recreate the natural host envi-

ronment for investigating pathogens, such as the microbiota, cellular complexity, and polarity.

Organoids are cultured from stem cells and form three-dimensional (3D) structures that

mimic the organ, including multiple cell types, protein expression, and functions such as

absorption, barrier function, and nutrient uptake (Fig 1). Human intestinal, lung, kidney,

brain, and liver organoids have all been used to study host–microbe interactions and to test

drug potential treatments. Because the brain has a particularly complex structure and strict

restrictions exist for obtaining human samples, human brain organoids (HBOs) have been a

significant advance for the study of microbes that infect the brain.

What rapid breakthroughs occurred studying pandemic viruses?

Zika virus (ZAU : PleasenotethattheabbreviationZIKVhasbeenintroducedforZikavirusinthesentenceZikavirusðZIKVÞspreadsbythebiteofaninfected::::Pleasecheckandcorrectifnecessary:IKV) spreads by the bite of an infected Aedes spp. mosquito causing mild flu

symptoms in adults and congenital Zika syndrome in newborns. Congenital Zika syndrome

includes several birth defects but is most known for small infant head size called microcephaly.

Zika infection of HBO allowed the mechanism by which ZIKV affects the neurons to be deter-

mined [1,2] as well as the evaluation of potential treatments [3]. ZIKV-infected HBOs have

shown that replication of the virus killed neural precursors that led to microcephaly [1,2]. The

microcephaly model of ZIKV in HBO further showed thinning of the cortices and impaired

cortical expansion, which also lead to HBO size reduction [4]. Neurosphere and HBO infec-

tion with Brazilian and African ZIKV strains showed larger reductions in the proliferative

zones, greater disruption of the cortical layers, and an increased number of apoptotic cells with

the Brazilian compared to the African ZIKV strain [5]. Other advantages and limitations of the

HBO to study ZIKV over other in vitro models as well as advances to understand the affections

in HBO that resemble microcephaly were recently summarized [6].
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The study of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) marked a

breakthrough in the viral pathogenesis field with the rapid modeling of the infection using

organoids. Kidney, small intestine, lung, and cerebral organoids have helped to studyAU : PleasenotethatSARS � CoV � 2hasbeendefinedasSevereAcuteRespiratorySyndromeCoronavirus2inthesentenceThestudyofSevereAcuteRespiratorySyndromeCoronavirus2ðSARS � CoV � 2Þmarkeda::::Pleasecheckandcorrectifnecessary:the

multi-organ infection/damage observed by SARS-CoV-2 [7–10]. SARS-CoV-2 causes Corona-

virus Disease 2019 (COVID-19). COVID-19 shows influenza-like symptoms and injury in the

airways, gastrointestinal tract, and the central nervous system (CAU : PleasenotethatCNShasbeendefinedascentralnervoussysteminthesentenceCOVID � 19showsinfluenza � likesymptoms::::Pleasecheckandcorrectifnecessary:NS), causing meningitis/

encephalitis. Modeling of these tissues in organoids allowed researchers to determine the dif-

ferential expression of cytokines and chemokines in colonic organoids, neuronal death, hyper-

metabolic state and hypoxia in HBO, and chemokine production and responsiveness to drug

treatment in lung organoids [9,10]. SARS-CoV-2 infection of human kidney organoids and

HBO confirmed viral binding to the angiotensin converting enzyme 2 receptor in 3D culture

[7,10]. These examples show how organoid technology allowed researchers to efficiently reca-

pitulate host–pathogen interactions to study the physiopathology of viruses and how we can

cope with future pandemics.

Fig 1. Applications of organoids in the study of host–pathogen interactions. (A) Organoids can be derived from a wide range of humans or animal

tissues as well as embryonic and induced pluripotent stem cells. (B) Biopsies of the tissues are cultured in vitro for the formation of organoids.

Organoids established in culture can resemble the architecture and biological function of its tissue. (C) Organoids can be infected by diverse

pathogens, mimicking the in vivo host interaction, and used subsequently in applied research. This figure was created using Biorender.com, agreement

number BE234AXCJN. SAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig1:Pleaseverifythattheentryiscorrect:ARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.ppat.1010080.g001
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What are the breakthroughs in gastrointestinal viral infections?

The study of human enteric viruses, such as rotavirus, norovirus, adenovirus, and astrovirus,

have all been advanced using intestinal organoid technology [11]. Rotavirus and norovirus are

responsible for food and waterborne diarrhea, causing together >1 billion cases and >500,000

deaths per year in children <6 years old (World Human Organization). A breakthrough for

gastrointestinal viruses was obtained by the reproducible cultivation of stool-isolated rotavirus

in human intestinal organoids (HIOs) [12]. This study showed rotavirus replication in mesen-

chymal as well as the epithelial cells. In human biliary liver organoids, robust rotavirus replica-

tion was blocked by antiviral drugs and neutralizing antibodies [13]. For previously

uncultivable norovirus, HIO supported replication and modeling multiple human variants

[14]. During norovirus infection of HIO, researchers discovered essential cofactors (e.g., bile

acids, histo-blood group antigens, and divalent cations), overexpression of genes, and response

to type I and III interferons [14–16].

What breakthroughs have occurred studying gastrointestinal

bacteria?

Enteric bacterial infections remain a health challenge. The study of pathology caused by bacte-

ria in immortalized 2D cultures, ex vivo tissues, and animal models has contributed to the

knowledge in this field. However, 2D cell lines lack the structural complexity of tissues, ex vivo

tissues have a limited life span, and animal models have many pathophysiological and immune

response differences from humans. Because of these limitations, HIOs that resemble the intes-

tinal environment are emerging as models for bacterial infections.

Multiple enteric bacteria, such as Escherichia coli, Salmonella, and Listeria, have been exten-

sively studied using organoids to provide valuable insights and expand our knowledge of bac-

teria–host interaction [17,18]. Foundational experiments creating an anaerobic environment

for examining interactions of anaerobic bacteria with host epithelium have been performed in

HIOs. Clostridium difficile, the agent responsible for 25% of the nosocomial diarrhea cases, is

an obligate anaerobe and notoriously difficult to study. Microinjection of C. difficile into the

lumen of the HIO resulted in infection, toxin production, and consequent paracellular barrier

disfunction and altered mucus oligosaccharide composition [19,20]. As another example, Heli-
cobacter pylori colonize the gastric mucosa and is the main cause of peptic ulcers, chronic gas-

tritis, and gastric cancer. Microinjection of H. pylori into gastric organoids can emulate

changes and pathological events during its infection, such as inflammation and regulation of

tight junctions [21,22].

What are the current breakthroughs using organoids in the

parasites field?

Cryptosporidium is an intracellular parasite that causes diarrhea and gastroenteritis in verte-

brates including humans. In the past, short-term (up to 5 days) infection and incomplete prop-

agation was supported in a 2D culture of human intestinal epithelial cells [23]. Recently, 3D

systems have been used to successfully sustain the infection from oocysts and generate damage

in colon explants, providing evidence that the parasite could induce cancer [24]. Cryptosporid-
ium parvum can infect human small intestinal and lung organoids where it can successfully

develop for up to 28 days [25]. Addition of an air–liquid interface to the culture system allowed

for life cycle completion, including the production of oocysts that were infectious to mice [26].

Some parasites have strict species specificity to their life cycles, which has hindered their

study in vitro. Organoids have opened an avenue for those parasites with host-specific
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requirements. Toxoplasma gondii can infect any warm-blooded vertebrate, but its sexual cycle

is restricted to the feline intestine. The specificity of T. gondii sexual development in cat intesti-

nal organoid-derived monolayers was determined. Cat intestinal cells supplemented with lino-

leic acid supported early sexual development of T. gondii in vitro [27]. To model T. gondii
human brain infection, HBOs were infected with the rapidly replicating form called a tachy-

zoite, which then spontaneously transformed into the chronic cyst form called a bradyzoite

[28]. Changes in transcriptomics related to parasite invasion and replication were also detected

in these HBOs. Recently, a multispecies organoid platform was successfully modeled to coin-

fect T. gondii with Giardia duodenalis by using organoids or organoid-derived monolayers of

various host species [29].

What discoveries have been made culturing fungi in organoids?

The study of fungi in traditional 2D cultures can miss key signaling events that occur during

host–fungus interactions. To capture the complexity of the lung, researchers used human lung

organoids to develop a model of the bronchiole including an airway, vascular, and extracellular

matrix components [30]. This model contained a clickable extension to facilitate volatile com-

pound communication between the microbes and host. Immune cell recruitment and leuko-

cyte extravasation were examined in this model after coinfection with the fungal pathogen

Aspergillus fumigatus and the bacteria Pseudomonas aeruginosa. Greater inflammatory

responses were seen in these bronchioles when they were in contact with volatiles from both

pathogens, compared to either monoculture, showing volatile communication between the

kingdoms [30].

What is next?

Organoid cultures of Plasmodium spp., which are well known as the causative agents of

malaria, are examples of some progress but continued limitations that must be addressed to

model the infection successfully. These limitations include long-term culture, poor infectabil-

ity, size of the organoids for consistent infection, cell function, presence of immune cells, diffi-

culty to test drugs, and parasites being trapped within the matrix [31]. To date, the liver stage

has been studied using rodent-infecting parasite Plasmodium berghei in liver spheroids, result-

ing in infective liver stages called merozoites [32]. Liver spheroids derived from simian and

human hepatocytes supported the complete liver stage of Plasmodium cynomalgi and Plasmo-
dium vivax, starting with the sporozoite stage and finishing with the release of merozoites

capable of invading erythrocytes in vitro [33]. Those results have shown that the use of orga-

noids in the malaria field is promising for the study of Plasmodium species that infect humans.

Organoids are still in their infancy and under constant development. Improvements to the

system are required to keep revolutionizing the field. Integration of immune cells, low oxygen

conditions, and microbiota to emulate the host microenvironment are progressing as well as

adding variability of the structure and size. Organoid–pathogen interaction of other microbes

should be investigated further to fill the gaps from 2D systems. Modeling infection will be use-

ful to know mechanisms and factors of host/pathogen specificity during the life cycle of

microbes.
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