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Abstract

Individual-based models (IBMs) of human populations capture spatio-temporal dynamics

using rules that govern the birth, behavior, and death of individuals. We explore a stochastic

IBM of logistic growth-diffusion with constant time steps and independent, simultaneous

actions of birth, death, and movement that approaches the Fisher-Kolmogorov model in the

continuum limit. This model is well-suited to parallelization on high-performance computers.

We explore its emergent properties with analytical approximations and numerical simula-

tions in parameter ranges relevant to human population dynamics and ecology, and repro-

duce continuous-time results in the limit of small transition probabilities. Our model

prediction indicates that the population density and dispersal speed are affected by fluctua-

tions in the number of individuals. The discrete-time model displays novel properties owing

to the binomial character of the fluctuations: in certain regimes of the growth model, a

decrease in time step size drives the system away from the continuum limit. These effects

are especially important at local population sizes of <50 individuals, which largely corre-

spond to group sizes of hunter-gatherers. As an application scenario, we model the late

Pleistocene dispersal of Homo sapiens into the Americas, and discuss the agreement of

model-based estimates of first-arrival dates with archaeological dates in dependence of IBM

model parameter settings.

Introduction

There is an increasing interest in individual-based models (IBMs) in ecology and anthropology

[1]. These are spatio-temporal dynamical models of individuals [1–4] acting by biology-

inspired rules [5–7]. An individual can be a plant or an animal or even a group. The system

dynamics arise bottom-up via the nonlinear interactions among individuals. These models

capture inter-individual variation and stochasticity that are omitted in continuous, determin-

istic models [5]. Stochasticity plays a critical role in population dynamics as a smaller popula-

tion has stronger fluctuations in the number of individuals that may lead to extinction [8–10].
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IBMs have been applied to spatial patch population dynamics [2, 11], spatially expanding pop-

ulations [12–14], and epidemics [15].

IBMs are different from stochastic population-based simulations where individual actions

such as reproduction, death, movement etc. are not taken separately by each entity, but are

determined at once for the whole population [16, 17]. An IBM may have a deterministic con-

tinuum limit, i.e., the model can be described with deterministic equations in the limit of a

high number of individuals and small time steps, and therefore be suitable to explore a wide

range of regimes from discrete and stochastic to continuous and deterministic.

Analytical and numerical studies of the birth-death process (e.g. logistic growth) and

Fisher-Kolmogorov reaction-diffusion population models [18–20] have predicted that dis-

creteness and stochastic fluctuations have a strong impact on the large-scale population

dynamics. The emergent properties of the system, such as the propagation speed of the popula-

tion or the time-to-extinction, diverge from the properties of the continuous equations.

Renshaw studied the stochastic birth-death process analytically as a one-step Markov process

with continuous time [21]. He found that the average number of individuals in the steady-state

is lower than in the deterministic case, and that the stochastic system approaches deterministic

predictions when the fluctuations decrease. The propagation speed v in stochastic reaction-dif-

fusion systems is lower than for the deterministic traveling wave [22–27]. Several studies [22,

23, 28] explained the slowdown of the wave with the processes on its tip and found an analyti-

cal approximation of v up to the second order. This approximation was confirmed in a study

of fitness waves in microbial evolution [25]. Traveling waves in the strong-noise limit were

studied in [24, 26], where wave fronts composed of a few rugged kinks instead of smooth sig-

moidal profiles were observed.

Individual-based growth and growth-diffusion models are often implemented with contin-

uous-time-formulations, where the time step is dynamically chosen to ensure that individual

“actions” happen one at a time [2, 29, 30]. In computational terms, if actions of individuals

depend on each other they cannot be executed in parallel. Thus, the continuous-time approach

scales poorly to large populations.

Here we describe a discrete-time implementation of growth and diffusion that scales to

large spatial domains, large numbers of individuals, and long time spans [31]. At each fixed

time step, all individuals act simultaneously and independently. Due to the discrete-time

implementation, the model is amenable to parallelization: calculations can be split among pro-

cessors with each working on a fraction of the individuals. Individuals decide on three basic

“actions”—deaths, births, and movements, and all may perform them.

We first analyze the movement and the growth terms separately, then present the full

Fisher-Kolmogorov growth-diffusion IBM. Numerical simulations are used to study the sto-

chasticity and the large-scale properties using parameters relevant for the spatio-temporal

dynamics of hunter-gatherer populations. The major aim here is to investigate how the out-

come of an IBM-based implementation of growth and dispersal deviates form the expected

properties of the outcome of continuum models. As an example, we simulate the dispersal of

modern humans in the Americas during the late Pleistocene.

Description of the model

The Fisher-Kolmogorov (FK) equation models spatial dispersal and local change via diffusion

and growth terms [32].

We now introduce the discrete-time models for the diffusion and growth terms, indicating

that their continuum limits are the diffusion and the logistic growth equations. Combining the

two terms yields a discrete-time stochastic version of the Fisher-Kolmogorov model.

Individual-based modelling in discrete time
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Simulations are performed with the QHG code—an agent-based modeling framework written

in C++ that uses parallel computing [31]. Some simulations of the growth term, for which

high performance was not needed, are performed using a Python implementation of the

growth model. The QHG code, Python script, and scripts for the analysis are available on

https://github.com/uzh/QHG.

Diffusion term

In the one-dimensional case, the deterministic diffusion equation is

@rðx; tÞ
@t

¼ D
@

2
rðx; tÞ
@x2

ð1Þ

where ρ(x, t) is the population density at time t and position x, and D is a constant diffusion

coefficient (see e.g. [32]). Assuming the population starts in a localized region of space, the sec-

ond moment of positions for large t is proportional to time:

VarðxÞ ¼ 2Dt : ð2Þ

In our IBM, the diffusion process is modeled at the individual level via an isotropic random

walk on a Cartesian grid [32]. Each grid cell has a fixed number of neighbors: 2 in the one-

dimensional and 4 in the two-dimensional case. Each individual moves with probability Pmove

to a neighboring cell at a given time step. Movements are synchronous and independent

within a time step τ, and thus the IBM is a discrete-time model [8].

This is in contrast with the so-called “continuous-time model”, where the timing of individ-

ual actions is based on a Poisson process so that only one action occurs at a time [8].

Our model is a binomial process, with success probability Pmove, and sample size equal to

the total number of individuals N0. When N0 Pmove! 0 (or equivalently τ! 0), our model

approaches the continuous-time process.

The large-scale diffusion coefficient is calculated using the microscopic parameters of a ran-

dom walk (see also [32]):

D ¼ Pmove Pdirection
Dx2

t

� �

: ð3Þ

Pdirection is the probability to move to a specific neighbor of the current cell, Δx is equal to the

distance between two neighboring cells (the length of the spatial step), and τ is the length of

the time step; here Δx = 1 and τ = 1. For isotropic movement, Pdirection = 1/nneighbors.

S1 Appendix predicts that in the limit of decreasing spatial and temporal steps, the model

approaches the diffusion Eq (1).

Growth term

A widely used deterministic model for density-dependent population dynamics is the logistic

growth equation

dr

dt
¼ rr 1 �

r

K

� �
: ð4Þ

ρ is the population density, r is the population growth rate, and K is the equilibrium density,

the so-called carrying capacity [32] owing to limited resources in a spatial region.

There are many ways to define a stochastic model where the zero-noise limit approaches

the logistic model (Eq (4)) [2, 21]. In our IBM, each individual can spawn (give birth to) a new

one, or die, with probabilities β and δ, respectively. These reproduction and death behaviors

Individual-based modelling in discrete time
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depend on the local population density in the individual’s cell as follows:

b ¼ b0 � ðb0 � yÞN=K ð5Þ

d ¼ d0 þ ðy � d0ÞN=K ; ð6Þ

where b0 and d0 are the small-population limits of birth and death probabilities, respectively

[16] (see Fig 1). N is the current number of individuals in the given cell. The deterministic pop-

ulation growth rate is r = (b0 − d0)/τ.

An additional parameter is the turnover θ, which is equal to the birth and death probabili-

ties when the local population reaches its carrying capacity (β = δ = θ for N = K). Thus, θ
defines the expected fraction of individuals that will be born and die at each time step when

the cell’s population is K. In the model, θ is bounded in two directions: d0 < θ< b0, with d0 <

b0. Note that θ only appears in the stochastic formulation and has no equivalent in the classical

deterministic model. The same carrying capacity can be associated with different turnovers,

and all models with same K, b0, and d0 converge to the same continuous model. To summarize,

β, δ are interpreted as probabilities in the stochastic model, i.e., the parameters and the result-

ing growth rate r range from 0 to 1 by appropriate rescaling of the time unit τ.

Fig 1. The dependency of the birth β (Eq (5)) and the death probability δ (Eq (6)) on normalized local

population density N/K. Two different turnovers are considered: θ1 and θ2. When the number of individuals

equals the carrying capacity N/K = 1, the equation β = δ = θ is fulfilled. Thus, as shown in the figure, the same

carrying capacity can be reached with different turnovers [16].

https://doi.org/10.1371/journal.pone.0176101.g001
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The workflow during one time step ti is given in Fig 2. All actions are simultaneous and

independent. The synchronous update results in “overlapping generations”, i.e., individuals

can survive several updates. The state of the system at time ti depends only on the state at the

previous time point ti−1. Thus, the model is a Markov process.

The time evolution of the probability PN(t) to have N individuals at time t is the Master

equation:

PNðt þ tÞ � PNðtÞ ¼
XN

D¼1

TðNjN � DÞPN� D þ
X1

D¼1

TðNjN þ DÞPNþD�

XN

D¼1

TðN þ DjNÞPN �
XN

D¼1

TðN � DjNÞPN :

ð7Þ

The probability of transition from the state with N to the state with M individuals is denoted

by T(M|N), and Δ� |N − M|. For the classical one-step process only transitions including one

individual Δ = 1 are allowed; instead, we allow all transitions 0� Δ� N. (No more than N
individuals can be born, as each individual can give birth at most to one newborn at each time

step in our formulation.)

Multiple processes can lead to the same Δ for given N and M. For example, given two indi-

viduals N = 2, the transition from N = 2 to M = 3, Δ = 1, is possible by (i) birth of one new indi-

vidual, or (ii) birth of two new individuals and death of one individual. The transition

probability T(3|2) includes both (mutually exclusive) cases:

Tð3j2Þ ¼
2

1

� �
2

0

� �

bð1 � bÞd
0
ð1 � dÞ

2
þ

2

2

� �
2

1

� �

b
2
ð1 � bÞ

0
dð1 � dÞ: ð8Þ

The first term on the right-hand side of Eq (8) describes the probability that case (i) happens.

Here, β is the birth probability, (1 − β) is the probability that the second individual does not

produce a new individual, (1 − δ)2 is the probability that none of the two individuals dies. The

first 2

1

� �
and the second 2

0

� �
binomial coefficients reflect different combinations due to the

birth and death process, respectively. The second term on the right-hand side describes the

probability of case (ii) (the general formulation of transition probabilities is given in S2

Appendix).

This Master equation of our IBM approaches the deterministic logistic equation in the con-

tinuum limit τ! 0 and K!1 (see S2 Appendix).

Growth-diffusion model

The growth-diffusion model tracks each individual as it decides on all three basic actions of

birth, death, and movement. It follows that, in the appropriate limit τ! 0, Δx! 0, K!1,

the IBM of growth-diffusion approaches the Fisher-Kolmogorov equation. In a homogeneous

environment, changing K can be seen as a coordinate rescaling since for a fixed population

density in individuals/km2, a lower numbers of individuals in a cell corresponds to a higher

spatial resolution (i.e. a smaller cell area). The frequency of updates, i.e., the inverse of the

number of basic actions during one update, as well as the cell step size, i.e., Δx, affect both

movement and growth. Our IBM is formally similar to the discrete-time/discrete-space IBM

studied in [12]. As in [12], individuals’ movements are modeled as random walks and the

zero-noise limit of the growth term approaches the logistic model. However, the detailed sto-

chastic model of growth differs from the model presented here (Eqs (5) and (6)) [12].

Individual-based modelling in discrete time

PLOS ONE | https://doi.org/10.1371/journal.pone.0176101 April 20, 2017 5 / 22

https://doi.org/10.1371/journal.pone.0176101


Individual-based modelling in discrete time

PLOS ONE | https://doi.org/10.1371/journal.pone.0176101 April 20, 2017 6 / 22

https://doi.org/10.1371/journal.pone.0176101


The two-dimensional FK equation is

@r

@t
¼ D

@
2
r

@x2
þ
@

2
r

@y2

� �

þ rr 1 �
r

K

� �
ð9Þ

where ρ = ρ(x, y, t) is the density at position x and y and at time t [32]. Solutions give traveling

waves of population expansion propagating asymptotically at constant speed. The minimal

propagation speed is vdet ¼ 2
ffiffiffiffiffiffi
Dr
p

, where the abbreviation “det” stands for “deterministic” [32].

The update protocol of our IBM, i.e., the growth term (Fig 2) “plus” the movement term

(section), is equivalent to the Forward Euler integration in that updates are performed accord-

ing to the system’s state at the beginning of each time step [33]. The limit N!1 of hN(t + τ)i

− hN(t)i calculated with Eq (7) (see also Eq (28) in S2 Appendix) and Eq (22) in S1 Appendix

is a Forward Euler integrator of logistic growth and diffusion, respectively. By modeling a real

system, the spatial resolution Δx and the temporal resolution τ should be chosen so that the

resulting D, b0, and d0 can be correctly treated as probabilities. If this is true, the time step satis-

fies the Von Neumann criterion ([34]) which guarantees that the simulation is stable, i.e.,

numerical errors will not be amplified.

Results of numerical simulations

Section studies the effects of discreteness, i.e., the fact that the population consists of discrete

entities (individuals), with simulations of (i) the diffusion model, (ii) the growth model, and

(iii) the growth-diffusion model. As mentioned in the introduction, such a discrete description

of a population can capture stochastic effects [5].

Diffusion term

We simulate the discrete-time one-dimensional random walk (see section, S1 Appendix), and

compare the microscopic diffusion coefficients, i.e., the diffusion coefficient calculated using

the microscopic parameters of a random walk such as Pmove, Pdirection, Δx, and τ (see Eq (3)),

with the macroscopic diffusion coefficient, i.e., the diffusion coefficient calculated using large-

scale properties of the system such as the variance of positions of all individuals at a given time

(see Eq (2)). Simulation parameters and results are given in Table 1. Since individuals move

Fig 2. Growth model: Workflow during one time step ti. At each time step, the expected number of newborn and of dying individuals is βN and δN,

respectively. The expected resulting difference in population size is hΔi = (β − δ)N. We note that the linear dependency of β on N leads to β < 0 when N

> b0 K/(b0 − θ). Values of β < 0 are interpreted here as death rates, such that δ* = |β| + δ for β < 0. In this way the convergence towards the logistic

growth is fulfilled (see S2 Appendix).

https://doi.org/10.1371/journal.pone.0176101.g002

Table 1. Simulation parameters used for the one-dimensional IBM of movement and resulting macroscopic diffusion coefficients. N0 = 3000 (i.e.

simulations are far from continuous-time regime), Δx = 1, and τ = 1. The corresponding microscopic diffusion coefficients are calculated using Eq (3). To esti-

mate the macroscopic diffusion coefficients we measure the variance in the position of all individuals at different time points. Since the variance of the position

is a time series we calculate its time derivative and estimate the mean of the derivative. The macroscopic diffusion coefficients are then estimated using Eq

(2).

Pmove microscopic D mean of the derivative of Var(x) macroscopic D

1 0.5 1 ± 0.1 0.5 ± 0.05

2/5 0.2 0.41 ± 0.05 0.205 ± 0.025

1/5 0.1 0.19 ± 0.02 0.095 ± 0.01

https://doi.org/10.1371/journal.pone.0176101.t001
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independently, the slope of the variance, which is a linear function of time, is an unbiased esti-

mator of D. The estimated macroscopic diffusivities are within the range of the microscopic

coefficients (see Table 1). The macroscopic and microscopic views are in agreement as

expected.

Growth term

We focus on parameters b0, θ, and K. Hereafter, for ease of discussion, the death probability, d0

= 0.

Asymptotic behavior for increasing K and decreasing θ. First, we investigate the influ-

ence of fluctuations around equilibrium for various choices of K and θ. Simulation parameters

are given in Table 2. To estimate the effective carrying capacity hNi, i.e., the number of individ-

uals in the steady state, N is averaged over time in 100 realizations for each parameter set,

Fig 3.

The resulting effective carrying capacity hNi is lower than K.

The lower hNi owes to the non-linear properties of the stochastic logistic equation:

dN
dt
¼ rN 1 �

N
K

� �

þ Z: ð10Þ

Z is the component of (relative) fluctuations and hZi = 0 [21]. Following Renshaw [21], and

noting that, for our binomial process, N * K, probability of birth or death *θ, we can esti-

mate the effective carrying capacity as

hNi � K �
2yð1 � yÞ

2r � r2
: ð11Þ

Fig 3 predicts that the relative deviation of hNi from K decreases with increasing K, as

expected. Considering Eq (11): for increasing K, the deviation term becomes negligible, and

hNi/K! 1 as K!1.

If we decrease the turnover θ at constant b0, the relative deviation of hNi from K changes.

We consider two examples: b0 = 0.3 and b0 = 0.8 (Fig 3). The direction of this change depends

on both θ and b0. In the case b0 = 0.3, a decrease in θ corresponds to a decrease in the fluctua-

tions, and hNi/K! 1 monotonically. On the other hand, when b0 = 0.8, the behavior of the

system is twofold: an initial decrease in θ from 0.7 to 0.4 leads to an increase of stochastic fluc-

tuations, i.e., to a larger deviation of hNi from K. A further decrease in θ leads to a decrease

fluctuations, and hNi/K! 1.

Table 2. Simulation parameters used for the IBM of growth. d0 = 0 for all parameter sets. The initial num-

ber of individuals for each simulation is N0 = K. The system is simulated for 500 time steps.

carrying capacity K birth probability b0 turnover θ
10, 50, 100, 500 0.8 0.7

0.4

0.08

0.008

0.3 0.2625

0.15

0.03

0.003

https://doi.org/10.1371/journal.pone.0176101.t002
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To explain the dependence of the fluctuations on the turnover θ and on b0, the second term

of Eq (11) can be rewritten for the ratio of θ and b0, α� θ/b0:

f ¼
2að1 � ab0Þ

2 � b0

: ð12Þ

Fig 4 illustrates the dependency of f on the ratio α. Here, α varies from 0 to 1, since we are only

interested in the biologically-relevant case of competition-driven lowering of the per-capita

birth rate with increasing population density (θ< b0).

We identify two regimes: b0� 0.5 and b0 > 0.5. When b0 is held constant and b0� 0.5, a

decrease in the turnover θ, i.e., in the ratio α, always leads to a decrease in the deviation term f
(Fig 4). When b0 > 0.5, the behavior of the system is more complex. With an initial decrease in

the turnover, f increases until it reaches its maximum value. With a further decrease of the

turnover, f decreases. We may intuitively explain this by realizing that the variance in a bino-

mial process is maximal when its probability of success (in our case θ) is 0.5. Different choices

of parameters (b0) position the system on either side of this maximum, and, as a consequence,

can give rise to opposite behaviors of the fluctuations for decreasing θ.

Convergence towards the one-step process. Here we indicate that by “slowing down” the

IBM, i.e., decreasing τ and lowering the expected number of events within one update, the dis-

crete-time model approaches the continuous-time birth-death process. To accomplish this, we

change b0 and θ while keeping their ratio constant. Note that this does not correspond to

studying the same model at different time resolutions; rather, we are comparing IBMs with dif-

ferent update frequencies but same continuum limit (up to a rescaling of τ).

We explore the parameter space by spanning two orders of magnitude in θ and b0. Three

different ratios of θ/b0 are considered; θ/b0 = 0.875, 0.5, and 0.1. The total number of time

steps is inversely proportional to b0 and θ to fix the total simulation time. Further simulation

Fig 3. IBM of growth: The normalized effective carrying capacity hNi/K depends on K and the turnover θ. Left panel (a) presents simulation results for

b0 = 0.8 and d0 = 0. Symbols and colors indicate estimated hNi/K for different turnover values shown in the legend. Lines represent the predicted effective

carrying capacity hNi (Eq (11)) normalized by K. Right panel (b) presents simulation results for b0 = 0.3 and d0 = 0.

https://doi.org/10.1371/journal.pone.0176101.g003
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details and simulation results are given in Fig 5, as well as the comparison with the approxima-

tion Eq (11) (three solid lines).

When θ/b0 = 0.5, the effective carrying capacity hNi does not change as a function of the

duration of the time step. Approximation Eq (11) predicts that, if θ = 0.5 � b0, the deviation of

hNi from K is constant: hNi = K − 1/2. In Fig 4, this case corresponds to the intersection of all

curves for different values of b0 at θ/b0 = 0.5.

When the time step is small and θ! 0, the term describing the fluctuations Z is a Poisson

distributed variable with Var(Z) = 2 Kθ that is monotonic in θ. Eq (11) then becomes hNi*K
− 2θ/(2r − r2) which corresponds to the approximation of hNi in the continuous-time one-step

process [21] and agrees with simulation results (Fig 5). In this regime, hNi becomes indepen-

dent of τ.

Thus, the properties of the growth IBM around the equilibrium can be can be summarized

using Eq (11). By normalizing Eq (11), we get

hNi
K
¼ 1 �

1

K
2yð1 � yÞ

2r � r2
: ð13Þ

The normalized effective carrying capacity hNi/K is shown as a two-dimensional contour plot

in Fig 6. By considering the behavior of IBMs with more and more frequent updates, the tra-

jectory of hNi/K (Fig 6) can be represented by straight lines going towards the origin with

slope determined by θ/b0. For example when θ/b0 = 0.6/0.8, a decrease of the time step leads to

an increase of the noise, i.e., hNi/K declines (trajectory shown by a dashed black arrow).

Growth-diffusion model

One-dimensional case. The propagation speed v of the emerging traveling wave is a funda-

mental macroscopic property of the FK equation. We thus investigate the relation between v

Fig 4. The term describing the deviation of hNi from K in dependency of the ratio α� θ/b0 (Eq (12)).

Different values of b0 are used (see legend for corresponding colors and line styles). As an example, the red

arrow shows how the deviation f changes when θ/b0 = 0.875 and the τ is decreased. The black arrow shows

how the deviation changes when θ/b0 = 0.3 and the τ is decreased.

https://doi.org/10.1371/journal.pone.0176101.g004
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and the carrying capacity K, which is the parameter regulating fluctuations in continuous-time

reaction-diffusion systems [22–24, 26]. In our simulations, K varies from 10 to 1000 individuals

and b0 = 0.8, 0.3, 0.1, and 0.01; θ = 10−1 � b0; d0 = 0. The diffusion coefficient—as determined by

microscopic parameters of the random walk (see section)—is set to D = 0.2. The initial number

of individuals is N0 = K, and their initial position is x0 = 0. The simulation is stopped when the

individuals reach x� 300. Ten repetitions are performed for each parameter set.

Fig 5. IBM of growth: The effective carrying capacity hNi depends on the frequency of system

updates. The time step τ is changed by changing b0 and θ keeping their ratio constant (d0 = 0). A decreasing

“physical” duration of τ corresponds to increasing values of log(1/b0). The carrying capacity is K = 50. 50

realizations are performed for each set of parameters as indicated in the image. Shaded areas correspond to

hNi ± SEM estimated in the simulations where SEM is the standard error of the mean. Solid lines correspond

to the predicted hNi (Eq (11)). The red solid line corresponds to the deterministic case hNi = K.

https://doi.org/10.1371/journal.pone.0176101.g005

Fig 6. Contour plot of hNi/K in dependency on b0 and the turnover θ. The contours (colored solid lines)

are calculated using Eq (13). The pattern of the dependency of hNi/K on b0 and θ remains the same for

different K, but hNi/K! 1 when K!1. Here, color legends are given for K = 10, K = 50, K = 100. The dashed

black arrow shows how hNi/K changes when the time step decreases and θ/b0 = 0.6/0.8. The arrow head

points towards the region of smaller time steps. The region θ > b0 is not allowed.

https://doi.org/10.1371/journal.pone.0176101.g006
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These parameters are relevant for ecological dynamics, especially with respect to hunter-

gatherer populations. For example, K in the range of 10 to 1000 individuals is consistent with

hunter-gatherer group sizes [35]; the mean size of modern hunter-gatherer groups is * 50

individuals, with a maximum of * 270 and minimum of * 13 individuals [36, 37]. The popu-

lation density of modern hunter-gathers is *0.01 − 9.5 individuals/km2 [37], so the spatial res-

olution of our simulations corresponds to 1 km2-100 km2. Growth rates in the present

simulations range between 0.01 and 0.8, whereas the intrinsic growth rate of foragers is

*0.02/year [37].

We estimate the speed v by tracking the wave front position defined as xK/2 where N = K/2.

We measure v after the system stabilizes to linear speed (see section).

Fig 7 shows the relation between vnorm = v/vdet (see Eq (1)) and K. For all our parameter

sets, the estimated speed v is lower than vdet and depends on K, contrary to the deterministic

FK model, but seen previously in stochastic models [22–24, 26].

The lower propagation speed owes to the behavior at the tip of the traveling wave [22–24,

26]. A stochastic population with a lower number of individuals is more likely to go extinct

due to fluctuations. At the tip of the traveling wave, N� K, so extinctions of new “colonies”

slow the wave front propagation [26].

To summarize, our parameter space exploration reveals tree types of asymptotic behavior

toward higher normalized speed vnorm. Increasing K decreases relative fluctuations leading to

fewer extinction events. At K� 500, v reaches a plateau at values smaller than vdet: K!1 is

not sufficient to reach the continuum limit.

Next, the normalized speed increases when growth and movement probabilities are

decreased. The dependency of vnorm on r and D can be explained by the leading edge approxi-

mation of the traveling wave solution [28, 38]. Although the microscopic update rules of sto-

chastic population-based models and our discrete-time IBM are different, they both have

multiple births, deaths, and movements in a single time step.

Fig 7. IBM of growth-diffusion: The relation between the normalized speed vnorm and K in the one-

dimensional case. Left panel (a) presents vnorm when D = 0.2. Symbols show the measured normalized

speed (see legend; θ = 10−1 � b0; d0 = 0). Solid lines show the analytical approximation Eq (15) in respective

colors. Right panel (b) presents the effect of D. Lines show the analytical approximation (Eq (15)) for D = 0.2

and D = 0.05 respectively. b0 = 0.8 in both cases. Typical error bars are less than 1%.

https://doi.org/10.1371/journal.pone.0176101.g007
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The dispersion relation derived in [38] can be readily applied to our model, and it is quoted

here for convenience:

vðgÞ ¼
1

g � t
ln ½1þ D0ðe� gDx � 1Þ þ D0ðegDx � 1Þ þ ðb0 � d0Þ�; ð14Þ

D0 = Pmove(1/nneighbors) is the diffusion probability (Eq (3)). The front of the FK wave travels at

the minimal speed where dv/dt = 0 (know as the “pulled” wave type) [28, 32]. This minimal

speed approaches vdet when decreasing the growth probability(see Fig 7(a)) or decreasing D0

(see Fig 7(b)).

The approximation v * min v(γ) (Eq (14)) is valid only in the limit K!1. However, [28]

find an approximation that includes the impact of the carrying capacity K. We quote this result

here as well:

v ¼ vðg0Þ �
p2v00ðg0Þ

2L2
ð15Þ

[28]. γ0 is the parameter that minimizes the dispersion relation for v. v0 0(γ0) is the second deriv-

ative of v with respect to γ at γ0. The correction term L includes the dependency on ln K.

We compare approximation Eq (15) with vnorm estimated in our model. The approximation

is given by solid lines in Fig 7. The simulated vnorm, especially in the limit of increasing K, is in

rough agreement with Eq (15) as we expected, given the strong fluctuations regime we are con-

sidering, appropriate for ecological systems. Furthermore, approaching the limit of continuous

time of the growth term (b0 < 0.1) and with an increased carrying capacity (K� 500), the esti-

mated speed approaches asymptotically the deterministic speed. This asymptotic convergence

to vdet is consistent with previous results on continuous-time FK equation [22–24, 26].

Note that the K!1 limit of the reaction-diffusion IBM agrees with a slow-down of the

wave due to the Forward Euler time step. In particular, the slow-down is pronounced at high r
and D (see also Fig 7 and the approximation Eq (14)).

Two-dimensional case. We perform simulations on a 1000x100 rectangular grid. The val-

ues of K, b0, d0, θ are equal to the parameters used for the one-dimensional case, and D = 0.2.

The individuals are confined to a 1000 by 100 cells domain. At the beginning of the simulation

(t = 0), individuals are arranged in a line parallel to the y-axis, at x0 = 0. We use this “line

setup” due to its comparability with the one-dimensional case with a traveling wave moving in

one direction. The initial number of individuals is N0 = K in each of these grid cells. In accor-

dance to the one-dimensional case, the simulation is stopped when the individuals reach

x� 300.

We calculate the y-averaged wave profile along the x-axis, i.e., the mean number of individ-

uals at a given position x, and, in analogy to the one-dimensional case, the speed is determined

by estimating xK/2 as a function of time.

Results are presented in Fig 8.

As in the one-dimensional case, the speed v is consistently lower than the deterministic

speed vdet. Furthermore, v increases with (i) an increase of the carrying capacity K and (ii) a

decrease of r: the two asymptotic behaviors discussed for the one-dimensional case can still be

identified. Additionally, the speed is higher in the two-dimensional case compared with the

one-dimensional case. The difference is especially pronounced for K� 50 and b0� 0.3 corre-

sponding to stronger fluctuations in the number of individuals. In the one-dimensional case,

the wave is momentarily halted when the population in the farthest nonempty cell at the (zero-

dimensional) tip of the wave goes extinct. In the two-dimensional case, the propagation of the

wave is slowed down, but is not stopped completely since the probability that extinction hap-

pens in all cells at the (one-dimensional) front of the wave along the y-axis is very low.
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Furthermore, in the two-dimensional case, “extinct” cells at the wave front can be populated

by non-extinct neighbors on each side. This effect is enhanced by the higher total number of

individuals in the system. Thus, the extinction at the tip of the wave has a more dramatic effect

on the one-dimensional domain.

Dispersal into the Americas

Understanding the timing and the dynamics of the colonization of the Americas by modern

humans during the late Pleistocene is a challenging problem. Recent genomic evidence shows

that all Native Americans diverged from their Siberian ancestor 20 ka (1 ka—“kilo-annum”–

represents 1000 years before present) and no earlier than 23 ka [39]. The time of population

differentiation supports the hypothesis that people could reach southern South America by

14.6 ka (site Monte Verde), before the Clovis sites in North America were established (around

13 ka) [39–41] (see also Table 3). Archeological sites like Schaefer, Hebior, and Page-Ladson

also suggest a human presence in North America by 14.6 ka [42, 43]. Other important archeo-

logical sites with radiocarbon dates are given in Table 3. In the context of the timing of the col-

onization, the opening of ice-free corridors in the Laurentide and Cordilleran ice sheets that

covered North America played a crucial role. Namely, the coastal corridor opened around 16

ka and the interior corridor around 14 ka [39].

In the following, we explore the properties of the IBM model with a suite of simulations of

the colonization of the Americas. The model corresponds to a basic scenario involving as few

parameters as possible. First, we test the match between the simulated arrival times and empir-

ical data on the age of archaeological sites. Further, we check if the stochastic fluctuations con-

tribute significantly to the simulation results for the relevant range of parameters. In other

words, we investigate if and how the resolution of the stochastic IBM simulation changes the

propagation speed and thus the arrival times.

Fig 8. IBM of growth-diffusion: The relation between the normalized speed vnorm and the carrying

capacity in the two-dimensional case. Colors and symbols indicate b0 values shown in the legend. D = 0.2,

θ = 10−1 � b0, and d0 = 0.

https://doi.org/10.1371/journal.pone.0176101.g008
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Simulations are performed on a global spherical grid based on a tessellation of a regular ico-

sahedron. Most of the grid’s nodes have 6 neighbors, i.e., spatial elementary units are hexa-

gons. Exceptions on the entire spherical grid are 12 nodes that have only 5 neighbors. (The

altitude maps are produced using a global relief model [45].)

As previously mentioned, individuals live on the grid’s cells. Furthermore, on cells, environ-

mental variables such as altitude and ice cover are defined. We use paleo-topography data [46]

and update ice cover and see level every 500 years. The movement of individuals is restricted

now to the “habitable” cells: individuals do not move into the sea, to cells whose altitude is

higher than 2500 m, and to cells covered by ice. In this implementation of the model, the

movement probability is a function of both accessible and inaccessible cells, according to the

following equation

Pnew
move ¼ Pmove �

N inaccess

N tot
;

where N tot is the total number of the neighbors and N inaccess is the number of inaccessible

neighbors. This ensures that the local diffusion coefficient, in the direction where movement is

possible, is not affected by the anisotropy of the surrounding environment.

We use four different sets of parameters (see Table 4). The last column of Table 4 shows the

total number of individuals at the end of each simulation.

Table 3. Archaeological dates and simulated arrival times during the late Pleistocene dispersal in the Americas. Dates are given in thousand years

before present (ka). The second column shows archaeological dates and the corresponding references. The subsequent columns show the difference

between the simulated arrival times and the archaeological dates for the used sets of parameters. Here, the earliest archaeological date is used to calculate

the difference in case that a range of dates is presented for a site. Positive values of the difference indicate that the individuals arrive at the site earlier than

shown by the archaeological data. Negative values indicate that the individuals arrive latter.

Site name achaeol. date set 1 set 2 set 3 set 4

Schaefer, Hebior sites (Wisconsin) 14.8–14.2 [42] 0.6 0.7 0.6 0.4

Paisley Cave (Oregon) 14.5–14 [44] 1.1 1.1 1 0.9

Meadowcroft Shelter (Pennsylvania) 14.5–14 [44] -0.2 -0.2 -0.4 -0.5

Buttermilk Creek, Friedkin site (Texas) 15.5–13.2 [44] -0.2 -0.1 -0.3 -0.4

Page-Ladson site (Florida) 14.6 [43] 0.6 0.6 0.4 0.3

Piedra Museo (Argentina) 13.1– 12.9 [42] 0.5 0.4 0 -0.2

Quebrada Santa Julia (Chile) 13.1 [42] 0.6 0.6 0.2 0

Monte Verde (Chile) 14.6–14.2 [44] -0.9 -1 -1.4 -1.6

Fell’s Cave(Chile) 13.1– 12.9 [42] 0.4 0.3 -0.1 -0.3

Mean squared error 3.59 3.72 3.78 4.16

https://doi.org/10.1371/journal.pone.0176101.t003

Table 4. Parameter sets used for the simulations of the late Pleistocene dispersal in the Americas. K is the carrying capacity of every cell. Ntot is the

total number of individuals in the Americas at the end of the corresponding simulation. For all parameter sets, the resulting growth rate is 0.06/yr, the diffusion

coefficient is D * 180 km2/yr, and the deterministic speed is vdet * 6.57km/yr. Δx is the distance between two neighboring nodes, i.e., the spatial resolution.

parameter set τ Δx K ρ θ Pmove Ntot

1 1 yr 60 km 307 0.1 0.03 0.2 3.7 � 106

2 1 yr 30 km 77 0.1 0.03 0.8 3.7 � 106

3 5 yr 60 km 307 0.1 0.15 1 3.7 � 106

4 1 yr 60 km 10 0.003 0.03 0.2 1.1 � 105

https://doi.org/10.1371/journal.pone.0176101.t004
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In the reference simulation (set 1), the spatial resolution is Δx * 60 km, leading to a cell

area of *3700 km2. The temporal resolution is τ = 1yr.

The diffusion coefficient, the growth rate, and the carrying capacity (and the resulting

speed) are chosen to be consistent with the estimated large-scale parameters of hunter-gatherer

groups (see also section) [35–37]. For instance, the growth rate at the half of the carrying

capacity is set to 3% per year, (which we assume is also equal to the turnover, giving an average

individual lifespan of 33 yr when N = K), what corresponds to the growth-rate of a non-

expanding population [35]. The diffusion coefficient is D * 180 km2/yr. The resulting deter-

ministic speed is vdet * 6.57 km/yr. This value is in the middle of the estimated colonization

speeds in the Americas during the late Pleistocene, namely 5-8 km/yr [47]. This propagation

speed in the Americas is very high compared to other regions, e.g., 0.5 km/yr is the estimated

speed of the colonization of Europe by anatomically modern humans [47]. Finally, the carrying

capacity is chosen so that the resulting density is around 0.1 individuals per km2.

We run a second IBM with different spatial resolution: Δx * 30 km (parameter set 2,

Table 4). In a third simulation, we change the time resolution, whereby one simulation step

corresponds to 5 years (parameter set 3). Note, that the large-scale parameters r, θ/τ, D, v, and

ρ are the same for all three IBMs.

Finally, we consider a setting with a low carrying capacity K = 10, leading to a population

density of ρ = 0.003 individuals / km2 (parameter set 4). Compared to sets 1-3, the population

density changes. Other large-scale parameters stay the same.

The dispersal into the Americas starts 18 ka from one occupied grid cell located in Beringia

(latitude: 64˚ N, longitude: 159˚ W). The initial number of individuals in this cell is N0 = K for

each set of parameters (Table 4). Thus, the colonization starts from only one group of individ-

uals and there is no prolonged invasion from Beringia that would replace prior populations.

Model simulations are performed with the QHG code [31]. Due to the discrete-time algo-

rithm, simulations can be parallelized, e.g., the QHG code uses shared-memory parallelization

[31]. By using 32 threads, the reference simulation runs *12 times faster (*45 min), than on

a single thread.

During the simulations, the arrival time is recorded at each cell, i.e., the time at which the

cell is colonized for the first time. Archeological dates and simulated arrival times at selected

sites are given in Table 3. Fig 9 shows maps of overall arrival times at the time when individuals

reach the southern tip of South America (t = 13 ka). Fig 10 predicts how far individuals dis-

perse at t = 13.5 ka, i.e., 2.5 ka after the ice-free corridor opens. (In all our simulations, the cor-

ridor opens at 16 ka.)

The simulation with parameter set 1 predicts that individuals need *3 ka after the opening

of the ice-free corridor to reach Patagonia (Figs 9 and 10, Table 3). In general, the arrival times

at particular sites are in the range of archaeological estimates, or individuals arrive earlier (e.g.

Paisley Cave, see Table 3). An exception is the Monte Verde site at which individuals arrive

*1000 years later than predicted. As discussed in the literature, it is difficult to construct a

FK-inspired model so that the population reaches Monte Verde on time or earlier [47]. This

even holds true when the deterministic propagation speed is very high, e.g., 8 km/yr [47]. To

fulfill the archaeological arrival times at Monte Verde with the IBM, one might need to

increase the diffusion coefficient or to change the assumptions of the movement term, e.g., by

considering coastal migration with Lévy-flight properties [48, 49].

Similar results and timings are obtained when the spatial resolution increases (parameter

set 2).

When the time resolution is decreased, e.g., 1 simulation step corresponds to 5 years, the

propagation speed slows down due to increased stochastic fluctuations (parameter set 3, see

also section). Southern south America is reached *400 years later than in the case of a higher
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time resolution (parameter set 1). Thus, this low time resolution introduces an additional

effect to take into consideration when running an IBM. Even a stronger slowdown of the wave

can be observed when the carrying capacity is reduced to K = 10 (parameter set 4). In this case,

Patagonia is reached *700 years later than in the simulation with parameter set 1. Thus, the

relative amount of stochastic fluctuations plays a significant role in the simulations’ outcome.

Assuming a starting date of 18 ka for the dispersal into the Americas, this corresponds to

*4% of the total time required to colonize these continents.

Discussion and conclusions

We introduced a discrete-time IBM for the diffusion, the logistic growth, and the logistic

growth-diffusion processes. The IBM of movement is a discrete-time synchronous random

walk which yields the diffusion equation in the continuum limit.

Fig 9. Maps of the arrival times. The snapshots are taken at 13 ka (1 ka—“kilo-annum” represents 1000

years before present). Thus, the latest arrival times correspond to 13 ka (shown in magenta). The earliest

arrival times correspond to 16 ka (in light blue). Panels (a), (b), (c), and (d) show simulations with the

parameter sets 1, 2, 3, and 4, respectively. Color codings of the arrival times are given in the legend. The white

area corresponds to the land area without individuals: ice covered territory, mountains, and the territory that is

not yet occupied, e.g., the white area in Patagonia (especially pronounced on panel (d) due to a slower wave).

https://doi.org/10.1371/journal.pone.0176101.g009
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The IBM of growth uses a constant time step where per-capita birth and death probabilities

are linear functions of the local density of individuals. Multiple births and deaths are possible

at each time step. This stochastic model approaches the logistic equation in the continuum

limit.

Analyzing the growth term, we found an analytical approximation of the effective carrying

capacity hNi

hNi � K �
2yð1 � yÞ

2r � r2
ð16Þ

that agrees with simulation results. We verify that the effective carrying capacity is lower than

K (Eq (16)). Furthermore, because the fluctuation term 2θ(1 − θ)/(2r − r2) is independent on

K, an increasing K reduces relative fluctuations and hNi/K! 1 (see also Eq (13)). These fea-

tures are well-known for stochastic population-based models of growth [21, 50].

To summarize new results, we found that when the time step decreases, the dynamics of the

noise term depends on the ratio θ/b0 owing to the binomial nature of the model. Furthermore,

when the time step decreases, our discrete-time IBM approaches the Poisson distribution char-

acteristic of the continuous-time birth-death process.

In summary, when K> 50, the deviation of the effective carrying capacity hNi from K is

less than 2%. When K< 50 the deviation is more pronounced; e.g., when K = 10, hNi differs

from K by 9%.

By combining the growth and the movement term, we get a discrete-time IBM of the

growth-diffusion process that is the FK equation in the continuum limit. We reproduce the

well-known phenomenon that the propagation speed of the traveling wave is lower than the

minimal deterministic speed vdet and depends on the number of individuals in the system [22–

24, 26, 28, 38]. In particular, the normalized speed vnorm = v/vdet depends on the carrying capac-

ity K, the growth rate r, and the diffusion coefficient D. Simulation results match qualitative

trends found for stochastic birth-death models, e.g., hNi< K, and stochastic growth-diffusion

Fig 10. Snapshots of the simulations at t = 13.5 ka (2.5 ka after the ice-free corridor opens). The left

panel shows the simulation with the parameter set 1, the right panel shows the simulation with the parameter

set 4. The number of individuals N per cell is shown. Color coding for N is given in the legend. Furthermore, the

sea is colored dark blue and the unoccupied territory is colored white. Panel (b) indicates that the wave does

not have enough time to reach Patagonia, i.e., a large territory in South America remains unoccupied (white

coloring of the territory).

https://doi.org/10.1371/journal.pone.0176101.g010
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models, e.g., the dependency of v on K. However, the discrete-time algorithm indicates quanti-

tatively different properties compared to continuous-time stochastic models (Figs 7 and 8).

Due to the discrete-time algorithm, simulations can be parallelized, which allows the con-

sideration of the large-scale dynamics and high numbers of individuals. We apply the IBM to

study the late Pleistocene expansion of the modern humans in the Americas, using millions of

simulated individuals (Table 4). Even though only constant parameters D, r, and K are used,

the IBM can reproduce most of the estimated arrival times. However, as for the idealised 1 and

2 dimensional cases, stochastic fluctuations affect the simulations’ outcome. For example, we

indicate that when the time resolution decreases, i.e., stochastic fluctuations increase for the

given parameters, the propagation of the individuals slows down and Patagonia is reached

*400 years later than in the case of a higher time resolution. When an extremely low carrying

capacity, K = 10, is used, the fluctuations increase as well. In this case, Patagonia is reached

*700 years later than in the reference simulation.

The question is now whether such effects of stochasticity are a desirable property of a

model of growth and dispersal, and to what extent. The discrete-time and the continuous-time

representations are two regimes of population models: ecological data from systems under

consideration are needed to evaluate the appropriate regime and to compare fluctuations in a

real population with the predicted noise, depending on the spatial and temporal scales of the

biological system. Moreover, when investigating concrete ecological questions, for example

the dispersal of a certain species in an unoccupied territory [31], the effect of discreteness is an

important feature. An important refinement of the IBM would be that individuals do not dis-

perse homogeneously in space but live in groups of high density, e.g, herds, flocks, families,

etc [51].

All parameters of our model can be made space and time dependent. Thus, this IBM can

include an inhomogeneous environment (K 6¼ const) and anisotropic diffusion, as well as evo-

lutionary processes.

It is also possible to incorporate genetic information in the IBM and evaluate the evolution

of the genetic structure of the population. Since our model follows individuals explicitly on

large spatio-temporal scale, it is particularly suited to this type of genetic study. This approach

can complement the more standard stepping-stone framework. Stepping-stone models are

widely used for simulations to understand genetic consequences of range expansions; they are

also based on reaction-diffusion systems [52] but do not follow individuals, each update step

represents a non-overlapping generation, and movement and logistic growth are typically not

stochastic, e.g., there are no oscillations around carrying capacity [44, 52–54].

The present IBM can also be used to evaluate emergent large-scale properties of a more

elaborate agent-based framework, e.g., an IBM that considers survival and reproduction prob-

abilities depending on the age and sex of individuals, thus bridging the gap between large-scale

classical model and biologically accurate bottom-up models.

With synchronous updating of independent individuals, the model performs well on High

Performance Computers (HPCs), contrary to implicit schemes. Thus, our model allows scaling

to high spatial and temporal resolution, large domains, long simulation times, and large popu-

lations as we indicated in the application to the American dispersal of Homo sapiens. The

model can be used for the simulation of large populations expansions on evolutionary time-

scales, and would allow for the inclusion of genetic information and the extension to more

realistic biological models. This, in turn, would lead to significant progress in the understand-

ing of the dynamics and genetic consequences of individual-based stochastic population

dynamics.
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