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Magnetic field effect on the energy 
levels of an exciton in a GaAs 
quantum dot: Application for 
excitonic lasers
K. Luhluh Jahan, A. Boda, I. V. Shankar  , Ch. Narasimha Raju & Ashok Chatterjee

The problem of an exciton trapped in a Gaussian quantum dot (QD) of GaAs is studied in both two and 
three dimensions in the presence of an external magnetic field using the Ritz variational method, the 
1/N expansion method and the shifted 1/N expansion method. The ground state energy and the binding 
energy of the exciton are obtained as a function of the quantum dot size, confinement strength and 
the magnetic field and compared with those available in the literature. While the variational method 
gives the upper bound to the ground state energy, the 1/N expansion method gives the lower bound. 
The results obtained from the shifted 1/N expansion method are shown to match very well with those 
obtained from the exact diagonalization technique. The variation of the exciton size and the oscillator 
strength of the exciton are also studied as a function of the size of the quantum dot. The excited states 
of the exciton are computed using the shifted 1/N expansion method and it is suggested that a given 
number of stable excitonic bound states can be realized in a quantum dot by tuning the quantum dot 
parameters. This can open up the possibility of having quantum dot lasers using excitonic states.

With the advent of modern sophisticated fabrication methods such as molecular beam epitaxy, nano-lithography 
and etching techniques, the study of low-dimensional systems has undergone a renaissance. It is now possible 
to realize ultra-small semiconductor structures with quantum confinement of carriers in all the spatial direc-
tions. These structures are typically of the order of a few nanometers in size and are commonly referred to as 
zero-dimensional objects or more technically as quantum dots.

Interest in the subject of QDs has continued unabated for the last four decades mainly for two reasons. First 
and foremost, it has an intrinsic appeal because the natural length scales involved in it are of the order of a few 
nanometers where the quantum effects can show up in their full glory. Therefore a QD can be considered to pro-
vide a tiny laboratory where the predictions of quantum mechanics can be tested1. Secondly and perhaps more 
importantly, the QD systems exhibit very many new physical effects which are very interesting and are also quite 
different from those of their bulk counterparts. Furthermore, QD structures can be realized in both two and three 
dimensions and can also be fabricated in different sizes and shapes. This design flexibility and the novel physical 
effects make QD structures technologically very promising for applications in micro-electronic devices like quan-
tum dot lasers2, single electron transistors3 and ultrafast quantum computers.

Various elementary excitations are possible in a semiconductor QD. One of the important among them is an 
exciton which is a bound pair of an electron and a hole. An exciton can be created by shining light on a semicon-
ducting material. Quantum confinement can dramatically change the optical properties of a QD that depend on 
excitonic processes. The explanation is simple. It is well-known that the confinement per se enhances the energy 
of a particle in general. For an exciton, however, it increases the Coulomb attraction between the electron and 
the hole and thus lowers the energy. The interplay between these two contrasting effects can give rise to some 
interesting excitonic effects. Furthermore, the increase in the proximity between the electron and the hole due to 
confinement enhances the probability of radiative recombination. Therefore, one has to understand the precise 
effects of all these processes and also the ways to control them so that one can tune the different QD parameters 
to have a desired optical property.
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Excitonic effects have been captured through photoluminescence experiments4. Excitonic effects have also 
been found to play a central role in optoelectronic devices such as semiconductor QDs-based photovoltaic cells 
and light emitting diodes5–10. Guo and Yu11 have studied the nonlinear optical susceptibilities in Si/SiO2 parabolic 
QD to determine the effect of excitons on the third harmonic generation. Their results show that the inclusion of 
the excitonic effect enhances the third harmonic generation by about hundred percent. Yuan et al.12 have studied 
the excitonic effects on the linear and non-linear optical absorptions in a parabolic QD using the exact matrix 
diagonalization technique and have shown that the size quantization substantially increases the optical absorp-
tion coefficients. They have furthermore shown that excitonic effects enhance the optical absorption by a factor 
of two.

To study the properties of a QD theoretically one has to introduce an empirical potential known as the confin-
ing potential. The simplest confining potential would of course be an infinitely deep potential well. Initial exper-
iments13,14 together with the generalized Kohn theorem15,16, however, suggested that the confining potential in a 
QD would be more or less parabolic in nature. This observation has made the application of quantum mechanics 
to a QD system quite straightforward and consequently a large number of investigations exploring several elec-
tronic and optical properties of parabolic QDs (PQD)17–24 has piled up in the literature in the last few decades. 
Several authors have also explored the properties of excitons in PQDs25–29.

Some recent experiments have indicated that the confining potential in a QD is not really harmonic but rather 
anharmonic and has a finite depth. Recently Adamowski et al.30 have proposed a Gaussian attractive confining 
potential for the investigation of the properties of excess electrons in QDs. This potential has a central minimum 
and a finite depth and in the neighborhood of the dot centre would behave like a parabolic potential and would 
thus approximately satisfy the generalized Kohn theorem.

Furthermore, in contrast to the rectangular potential well, it is continuous at the dot boundary and this 
makes it easier to handle mathematically. Also the force experienced by the particles within this potential well is 
nonzero, which is again a desirable feature. The other advantages with the Gaussian confining potential vis-a-vis 
a parabolic potential are that the former can describe, in addition to the excitations, the ionization and tunneling 
processes. Masumoto and Takagahara31 have shown that for small QDs, the Gaussian potential is indeed a good 
approximation for the confining potential. The Gaussian potential has already been used by several authors as the 
model for confinement to study the electronic properties of a QD32–45. In this paper, we shall refer to a QD with a 
Gaussian confining potential as a Gaussian QD (GQD). Although the ground state (GS) of an exciton a GQD has 
been investigated by several authors, studies on the excited states of an exciton in a GQD are few and far between. 
The excited states of an exciton are important in both infrared spectroscopy and two-photon spectroscopy46. Xie47 
has considered the exciton problem in a GQD and has studied the ground and the first excited states by using the 
matrix diagonalization method.

It is well known that a magnetic field provides an additional confinement and can be used to tune the confine-
ment in a much better and cleaner way as compared to the other QD parameters which have electrostatic effects. 
Gu and Liang6 have considered the exciton problem in a GQD in the presence of a magnetic field and studied it 
using the matrix diagonalization method. Obviously this problem does not admit an exact solution and therefore 
an exact numerical solution is indeed useful. However, many a time numerical solutions fail to provide some 
of the interesting physics of the system. Furthermore, the wave function used in the numerical diagonalization 
method does not provide any insight about the state of the system in contrast to a variational method or other 
analytical methods. Therefore it is always desirable to develop an approximate analytical method keeping all the 
key features of the system into account which can give results that compare well with the numerical results. In the 
present work we shall calculate the GS energy and the binding energy (BE) of an exciton in a spherical GQD in 
the presence of an external magnetic field as a function of the QD size, magnetic field and the potential strength 
using the Ritz variational method, the 1/N expansion method and the shifted 1/N expansion method. We shall 
also investigate the correlation between the size and oscillator strength of the exciton and the QD radius. We shall 
also obtain all the excited states of the system for a few set of parameters. This might open up the possibility of 
having excitonic lasers using QDs.

Model
The Hamiltonian of an exciton in a GQD in the presence of a magnetic field B can be written as
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where i = e represents an electron and i = h a hole, qe denotes the electronic charge and qh the hole charge, 
ri = re(rh) refers to the position vector of the electron (hole) and pi = pe(ph) the corresponding momentum opera-
tor, m m m( )i e h

⁎ ⁎ ⁎=  is the effective mass of the electron (hole), Ai = Ae(Ah) measures the vector potential for the 
electron (hole) corresponding to the magnetic field B which has been applied in the z direction, V0 and R are 
respectively the depth and range of the single particle Gaussian confinement potential and ε is the dielectric con-
stant of the material. The effective Hamiltonian can be written in the symmetric gauge (A = (−By/2, Bx/2, 0)) as
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Here we have neglected the spin of the charge carriers.
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Formulation
Variational method. We first rewrite the Hamiltonian (2) as: H = H0 + H1, with
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and λ = 0 for parabolic confinement and λ = 1 for Gaussian confinement. We are interested in the GS of the sys-
tem and therefore we drop the Lz − term which does not contribute to the GS energy. We assume that the sole 
effect of Hi is to renormalize the frequency ωi  and so we treat H1 at the mean field level. More specifically we write 
H1 as
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We now define the relative and center-of-mass (CM) coordinates r and R as: ⁎ ⁎= − = +r r r R r rm m M; ( )/e h e e h h , 
where M = me + mh. The electron and hole momenta pe and ph can be expressed in terms of the relative momentum 
p = −iħ∇r and the CM momentum P = −iħ∇R as: p p P p p Pm M m M( / ) ; ( / )e he h= + = − + .⁎ ⁎  In terms of CM 
and relative variables, H can be written as
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where all energies are measured in units of Rydberg μ ε=R e( /2 )y
4 2 2⁎  and the lengths in units of the Bohr radius 

 ε μ=a e( / )0
2 2⁎ , ⁎ ⁎μ = m m M( [ ]/ )e h  being the reduced mass.

If Ψ r r( , )e h  is the eigenfunction of H, then we can write: χΨ = φr r r R( , ) ( ) ( )e h , r( )φ  and χ(R) being the eigen-
functions of Hr and HR belonging to the eigenvalues Er and ER respectively. The exciton energy E is then given by: 
E = ER + Er, where ER(=3ω/2) is the GS energy (GSE) for the CM motion in three dimensions. The exact analyti-
cal evaluation of Er is not possible in general. So we use the Ritz variational method with the trial function: 
φ α β− −~r e( ) r r2

, where α and β are variational parameters. The exciton binding energy (BE) Eb is defined as: 
Eb = (Ee + Eh − E), where Ee and Eh are respectively the electron and hole GSE in the same QD. The exciton size is 
given by: = Ψ| |Ψr r .

The exciton oscillator strength is another important quantity of interest. In the envelop-function approxima-
tion, the exciton oscillator strength26 can be written as
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where P describes intracell matrix-element effects, m0 is the bare electron mass, Eex − E0 = E + Eg, Eg being the 
optical band gap. From the definition of centre of mass and relative coordinates and the definition 

χΨ = φr r R r( , ) ( ) ( )e h , we have

χ φΨ =r r r( , ) ( ) (0), (10)e e e

so that (9) reduces to
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1/N expansion method. The 1/N expansion method, where N is the number of spatial dimensions, is a 
very useful technique for the calculation of the eigenvalues for spherically symmetric potentials48–51. The 1/N 
expansion method uses 1/k = 1/(N + 2l) as the expansion parameter, where l is the angular momentum quantum 
number and therefore it is often referred to as a non-perturbative technique and is valid for the entire range of 
the coupling parameters. The 1/N expansion method is, however, at times plagued with slow convergence, par-
ticularly for higher excited states. To avoid this difficulty, Sukhatme and Imbo47 have introduced a shifted 1/N 
expansion method which brings in an extra degree of freedom ‘a’ in the expansion parameter which is now given 
by 1/k = 1/(N + 2l − a).

The radial part R(r) of the N-dimensional (ND) Schr ̈odinger equation for a spherically symmetric potential 
V(r) is given by
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which on substituting R(r) = r− (N−1)/2u(r), reduces to the effective one-dimensional equation
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the shifted 1/N expansion one introduces an additional parameter ‘a’ in terms of which Eq. (13) can be written as
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Applying the fourth-order Rayleigh-Schr ̈odinger perturbation theory to the perturbed Harmonic oscillator 
(16), we obtain
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j j

/2  In the usual 1/N expansion method a = 0, while in the 
shifted method, ‘a’ is to be determined from the condition E(−1) = 0, which gives a = 2 − (2n + 1)Ω. In our prob-
lem V(r) = ω2r2/4 − 2/r − 2V0. We have calculated energies using both the unshifted and the shifted 1/N expan-
sion methods.

GS Results and Discussion
The methods discussed above are quite general in nature and can be applied to any quantum dot. But, for the sake 
of concreteness, we apply them to a GaAs QD. So, for the material parameters we take: ε = 12.8, ⁎m m0 067e e= .  
and m m0 099h e

⁎ = .  (light-hole mass). Thus we have = .a nm17 70
⁎ , R meV3 1y

⁎ = . , Eg = 1.51 eV, P2/m0 = 1 eV. 
We also define for the sake of convenience a parameter γ μ= ⁎e B cR/2 y  which is proportional to the magnetic 
field strength. One can see that 1γ = 0.47226B(T)22,26. Figure 1 shows the distribution of the electron and hole of 
an exciton in a GaAs QD. One can see from the figure that as the potential depth increases, the distribution 
decreases. The distribution of the hole is little larger than that of the electron. We also find that, as the magnetic 
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field increases, the distribution decreases (not shown here). We furthermore find that while the parabolic model 
underestimates the electron distribution, it overestimates the hole distribution (not shown here).

In Fig. 2 we show the variation of the exciton GSE of a light-hole exciton in a 3D GaAs QD as a function of 
the effective QD size (R) for potential depth of V0 = 6 meV and magnetic field of B = 10 T. We have plotted results 
obtained from the 1/N expansion method, shifted 1/N expansion method and the variational method for both 
2D and 3D confinement. In all the three cases as R decreases, the exciton energy monotonically increases and this 
increase becomes very rapid below a certain critical value of R. The reason is understandable. As R decreases, the 
uncertainty in the exciton momentum increases leading to an increase in the kinetic energy of the exciton. Thus 
as R decreases, GSE increases in general. Also we can observe that the GSE is lower in 2D than in 3D because the 
confinement is stronger in 2D. While the variational method gives the upper bound to GSE, the 1/N expansion 
gives a lower bound. The shifted-1/N method is found to give GSE that lies between those given by the other two 
methods.

Figure 1. Distribution of electron and hole of an exciton in a GaAs QD for two values of the potential depth V0.

Figure 2. Exciton GSE as a function of QD radius in 3D and 2D Gaussian GaAs QD in a magnetic field of 10 
Tesla.
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In Fig. 3 we have compared the GSE results determined from the aforementioned methods with those 
obtained from the matrix diagonalization method by Gu and Liang6. It is clearly evident that the shifted-1/N 
results are in very good agreement with the exact numerical results.

Figure 4 shows the variation of the exciton GSE as a function of the magnetic field B for 2D QD with 
V0 = 6 meV and R = 17.68 nm. As B increases, GSE also increases which is again on the expected line. Though 
the qualitative behavior of the exciton GSE is same in PQD and GQD, the parabolic confinement seems to over-
estimate the energy. Also the nature of confinement becomes unimportant when the QD size becomes large. We 
would like to mention here that the shifted 1/N expansion method not only provides results that are in excellent 
agreement with the exact matrix diagonalization method, but it also has a few distinct advantages over the exact 
diagonalization method. First, as we have already alluded to in the introduction, it provides an analytical expres-
sion for the energy which is always preferable. Secondly, it allows us to calculate the wave functions of the system 
analytically and can thus provide a much better understanding of the physics of the system. Thirdly, once the wave 

Figure 3. Comparison of our results for the exciton GSE with those from Matrix diagonalization method of Gu 
and Liang.

Figure 4. Exciton GSE as a function of B in 2D PQD and GQD of GaAs.
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functions are obtained, one can calculate average values of several dynamical variables. Finally, since this method 
provides the entire energy spectrum, one can also calculate all the important thermodynamic quantities.

The variation of exciton BE of a GQD is shown in Fig. 5. It may be noted that since the confining potential is 
negative for all finite values of the electron and hole coordinates, one would expect that bound state of an exciton 
should correspond to a negative energy value. However for this bound state to be stable it is necessary that the 
BE energy as defined earlier should be positive. We see that as the QD size decreases, BE increases and the rate 
of increase is larger for smaller dots. This is understandable because with a decrease in the dot size, the spatial 
overlap between an electron and a hole increases leading to a stronger coulomb binding. Comparison of results 
for 2D and 3D QDs suggests that the BE for a QD is larger in 2D than in 3D. As suggested by Fig. 3, the BE results 
obtained from the shifted 1/N expansion should be trusted the most. In Fig. 6 we plot the behavior of the exci-
ton BE as a function of the magnetic field for two values of the potential depth. As expected, BE increases with 
increasing magnetic field. We find that BE is much larger in a GQD than in a PQD.

Figure 5. BE vs R for 2D and 3D Gaussian GaAs QDs for B = 10 T.

Figure 6. Exciton BE energy as a function of B in a GQD for two values of V0.
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In Fig. 7 we plot the variation of the exciton size as a function of R. The figure shows that as R increases, the 
size of the exciton also increases. However, the exciton size seems to saturate as R increases beyond some critical 
value which may be identified as the bulk limit. We have plotted the exciton size vs. R for three different values of 
the magnetic field for both PQD and GQD. As the magnetic field increases, the size of an exciton decreases. This 
is a direct consequence of the localizing property of the magnetic field. Figure 8 gives the variation of the exciton 
size as a function of the magnetic field. As expected, the exciton size decreases with increasing magnetic field. 
Also the exciton size decreases as the potential becomes deeper.

One can make another observation from the Figs 5 and 7. According to Fig. 7, the size of the exciton increases 
as the QD size increases, while according to Fig. 5, the binding energy decreases with increasing QD size. Thus 
one can conclude that as the size of the exciton increases, the binding energy decreases.

We have also studied the variation of the exciton oscillator strength fex as a function of R and results are shown 
in Fig. 9. One can see that as R decreases, fex also decreases. This happens because as R decreases, the exciton 
energy increases and hence fex decreases. Figure 9 also shows that fex decreases in the presence of a magnetic field. 
Again the explanation is simple. The application of the magnetic field leads to an additional confinement, which 

Figure 7. Light-hole exciton size in a 3D GQD as a function of the QD size.

Figure 8. Variation of the size of the light-hole exciton in a 3D GQD as a function of the magnetic field.



www.nature.com/scientificreports/

1 0Scientific RepoRts |  (2018) 8:5073  | DOI:10.1038/s41598-018-23348-9

induces an enhancement in the exciton energy and hence the oscillator strength decreases in the presence of a 
magnetic field.

Excited states. From Eqs (20) and (21) we can calculate the energy of all the excited states. Table 1 shows the 
results for the energy spectrum of a Gaussian GaAs QD with radius R = 88.5 nm and potential depth V0 = 12 meV 
placed in a magnetic field B = 1 T. One can easily see that this QD can sustain a finite number of bound states, 
namely 18 bound states. However it should be pointed out that one has to calculate the BE of these states to make 
sure whether these are stable bound states. Here we shall loosely call them bound states. On the other hand, if the 
exciton energy comes out to be negative for a state, then one can state with certainty that it does not qualify to be 
a bound state. However it can be a scattering state. Though it is true that the energy spectra in a QD should be dis-
crete, the Rydberg states are expected to be much less discrete because of the form of the potential at the boundary 
where the potential smoothly goes to zero. This makes the tunneling-like processes possible. By tuning the QD 
parameters, one can perfectly control the number of bound states. For example, with, R = 53 nm, V0 = 3.98 meV 
and B = 4 T, one obtains at most four bound states as shown in Table 2. In Table 3 we explicitly show the binding 
energy values for a QD with certain parameters.

Figure 9. GS oscillator strength of an exciton in a GQD for two different values of the magnetic field.

l

0 1 2 3 4 5 6 7 8 9 10n

0 −27.46 −15.88 −15.36 −15.08 −14.85 −14.63 −14.43 −14.24 −14.05 −13.86 9.698

1 −16.25 −15.23 −13.09 −8.57

2 −14.19 −9.59 −1.47 11.38

3 −5.86 5.97

4 14.17

Table 1. The energy spectra of an exciton in a 2D Gaussian GQD calculated by shifted 1/N expansion method 
with R = 88.5 nm, V0 = 12 meV and B = 1T. Energies are expressed in meV.

l

0 1 2 3n

0 −17.39 −5.088 −3.732 15.18

1 −1.603 28.43

2 60.274

Table 2. Energy levels of an exciton in a Gaussian GaAs QD with R = 53 nm, V0 = 3.98 meV and B = 4 T.



www.nature.com/scientificreports/

1 1Scientific RepoRts |  (2018) 8:5073  | DOI:10.1038/s41598-018-23348-9

We have also studied the behavior of the BE of an exciton in different states as a function of the magnetic 
field. Results are plotted in Fig. 10. It is clear that BE is smaller for a higher excited state. On the other hand, BE 
increases with increasing magnetic field which is expected in view of the additional confinement provided by the 
magnetic field.

Conclusion
In the present paper, we have calculated the GS energy, binding energy and the size of an exciton in a Gaussian 
GaAs QD in two and three dimensions in the presence of an external magnetic field using the Ritz variational 
method, 1/N expansion method and shifted-1/N expansion method. While the variational method gives the 
upper bound to the GS energy, 1/N method gives the lower bound. We have also compared our results with those 
for the corresponding parabolic model. It turns out that the electron/hole distribution decreases as the confining 
potential becomes deeper and also as the magnetic field becomes stronger.

We have shown that the exciton energy decreases with increasing potential depth. With decreasing QD size, 
the exciton energy increases and becomes significantly large below a certain critical size. The shifted 1/N expan-
sion results agree excellently well with those obtained from the exact numerical diagonalization method.

We have furthermore shown that the exciton binding energy increases with decreasing dot size and it is under-
estimated by the parabolic potential model. Also the binding becomes stronger as the potential becomes deeper 
and the magnetic field is increased. It is shown that the exciton size decreases as the dot becomes smaller or the 
potential becomes deeper or the magnetic field is increased. Next we have shown that the GS exciton oscillator 
strength decreases as the QD size decreases or the external magnetic field increases. We have also calculated the 
excited state energies of an exciton in a 2D GQD in the presence of a magnetic field. It is observed that by tuning 
the QD parameters one can have a given number of bound states in a QD by suitably tuning the QD parameters. 
In this context, we have also explicitly shown an example where one can have at most four bound states in a 
Gaussian GaAs QD. This tunability may have potential applications in QD lasers. In this work we have however 
neglected the sin-Zeeman term. The interplay between the electron-hole interaction and the magnetic field effect 
through the spin-Zeeman term may have some important consequences which will be taken up for investigation 
in a subsequent study.

l

0 1 2 3 4 5 6 7 8 9 10n

0 12.68 10.46 9.52 8.23 6.53 4.42 3.25 2.15 1.28 0.32 0.032

1 9.23 6.79 5.42 3.67 1.51 0.73

2 8.11 5.43 4.67 2.77 0.76

3 3.78 2.63 1.97 1.28 0.52

4 1.52

Table 3. Binding energy of an exciton in a Gaussian QD with R = 17.7 nm,V0 = 3.98 meV and B = 1 T.

Figure 10. BE of a few excitonic states as a function of the magnetic field.
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