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Abstract

The phenomenon of vaccine hesitancy behavior has gained ground over the last three
decades, jeopardizing the maintenance of herd immunity. This behavior tends to cluster
spatially, creating pockets of unprotected sub-populations that can be hotspots for outbreak
emergence. What remains less understood are the social mechanisms that can give rise to
spatial clustering in vaccination behavior, particularly at the landscape scale. We focus on
the presence of spatial clustering, and aim to mechanistically understand how different
social processes can give rise to this phenomenon. In particular, we propose two hypothe-
ses to explain the presence of spatial clustering: (i) social selection, in which vaccine-hesi-
tant individuals share socio-demographic traits, and clustering of these traits generates
spatial clustering in vaccine hesitancy; and (ii) social influence, in which hesitant behavior is
contagious and spreads through neighboring societies, leading to hesitant clusters. Adopt-
ing a theoretical spatial network approach, we explore the role of these two processes in
generating patterns of spatial clustering in vaccination behaviors under a range of spatial
structures. We find that both processes are independently capable of generating spatial
clustering, and the more spatially structured the social dynamics in a society are, the higher
spatial clustering in vaccine-hesitant behavior it realizes. Together, we demonstrate that
these processes result in unique spatial configurations of hesitant clusters, and we validate
our models of both processes with fine-grain empirical data on vaccine hesitancy, social
determinants, and social connectivity in the US. Finally, we propose, and evaluate the effec-
tiveness of two novel intervention strategies to diminish hesitant behavior. Our generative
modeling approach informed by unique empirical data provides insights on the role of com-
plex social processes in driving spatial heterogeneity in vaccine hesitancy.

Author summary

In recent decades, vaccination hesitancy behavior has gained ground, threatening the
maintenance of herd immunity. Geographic clustering of vaccine hesitancy creates pock-
ets of unprotected sub-populations that can become hotspots for outbreak emergence.
Even though the complex phenomenon of vaccine hesitancy has been well-studied by the
scientific community, the mechanisms driving geographic clustering in this behavior are
poorly understood. In this study, we consider two hypothesized mechanisms that may
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lead to geographic clusters of high hesitancy: (a) we hypothesize that clusters of high hesi-
tancy arise because hesitancy is associated with underlying socio-economic traits (e.g.
high income) that are themselves geographically clustered; or (b) we hypothesize that clus-
ters of high hesitancy arise because hesitant individually social diffuse the behavior among
their social network which tends to be geographically clustered. We use computational
experiments to test the impact of these mechanisms on the geographical distribution of
hesitancy behavior. We find that both processes are independently capable of generating
geographical clusters of high hesitancy, and propose and evaluate the effectiveness of two
novel intervention strategies to slow the rise in hesitancy and diminish the increased risk
of outbreak emergence due to geographic clustering.

Introduction

Vaccination is the single most effective way of mitigating the consequences of infectious dis-
eases, and has resulted in steep declines in infection, morbidity, and mortality for vaccine-pre-
ventable diseases (VPDs) [1, 2]. To manage VPDs, high levels of vaccination coverage are
critical to controlling outbreaks. However, vaccine uptake and the maintenance of herd immu-
nity have been threatened in recent decades due to vaccine hesitancy behavior, which is the
delay or refusal of vaccination despite its availability, and is influenced by factors such as com-
placency, convenience, and confidence [3]. Vaccine hesitancy behavior has increased world-
wide, leading the WHO to declare it as one of the top global health issues [4]. In high-resource
settings like the United States, vaccine hesitancy for childhood vaccinations has been found to
be concentrated in major metropolitan areas [5] with substantial evidence linking recent VPD
outbreaks of measles and pertussis in urban populations with hesitant behavior [6, 7]. More
recently, vaccine hesitancy has also been jeopardizing the suppression of the COVID-19 pan-
demic [8-11]. Continued work is thus urgently needed to better understand the characteristics
and dynamics of hesitancy behavior so we may stem the tide of increasing hesitancy and pre-
vent the threat it poses.

A critical complexity to our ability to diminish growing hesitancy is the distribution of the
behavior within a population. Vaccine hesitancy has been shown to not be randomly distrib-
uted in populations but instead occurs in clusters of individuals in the same geographic areas.
This geographic heterogeneity poses a major challenge to the control and elimination of
VPDs, as it leaves pockets of unprotected sub-populations that may be vulnerable to outbreaks,
even if they are part of a population with high average vaccination coverage. Past research has
identified spatial clustering of vaccine hesitancy and geographic overlap between hesitancy
clusters and clusters of reported disease cases [12-14]. Modeling work has also demonstrated
that the presence of geographic clustering in hesitancy can drive increased disease emergence
risk and transmission [15-17]. Such spatial heterogeneity in hesitancy can be driven by com-
plex social processes, but our understanding of the structure and impact of such processes
remains limited.

Past meta-analytic work has proposed two broad categories of social determinants of hesi-
tancy behavior in individuals (distinct from vaccine-specific issues such as safety or cost): con-
textual influences, arising from social, cultural, environmental, and geographic factors; and
group influences, arising from personal perception or the context of a social or peer environ-
ment or experience [3]. Based on these determinants, two social processes have been proposed
that may generate behaviors such as vaccine hesitancy: a) social selection: in which socio-cultural
determinants independently drive hesitancy behavior. Under this hypothesis, individuals that
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share those social characteristics interact with each other due to shared traits and independently
engage in hesitancy behavior [18-20]; and b) social influence: in which vaccine hesitancy behav-
ior propagates over existing social networks. Under this hypothesis, individuals that engage in
hesitancy behavior influence others among their social contacts to do the same [21, 22].

Significant work has considered social selection and social influence theoretically and
empirically for vaccine hesitancy [23-25] as well as other behaviors [26-29]. However, all pre-
vious studies have focused on the individual-scale, in which individual attributes or behavior
diffusion among individuals drives changes in behavior. What remains to be considered are
the dynamics of social selection and social influence at the landscape-scale (i.e. across a large
spatial area like an entire country made up of individual communities), in which the attributes
of communities and collective behavior diffusion due to social connectivity between commu-
nities might drive dynamics of hesitancy behavior. As public health strategies are driven by a
population health perspective, and because the geographic distribution of vaccination is criti-
cal to disease emergence across spatial scales, it is important to study dynamics at the land-
scape-scale beyond individuals [14]. At the same time, considering vaccination at a fine spatial
scale is also critical as vaccine uptake can be heterogeneous within and between large geo-
graphical areas and public health policies are most commonly implemented by local jurisdic-
tions [16, 30, 31].

In this study, we aim to characterize the role of social selection and social influence leading
to spatial clustering in vaccination hesitancy at the landscape scale. While vaccine hesitancy is
often considered generally, we define vaccine hesitancy in a vaccine-specific manner, and
assume that hesitancy is strongly correlated with uptake for the specified vaccine [32] (which
may only hold for mandated vaccines in high-resource settings). We hypothesize that land-
scape-level spatial clustering in hesitancy may be produced by (a) social selection: geographi-
cally proximate communities may independently adopt similar behaviors because they share
characteristics that promote the behavior; or (b) social influence: vaccination behavior may
diffuse between socially proximate areas through learning of social norms and practices. In the
case of social influence we expect to see that clustering in vaccination behavior arises sur-
rounding highly hesitant populations, whereas under social selection, the clustering in vaccina-
tion behavior only reflects geographic clustering in underlying drivers. Using a spatial network
framework in which we consider the social and physical interactions between communities,
we use a generative approach to introduce a specified level of social selection (based on com-
munity socioeconomic characteristics) or social influence (driven by the direct diffusion of
behavior). To balance the importance of spatial heterogeneity on public health policy-making
and implementation, we develop our model for the entire United States at a fine-grain (US
county level). Based on a distribution of hesitancy behavior, we then classify communities
according to vulnerability to disease emergence: communities with a high level of vaccine hesi-
tancy, putting them below the vaccination herd immunity threshold, are considered vulnera-
ble; otherwise, they are considered protected. For a given proportion of vulnerable nodes, we
mechanistically seek to understand whether social influence or social selection can indepen-
dently (and together) generate spatial clustering patterns, and to what degree. We additionally
seek to understand how the structure of the network over which these social processes occur
impacts the generation of spatial clustering in hesitancy. We empirically validate our models
using fine-grain data on vaccine hesitancy, social determinants, and social connectivity in the
US. And, based on our findings, we propose and evaluate strategies to diminish overall levels
of hesitancy in communities, as well as reduce spatial clustering in hesitancy. Our work inte-
grates theoretical models with empirical data to develop a mechanistic understanding of the
dynamic processes that potentially generate geographic clustering in hesitancy behaviors and
informs interventions to ameliorate this dangerous behavior.
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Materials and methods

Our work aims to characterize how social processes affect the spatial distribution of vaccine hes-
itancy at a landscape-scale and translate this understanding for mitigation strategies to diminish
the spatial clustering present in hesitancy behavior across the US. In order to achieve this, we
develop a theoretical spatial network model that allows for tunable spatial structure and social
process dynamics. We parameterize this model with empirical data to validate our findings, and
use a simulation approach to assess the effectiveness of proposed mitigation strategies.

Empirical data

We integrate three empirical data sources into our work for model parameterization, valida-
tion and application, further described below: (1) we specify an infection case study, and use
relevant empirical vaccine hesitancy data based on school exemptions; (2) from the US Census,
we identify each county’s socioeconomic attributes relevant to our social selection model; and
(3) based on social media activity data, we define social connectivity between communities rel-
evant to our model of social influence. Our models are national and includes all US counties.
All our data sources are at a fine spatial scale (US county), but they vary in their coverage
(ranging from 17 US states to all US states).

Disease case study and vaccine hesitancy data. The principles of herd immunity suggests
that if a large portion of a community is immune to disease due to vaccination, further trans-
mission is unlikely. The proportion of the population that needs to be vaccinated to achieve
herd immunity depends on how contagious the pathogen is. For our work, we focus on mea-
sles as a case study. Because measles is highly transmissible (R ~ 20), the herd immunity
threshold, p, for measles is p = 1 — 1/Ry = 0.95 [33]. Thus, an estimated 95% of a community
needs to be vaccinated to achieve herd immunity for measles (we refer to such communities as
protected). On the other hand, any community that cannot achieve 95% vaccination coverage
due to vaccine hesitancy can expect sustained outbreaks, we refer to these communities as vul-
nerable. State-mandated school entry immunization requirements in the United States play an
important role in achieving high vaccine coverage for measles, but variations in vaccine
exemption policies result in a patchwork of vaccine coverage across the country. All states
allow exemptions for medical reasons and the vast majority also allow parents to opt out of
childhood vaccination mandates due to non-medical religious or philosophical reasons. To
measure vaccine hesitancy, we thus use data on non-medical exemptions for school children
(S2 Fig) [34], which is available for download at [35]. These data were collected from state
health departments, and have been collated into a unified dataset at the county-yearly level for
17 states in the US. To parameterize hesitancy in our social selection and social influence mod-
els for all US counties, we use these data to estimate that vaccine hesitancy behavior at the
county level follows an exponential distribution, P,y = A ¢ " (S1 Table). We assume that the
data from these 17 states is representative of all US states given the political, socio-economic
and geographic heterogeneity in the sample.

Socioeconomic data. Previous work has shown that hesitancy behavior for childhood vac-
cinations such as the measles-mumps-rubella (MMR) vaccine is associated with socioeco-
nomic traits. In particular, smaller average household size and larger average household
income levels have been shown to be positively correlated with increased hesitancy behavior
[36, 37]. We thus use these two socioeconomic traits in our social influence and social selection
mechanistic models as well as our validation and mitigation models, based on county-level
data from the US Census (shown in S6 Fig) for all US states.

Social connectivity data. To model empirical social (rather than physical) connectivity
between communities (particularly for the social influence process), we use the Facebook
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social connectedness dataset [38], available for all US states. A pair of communities (i.e. US
counties) are connected if Facebook users in one community are “Facebook friends” with
users in the other community. The social connectedness index (SCI) captures the strength of
the interaction. We created SCI-thresholded networks (SCI > 400) based on a weighted net-
work analysis (S10 Fig). At SCI > 400, we find that the average degree of the network is 6 and
it contains 2496 counties.

We also find that the structure of the social connectivity is both spatial (i.e. communities
are connected with their geographic neighbors) and aspatial (i.e. communities are connected
with geographically distant communities). While social media connectivity does not capture
all social connections between communities, the significant spatial structure of this network
suggests that this connectivity may reflect interactions between communities in the physical
world which tend to be geographically structured. The structure of this data also suggests that
the landscape social network may be well approximated by a small-world network model,
which represents networks with significant spatial connections and occasional aspatial connec-
tions. To confirm this, we measure the small-worldness coefficient 0 ~ 178 (> 1) and ensure
the empirical network exhibits small-world characteristics [39, 40].

We thus use a Watts-Strogatz small-world network as the structure of our social influence
and social selection mechanistic models, evaluating the entire range of small-world structures,
from fully spatial (rewiring probability, p = 0) to fully aspatial (p = 1). For the mitigation
model we also infer the rewiring probability of the social connectivity data. To do so, we esti-
mate the average clustering coefficient (¢ ~~ 0.29) and the average shortest path length (I ~ 3.8)
of the social connectivity network at a threshold of SCI > 400, and compare it to the the net-
work properties of a small-world network with varying rewiring probabilities. From this, we
estimate a small-world rewiring probability of p ~ 0.2 for the social connectivity dataset.

Empirical estimates for model validation. To validate our models, we need data on the
evolution of vaccine hesitancy. For this, we aggregate data from 2015 and 2018 for vaccine hes-
itancy, socio-economic traits and social connectedness (as described above). Because the data-
sets have non-overlapping coverage, we arrive at data on 184 counties (nodes), belonging to a
total of 4 states (Arizona, California, Maine, and Virginia). (We note that these counties are a
convenience sample based on data availability, but do reflect the distribution of hesitancy
nationally (S5 Fig)).

We find that hesitancy behavior has been increasing nationally over recent years: 9% +
0.2% of counties in our dataset were vulnerable (i.e. the proportion of the population not hesi-
tant is below the herd immunity threshold) in 2015, which increases to 25% + 1% of counties
as vulnerable in 2018. At the community level, we estimate an average increase in hesitancy
per county of 1% from 2015 to 2018 (S1 Table).

Generative landscape network model

We consider a society made up of spatially and socially interconnected communities. We rep-
resent this society as a landscape-level network in which communities (i.e. US counties) are
represented by network nodes and spatial proximity or social interactions between communi-
ties are represented by network edges (Fig 1A). We define spatial proximity based on shared
land borders between US counties.

We develop our landscape network model to capture structure relevant to the two social
processes of interest. Social selection at the landscape-level describes the tendency of commu-
nities with similar attributes to be geographically proximal and connected. As individual and
community attributes have been demonstrated to be associated with vaccine hesitancy behav-
ior, social selection leads to spatial clustering in hesitancy due to spatial clustering in attributes.
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Fig 1. (a) A schematic of the landscape-level spatial network in the United States. Counties, which contain populations of individuals, are
represented by nodes, and interactions between the county populations determine the edges of the network. (b) A schematic of the change in
vulnerability due to the social influence and social selection processes. Under social influence (top arrow), each community (node) starts with a
level of hesitancy (denoted in blue in the top network), and hesitancy behavior spreads through the network across social interactions (edges)
between communities from hesitant (dark blue) communities to non-hesitant ones (light blue). Under social selection (bottom arrow),
communities with similar traits (denoted in pink in the lower left network) tend to be connected, and some traits independently lead to hesitancy
behavior (denoted in blue in the bottom left network). Each process can give rise to the same distribution of vulnerability to outbreaks (dark
orange = vulnerable community, light orange = protected community in the right network).

https://doi.org/10.1371/journal.pcbi.1010437.9001

Conversely, social influence at the landscape-level describes a diffusion of hesitancy behavior
over social connections between communities. These social links can be spatial (due to physi-
cal mobility, e.g. commuting behavior) or aspatial (due to social interactions, e.g. online social
media) in nature. Such network structure is theoretically well-represented by the Watts-Stro-
gatz small-world network model [41], which allows for tunable spatial network structure while
preserving other network structure features such as average connectivity. For our theoretical
characterization of the role of social selection or social influence in generating spatial cluster-
ing, we generate an ensemble of Watts-Strogatz small world networks of size N = 2048, average
degree k = 6 (informed by the analysis of the empirical social connectivity data), and spatial
structure varying from spatial (p = 0) to aspatial (p = 1) to evaluate a range of network
structures.

For each social process, we use a Monte Carlo simulations to generate varying levels of the
process on our spatial network model. Then, we consider how the distribution of hesitancy
due to social selection versus social influence leads to spatial clustering, or pockets of high hesi-
tancy communities in geographic proximity. For social selection, we keep the proportion of
vulnerable nodes constant, but shift the configuration of vulnerability, driven by homophily in
attributes. For social influence, hesitancy behavior is propagated between communities,
directly increasing the proportion of vulnerable communities. In order for the two processes
to be comparable, we restrict the proportion of vulnerable communities that can be generated
through social influence to match the proportion assumed for social selection.

To measure spatial clustering, we calculate the level of spatial assortative mixing [42] in the
community herd immunity status (vulnerable/protected) where the network is the landscape-
level spatial network (i.e. edges between communities due to spatial proximity). Hence, we use

(VV + PP) — [(VV + VP)* + (PP + VP)’]

T I (W VvPY 1 (PP VP)] @

where VV measures the fraction of all spatial proximity edges that are between vulnerable
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nodes, PP is the fraction of all spatial edges that are between protected nodes, and VP measures
the fraction of all spatial edges that are between vulnerable and protected nodes.

Thus, high levels of spatial clustering indicate a strong tendency of vulnerable nodes to be
connected creating pools of susceptible individuals.

Modeling social selection at the landscape scale

We model social selection in a landscape-scale spatial network in which communities are con-
nected to each other due to geographic proximity, and community attributes are modeled
based on a level of social selection. In particular, each network node (community) is described
by a set of attributes associated with hesitancy behavior (representing, for example, average
household income and average household size).

We begin by initializing each node with a level of vaccine hesitancy, based on an exponen-
tial distribution (7 ~ Exp(A)) based on the observed data. We parameterize A using the
observed distribution of hesitancy in 2018 (with approximately 25% of all communities as
vulnerable). The vector of attributes for each node is then defined by X = '’”. This makes the
traits Weibull distributed with the following parameterization: X ~ Weibull(y, AH.

We then measure changes in the attribute distribution across nodes using the Mahalanobis
distance, y, which is defined as a dissimilarity measure between two random vectors of the
same distribution with a covariance matrix S. For a network with a set of edges, E, and attri-
butes X; for node i, we defined the global distance in the network as:

T o
. Z(i,j)eElui,j . Z(i,j)eE\/(Xi - Xj) N ((Xi - Xj)
|E| |E|

Based on this distance, we define the social selection parameter, S, as the deviation in dis-
tance in the simulated scenario (¢) from the distance in a random scenario (ji) in which attri-
butes are distributed randomly and independently, without correlation: f = 1 — (u)/(it).

Our model aims to reach a desired level of social selection, * and achieves this through an
attribute randomization algorithm. The attribute vectors of nodes are swapped, and if the
swap succeeds in increasing f3, it is retained. Attribute randomization continues until = §*.

Modeling social influence at the landscape scale

We propose a social influence model that simulates diffusion of hesitancy behavior via social
contacts between communities. Our model is inspired by bootstrap percolation [43], and it
proceeds as follows: Each community (network node) is initialized with a level of hesitancy 7
sampled from an exponential distribution. Nodes are classified based on the herd immunity
threshold (p) as vulnerable (7 > (1 — p)) or protected (7 < (1 — p)). For our simulations, we
choose measles as a case study and assume p = 0.95. At each time step, each node 7 has its own
level of hesitancy and is exposed to the hesitancy levels of its neighbors, j. If the average hesi-
tancy level for the node and its neighbors (avg({n; n;¥j})) exceeds a tolerance (), then the
node’s hesitancy increases by ¢ (which we parameterize as 0.01 based on the observed hesi-
tancy data). We refer to « as the social influence parameter, and define it as the minimum expo-
sure required to increase a community’s hesitancy. For any protected nodes, if their new
hesitancy level exceeds 1 — p, then they become vulnerable.

Our model is initialized with 10% of all communities being vulnerable and hesitancy propa-
gation is permitted until 25% of all communities are vulnerable (parameterized based on our
observed hesitancy data). This restriction is added to make the social influence process results
comparable to those from the social selection process.
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Model validation

For model validation, we estimate parameters for social selection and social influence, and
simulate the social influence process on the empirical dataset. We estimate the empirical social
selection parameter (5*) based on the empirical distribution of socio-economic traits (average
household size and average household income) and the definition of the parameter as specified
below. We estimate the empirical social influence parameter (a*) as the average hesitancy level
of the social contacts (as defined by the social connectivity data) of nodes which were observed
to increase in hesitancy from 2015 to 2018. For both parameters, we produce uncertainty esti-
mates using 1000 bootstrap networks of 70% of the original network size (184 counties). We
also calculate the empirical spatial clustering as defined below using 1000 bootstrap samples of
the original sample size (184 counties).

Mitigation strategies

Understanding the role of social selection and influence in the spatial clustering in vaccine hes-
itancy allows us to develop effective intervention strategies to reduce both hesitancy and spatial
clustering in hesitancy. We design strategies where specific communities can be targeted to
reduce hesitancy levels. We evaluate this strategy on a theoretical social network with spatial
structure parameterized based on the Facebook social connectedness dataset as a Watts-Stro-
gatz small-world network with rewiring probability p = 0.2 (as described in the Empirical data
section). We measure the effectiveness of each strategy in terms of a reduction in spatial clus-
tering compared to the control case of no action.

Reducing clustering through social selection. For our first strategy, we propose to reduce
clustering caused by social selection. Because social selection relies on a significant association
between community attributes and hesitancy, we seek to target the distribution of attributes
themselves. In particular, our strategy aims to select a potential vulnerable county given its
level of attributes (which is positively correlated with hesitancy) and the conformity in those
attributes among neighboring communities. Thus, for each county i we define an index, {;, as,

{; = Hesitancy Triggers x Comformity

Exp{ZZ(X;)} X L > uiJ/ki]_l

uctraits eneigh(i)

where Z(X) is the z-score of the attribute X,, for the focal county i, and y;; is the Mahalanobis
distance between the attributes i and each neighbor j. This measures the conformity of the
neighborhood of i. To implement the strategy, we target nodes with the 10% highest { values,
by changing vulnerable status to protected. In the absence of hesitancy data, the primary pur-
pose of this strategy is to efficiently detect vulnerable counties to invest resources to break hesi-
tant clusters.

Reducing clustering through social influence. For our second strategy, we focus on our
results which have demonstrated that small changes in network structure have a substantial
impact on spatial clustering in hesitancy caused by social influence. Thus for this strategy, we
aim to reduce clustering caused by social influence by altering the network structure: specifi-
cally, we target and reroute edges (i.e. social interactions over which social influence occurs)
between vulnerable and protected communities with probability w (constant across all edges).
The rerouting strategy is carried out within the social influence model, and occurs whenever a
node changes status to becoming vulnerable (due the ongoing influence process). Any edges
that the vulnerable node has with protected nodes are disconnected from the vulnerable node
and rerouted to a randomly selected protected node (so a vulnerable-protected edge is replaced
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with a protected-protected edge). In this way, further propagation of hesitancy from the vul-
nerable node to protected nodes can be minimized.

Results
Spatial clustering can be generated by social selection or social influence

Social selection and social influence have been demonstrated to be possible mechanisms driv-
ing vaccination hesitancy among individuals. Here, we examine theoretically how these two
social processes can generate spatial clustering at the landscape scale. To achieve this, we con-
sider Watts-Strogatz small-world networks with tunable spatial structure, and develop two
mechanistic models to generate a tunable level of social selection or social influence in these
networks. With this generative approach, we seek to characterize spatial clustering under the
two social processes and in light of different degrees of spatial structure.

In Fig 2, we illustrate that the spatial clustering can be generated by either social influence
or social selection. For both processes, low values of influence/selection result in little spatial
clustering in vaccination hesitancy; but as the intensity of either process increases, spatial clus-
tering also increases. Additionally, in both cases, increased spatial structure tends to favor spa-
tial clustering. Small changes in the structure of community connectivity lead to proportional
changes in clustering with social influence, while moderate to high levels of spatial structure
do not drastically change spatial clustering with social selection.

We also analyzed how the spatial nature of networks size S6 Fig. Specifically, we evaluated
how the spatial structure in the network impacts the reach of a possible disease outbreak, due
to the spatial clustering of hesitant behavior. Even though both social processes have different
mechanisms generating their spatial clustering, we found that the maximum possible outbreak
size is similar, although there is much more variation for the case of social influence.

Social selection increases spatial clustering only in affectable societies

Social selection and social influence are driven by different social mechanisms and are
expected to co-occur in complex societies. Thus, we next develop a model to consider the pres-
ence of social selection and social influence simultaneously to generate spatially clustered hesi-
tancy behavior. Our model starts with a desired level of social selection, and allows hesitancy
behavior to spread using our social influence model. With this model, we explore two types of
societies: 1) an affectable society is one with a low social influence parameter (¢), in which
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individuals are receptive to anti-vaccine messaging and quickly adopt hesitant behavior, and
ii) a determined society with a high social influence parameter, in which individuals are resis-
tant to anti-vaccine messaging and are less likely to adopt hesitant behavior. In all cases, we
allow the influence process to continue until a maximum (25%) of communities are vulnera-
ble, as we are interested in understanding the spatial configuration of the same proportion of
vulnerable communities under different scenarios.

In Fig 3, we show the level of spatial clustering generated by social selection combined with
social influence in the affectable versus determined societies. In an affectable society (low social
influence parameter @), individuals tend to adopt hesitancy behavior easily, and we find that
social selection has a strong impact in determining spatial clustering, particularly for more spa-
tially structured societies. For a society with high social selection, as clusters of high hesitancy
already exist, social influence favors their increase. For low values of social selection in an
affectable society, there are few clusters, and as the population tends to turn hesitant easily
(low social influence parameter), numerous small clusters are rapidly created throughout the
network. In a determined society (high social influence parameter ), on the other hand, com-
munities are more resistant to adopt a behavior against vaccines: to become hesitant, high con-
sensus is needed for hesitancy among a community’s neighbors. Therefore, only few larger
cluster sizes prevail.

Furthermore, we find that in the affectable society, social selection plays an essential role in
the dynamics, while in the determined society, the influence process is so strong that the initial
configuration of the system is not significant. We can conclude that affectable societies are
more prone to create a larger number of smaller cluster sizes. In contrast, skeptical societies
result in a small number of larger cluster sizes and efficiently spread hesitancy.

Our generative model captures observed patterns of hesitancy

We evaluate and validate our approach with observed vaccine hesitancy data based on child-
hood school exemption data from the states of California, Arizona, Maine, and Virginia during
the years 2015-2018 [34].

To consider social selection, we characterize the empirical spatial distribution of the socio-
economic traits of average income and household size shown to be associated with hesitancy
behavior. To consider social influence, we use empirical data on social connectivity between
US counties and the empirical distribution of hesitancy for childhood vaccination.
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In Fig 4A, we estimate the social selection parameter § based on the geographic distribution
of socioeconomic attributes to be f* = 0.165. We also estimate the social influence parameter
as o = 0.253. In S9 Fig, we highlight that empirically, influence is not homogeneous geograph-
ically but displays significant heterogeneity due to spatial clustering. We estimate the empirical
spatial clustering for 2018 as 0.61, suggesting that the observed spatial distribution of hesitancy
is heterogeneous.

To evaluate our social influence model, we consider the spatial extent and distribution of
vulnerability as observed empirically and as estimated by our model. In Fig 4B we display the
observed patterns of vulnerability in both 2015 and 2018. We compare these with the estimates
of vulnerability from our social influence model based on a social influence parameter of o =
0.253. Compared statistically, the empirical and modeled (based on an average of 1000 model
estimates) spatial distributions have an F-score of 0.925. We also estimate the modeled spatial
clustering as 0.625, making it consistent with the observed spatial clustering. This comparison
suggests that social influence is indeed capable of generating spatial configurations of vulnera-
bility similar to observed spatial data, based on a complex social network which has both spa-
tial and aspatial links. To highlight this point, San Diego county in California (highlighted in
Fig 4B is shown to be not vulnerable nor spatially connected to vulnerable communities in
2015. However, in 2018, it becomes vulnerable potentially due to social interactions with com-
munities not in its geographic vicinity.

Spatial clustering in hesitancy can be diminished through interventions

Informed by an understanding of the impact of each social process on generating spatial clus-
tering in hesitancy theoretically and empirically, we now propose and assess the effectiveness
of intervention policies. The considered policies not only reduce the prevalence of hesitancy,
but also reduce spatial clustering in hesitancy, with the goal of reducing pockets of vulnerable
communities rather than simply eliminating isolated counties of high hesitancy.

Social selection is driven by two key features: (a) a strong correlation between a socioeco-
nomic trait and hesitancy, leading to high levels of the trait driving high hesitancy; and (b) a
conformity or similarity in traits among neighboring communities. Hence, we propose our
first intervention strategy (‘target social selection’) to diminish spatial clustering in hesitancy
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behavior by targeting both high levels of hesitancy-correlated traits and conformity in those
traits. Because vaccine hesitancy data is difficult to obtain and may not always be available, our
proposed strategy offers an alternative without the need for intensive data collection.

To evaluate how effective our social selection strategy is, we compare it with: i) a best case
scenario (‘target high hesitancy’) in which available hesitancy data is used to target communi-
ties with the highest levels of hesitancy; ii) a worst case scenario (‘target randomly’) in which
communities are targeted at random.

In Fig 5A (and S8(A) Fig), we show that all targets under the social selection strategy are
effective in diminishing clustering relative to no intervention. Because the two comparison
strategies (target randomly, target high hesitancy) do not act directly on spatial clustering,
their impact barely changes with increasing social selection. On the other hand, targeting social
selection by targeting traits and conformity results in a larger reduction in spatial clustering
for lower values of social selection. For high values of social selection, spatial clustering is
higher with our ‘target social selection’ strategy than with the ‘target high hesitancy’ strategy.
Within a context of high segregation, the best strategy is merely to target high hesitant coun-
ties, which implies having available hesitant data. If the level of social selection is relatively low
(as we find in our empirical analysis, 8 ~ 0.16), our findings suggest that our strategy will per-
form similarly to targeting high hesitant counties.

For our second strategy, we exploit the impact of network structure on spatial clustering.
We seek to reduce clustering by altering the structure of the social connectivity between com-
munities by rerouting social connections to make them less spatial. In Fig 5B, we find that as
the social network is made less spatial, there is a larger reduction in spatial clustering, and that
this impact increases with larger values of social influence.

Discussion

Vaccination hesitancy is a dangerous behavior that threatens the maintenance of herd immu-
nity, and spatial clustering of this behavior amplifies outbreak potential even when the behav-
ior is rare. In this work, we have evaluated the role of social selection and social influence
leading to spatial clustering in vaccination hesitancy. Previous literature has shown these two
processes as strong candidates to be a mechanism behind this hazardous behavior. Thus far,
these factors have been well studied at an individual level, and here we expand this individual-
level focus to a landscape perspective, where influence and selection are processes occurring
among communities within a country.
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Transitioning to this large population perspective is, as data collection is feasibly and rou-
tinely done at this scale, and state-level and national public health policies are designed and
implemented at this scale. To achieve this, we use a complex network approach to describe the
spatial structure of counties in the United States, and we develop two generative models that
describe influence and selection. Our theoretical findings suggest that both social processes
generate hesitant behavior clustering, but are configured differently. In network structures
ranging from spatial to aspatial, social selection tends to be a more robust process where signif-
icant changes in the network structure are needed in order to impact the spatial clustering. On
the other hand, spatial clustering in hesitancy driven by social influence depends exponentially
on the network structure. Thus, small changes in the distribution of edges have an impact on
the spatial clustering.

Past work has demonstrated that exposure to a hesitant neighborhood in online social net-
works leads to hesitant behavior, so we hypothesized that both social processes are likely to co-
occur. Our theoretical findings of the combined processes suggest that when the a society
trusts hesitancy propaganda, social selection plays an important role and many smaller clusters
of hesitancy appear. On the other hand, when a society tends to be more skeptical about propa-
ganda, social influence overcomes and a few larger clusters appear, despite the same overall
frequency of vulnerable communities. Our empirical validation conversely highlights how
social influence can take advantage of a society already affected by social selection to spread
hesitancy easily, generating observed patterns of spatial cluster distribution. Our case study of
four states (California, Arizona, Virginia, and Maine) is a convenience sample, but may be
generalizable as it reflects the distribution of hesitancy nationally (S5 Fig), includes socio-polit-
ical and geographic variation, as well as diverse public health settings (e.g. California has
recently made significant policy changes around childhood vaccine exemptions), and are con-
nected via inter-state spatial and social connectivity at small and large scales. Understanding
this difference in cluster configuration and distribution is critical to prediction of outbreak
potential [16], and suggests the benefit of incorporating the social context of a community in
public health programs.

To aid in the development of effective public health mitigation strategies, we take advantage
of our theoretical results. We proposed two intervention strategies to reduce not only vaccine
hesitancy levels, but to also reduce spatial clustering in hesitancy to have a disproportionate
decline in outbreak potential. Our past work highlights that public health policies can affect
both vaccine uptake as well as the spatial distribution of vaccination and must be implemented
with caution [32]. Our strategy to reduce clustering caused by social selection focuses on tar-
geting communities that are vulnerable due to their own socio-economic traits but also are
surrounded by a socio-cultural environment with a high tendency towards hesitancy. Once
the communities are identified, traditional public health measures of reducing vaccine hesi-
tancy, such as healthcare provider training and community health outreach programs, can be
implemented. Our results demonstrate that when social selection in a society is low, our strat-
egy outperforms the strategy of directly targeting counties with known levels of high hesitancy.
By simply targeting high hesitancy counties, we may be reaching isolated highly-hesitant
nodes surrounded by protected communities to whom they pose little danger. Additionally,
we note that even in high-resource settings such as the US, fine-grain national data on vaccine
hesitancy continues to be poorly measured and inaccessible [34], thus the advantage of our
social selection strategy is that it does not require access to any direct data on hesitancy. On
the other hand, the success of this strategy relies on studies that identify clear associations
between community traits and hesitancy behavior. Significant such work exists based on sur-
vey and interview studies of parents, social experiments, and fine-grain ecological studies, and
we must continue to invest in such work to characterize the evolving socio-cultural landscape

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010437  October 13, 2022 13/19


https://doi.org/10.1371/journal.pcbi.1010437

PLOS COMPUTATIONAL BIOLOGY Spatial clustering in vaccination hesitancy

of hesitancy. Our strategy to reduce clustering caused by social influence proposes to manipu-
late the spatial connectivity that underlies the social influence process for communities with
observed high hesitancy. While such a strategy is likely to be impractical in traditional social
networks, the social connectivity between communities due to social media usage may be ame-
nable to manipulation by expanding upon the geo-targeted and connection-targeted digital
marketing techniques that are already common. Such processes are also being considered for
political mobilization [44] and health applications [45, 46], and future studies could experi-
mentally evaluate the effectiveness of such a strategy [47].

Our work has some limitations. Our social influence model design is based on findings car-
ried out in online social networks at an individual level. Even though there is some evidence of
peer influence between communities for health behaviors, we believe more evidence in vacci-
nation hesitant sentiment is needed. Due to the lack of data, we also assume that socio-eco-
nomic traits remain constant, thus the level of social selection remains constant in our models.
We do note that we expect social selection to be a slower process compared to social influence,
as socio-cultural environments tend to evolve slowly, thus we do not believe this to be an unre-
alistic assumption. We also acknowledged that the social connectivity data we use is likely not
a representative sample of the total population, but expect this bias to primarily affect the edge
weights of the social connectivity network (which we do not use) rather than the edges them-
selves. Lastly, we recognize the need for more empirical validation of our findings, and we
advocate for more data to be collected on vaccine hesitancy at a fine-grain and across the
United States and for a range of vaccines. The COVID-19 pandemic has shone a new light on
the benefits of vaccination and the dangers of vaccine misinformation, and we hope this leads
to sustained attention on these important public health areas.

We highlight that while we choose the case study of measles to ground our analysis and vali-
dation, we expect our methodology and findings to be generalizable. Spatial clustering in vac-
cination patterns has been found for a range of vaccines (e.g. pertussis [13], Hepatitis B [48],
polio [49], human papillomavirus [50], and COVID-19 [51]). The mechanism of social selec-
tion has been demonstrated through associations of vaccination with socio-economic factors
and media environment in a variety of vaccination settings [52], and evidence exists for social
influence being relevant to a number of vaccines [53]. We developed our models so that they
can be adapted to different vaccination systems. In the case of our social selection model, traits
can be customized based on evidence for a particular vaccine, as past literature suggests that
many socio-economic factors can be associated with vaccination clustering, and in fact, the
same trait, such as income, can be negatively and positively associated to vaccination in differ-
ent contexts [52]. Our analysis also suggests the social selection model is robust to variation in
the association between traits and hesitancy and that social selection can drive spatial cluster-
ing even when the association is weaker (S10 Fig). The social influence model, on the other
hand, can be adapted based on a pathogen’s herd immunity threshold and the social influence
parameter, parameterized based on how pliant a society is. For a fast-evolving and complex
vaccination setting like COVID-19 vaccination, for example, we might include medical dis-
trust or political mistrust as a trait in the social selection model [54-56], and we might model
the spread of misinformation-fueled vaccine hesitancy with our social influence model param-
eterized based on a society’s exposure to misinformation [57]. (We firmly acknowledge the
current variant landscape of SARS-CoV-2 makes discussions of herd immunity complex, and
such a model would be a simplification.

Understanding how social behavior impacts spatial clustering is challenging, but the meth-
ods and our findings are a step forward towards understanding the underlying processes that
generate these clusters, both theoretically and empirically, and designing mitigation strategies
to reduce clustering of vulnerable populations. Generative models of social behavior such as
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ours can also inform dynamical behavior-disease models which have been limited to assuming
vaccine hesitancy in a non-spatial context and only through the lens of social influence [58-
61]. The threat that vaccine hesitancy poses to local elimination of vaccine-preventable child-
hood diseases is growing, and we advocate for continued progress on mathematical modeling
of this phenomenon from both a social and spatial perspective.
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