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Abstract
Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and
liposomal doxorubicin (Doxil) were evaluated for their ability to boost the antitumor response of different cancer
immunotherapies including checkpoint blockers (anti–PD-L1, PD-1, and CTLA-4 mAbs) and TNF receptor
agonists (OX40 and GITR ligand fusion proteins) in syngeneic mouse models. In a preventative CT26 mouse
tumor model, both doxorubicin and Doxil synergized with anti–PD-1 and CTLA-4 mAbs. Doxil was active when
CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that
Doxil activity is increased in the presence of a functional immune system. Using established tumors and
maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models,
combination groups produced strong synergistic antitumor effects, a larger percentage of complete
responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased
the percentage of tumor-infiltrating regulatory T cells and, in combination with anti–PD-L1, increased the
percentage of tumor-infiltrating CD8+ T cells. In the tumor, Doxil administration increased CD80 expression on
mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells,
suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of
activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and
support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates
and antitumor activity.
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Introduction
Immunotherapy is a promising new area of cancer therapeutics. Several
immunotherapies are being evaluated preclinically as well as in clinical
trials and have demonstrated promising activity [1–4]. One challenge
that remains is that not all patients respond despite the durable effect
these therapies can have. This is likely due to an immunosuppressive
tumor microenvironment and/or poor immunogenicity of patient’s
tumors. To increase the response rate of tumors to immunotherapy,
rational combination approaches of different cancer immunotherapies
have been investigated, including combining mediators of checkpoint
blockade (i.e., anti–PD-1 and PD-L1) and TNFR-family agonists (i.e.,
OX40) with small-molecule drugs [5–11]. Although significant
progress has been achieved in the evaluation of combination therapies
preclinically, there remains a great need for rational testing of
immunotherapies in combination settings, in particular with established
cancer treatments, and translation of novel combinations with
improved activity into the clinic.

Doxorubicin is a widely used chemotherapeutic drug for patients
with sarcoma, lung, breast, and other cancers. Previously, doxorubicin
has been well characterized as a DNA intercalator and an inhibitor of
topoisomerase II [12]. Other mechanisms of action of doxorubicin
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that are reported are DNA cross-linking, interference with DNA strand
separation, free-radical formation, helicase activity, and direct membrane
effects [13]. Doxorubicin thus has been viewed as a cytotoxic agent with
direct cell-killing effects on tumor cells. More recently, doxorubicin has
been established as an inducer of immunogenic cell death and has been
shown to increase IFN gamma production and induce dendritic and
T-cell tumor infiltration in mouse models [14–20].

Based on these immunomodulatory effects, we hypothesized that
doxorubicin, or liposomal doxorubicin (Doxil), could potentiate the
antitumor activity of immunotherapeutic agents in syngeneic mouse
models. Doxil is an approved drug for paclitaxel- and platinum-
resistant ovarian carcinoma and Kaposi’s sarcoma. In preclinical
models, Doxil has been shown to have more antitumor activity;
therefore, comparison of this drug to free doxorubicin was explored in
this study [21,22]. Here, we demonstrate that both doxorubicin and
Doxil synergize with several T-cell–targeted immunotherapies in two
syngeneic mouse models. Importantly, combination activity was
durable, led to high rates of complete response (CR), and generated
immunological memory in mouse models. Furthermore, the results
reveal for the first time that Doxil has effects on dendritic and
immature myeloid cells in tumors, as well as on CD8+ T cells and
regulatory T cells (Tregs).

Materials and Methods

Antibodies, Reagents, and Cell Lines
CT26 cells were obtained from ATCC (Manassas, VA) and were

grown with RPMI 1640 medium supplemented with 10% fetal
bovine serum. MCA205 cells were obtained from Agonox (Portland,
OR) and grown in the same growth medium. Following receipt of cell
lines, both cell lines were reauthenticated using STR-based DNA
profiling and multiplex polymerase chain reaction (IDEXX
Bioresearch, Columbia, MO). Antibodies obtained from BioXCell
(West Lebanon, NH) included the following: anti–PD-1
(RMP1-14), anti–PD-L1 (10 F.9G2), anti–CTLA-4 (9D9), and
mouse IgG2b control (MPC-11). Mouse OX40 ligand fusion protein
(OX40L FP), mouse GITR ligand fusion protein (GITRL FP), and
rat IgG2a isotype control antibodies were produced by MedImmune.
Doxil, gemcitabine, and oxaliplatin were purchased from Bluedoor
Pharma (Rockville, MD), and doxorubicin was obtained from Henry
Schein Inc. (Melville, NY).

Animal Studies
Cells were grown in monolayer culture, harvested by trypsiniza-

tion, and implanted subcutaneously into the right flank of 6- to
8-week-old female Balb/C (CT26) or C57BL/6 (MCA205), or 4- to
6-week-old athymic female nude mice (Harlan, Indianapolis, IN).
For the CT26 tumor model, 5 × 105 cells were implanted in the
right flank using a 26-gauge needle. For the MCA205 tumor model,
2.5 × 105 cells were implanted. All antibodies, OX40L FP, GITRL
FP, gemcitabine, and oxaliplatin were dosed via intraperitoneal
injection. Doxil and doxorubicin were dosed via intravenous
injection. In some studies, isotype controls were administered to
mice as a cocktail of rat IgG2a and mouse IgG2b. At the beginning
of treatment, mice were randomized either by tumor volume
(established-tumor studies) or by body weight (preventative
studies). The number of animals per group ranged from 10 to 12
animals per group as determined based on sample size calculations
using nQuery software. Both tumor and body weight measurements
were collected twice weekly, and tumor volume was calculated using
the equation (L × W2)/2, where L and W refer to the length and
width dimensions, respectively. Error bars were calculated as the
standard error of the mean. The general health of mice was
monitored daily, and all experiments were conducted in accordance
with the Association for Assessment and Accreditation of Labora-
tory Animal Care and MedImmune Institutional Animal Care and
Use Committee guidelines for humane treatment and care of
laboratory animals. Kaplan-Meier statistical analysis was performed
using the log-rank test using GraphPad Prism. The log-rank
(Mantel-Cox) test was used to compare survival curves (Prism 6.03).
The Bonferroni method was used to adjust the 0.05 alpha level for
multiple comparisons. Reported P values are two-sided P values.

Pharmacodynamic Study
MCA205 cells (2.5 × 105) were implanted in the right flank of 6- to

8-week-old C57BL/6 female mice. When tumors reached an average of
~250 mm3, mice were randomized in groups of three and were dosed
with Doxil (5 mg/kg), anti–PD-L1 (20 mg/kg), or a combination of
Doxil with anti–PD-L1 on day 0. A second dose of anti–PD-L1was given
on day 3 and Doxil again on day 7. On day 8, all mice were euthanized
and tissues were collected from mice. Red blood cells were lysed with
ACK solution (Life Tech, Carlsbad, CA). Tumors were cut into 2-mm3

pieces and digested for 20 minutes at 37°Cwith 200U/ml ofCollagenase
type 3 (Worthington, Lakewood, NJ) and 0.25 mg/ml of DNase
(Sigma-Aldrich, St. Louis,MO).One to twomillion cells were loaded per
well in a 96-well plate and stained with Live/Dead Blue (Life Tech,
Carlsbad, CA) and antibodies to CD11b (BD Clone M1/70), CD11c
(Biolegend Clone n418), CD80 (Biolegend Clone 16-10A1), Ly6G
(Biolegend Clone 1A8), Ly6C (Biolegend HK1.4), CD45 (Ebioscience
Clone 30-F11), MHC-II (Biolegend Clone M5/114.15.2), CD4
(BiolegendClone RM4-5), CD8 (BDCloneRPA-T8), T-bet (Biolegend
Clone 4B10), and FOXP3 (Ebioscience Clone FJK-16S) in FACS buffer
(PBS +0.5% FBS and 2 mm of EDTA). For FOXP3 detection, a
FOXP3 transcription kit was used (Ebioscience, San Diego, CA). Cells
were stained at 4°C for 20 minutes, washed, and fixed with 4%
paraformaldehyde. To assess expression of PD-L1, CT26, andMCA205,
cells were harvested from flasks using StemPro Accutase (Life
Technologies, Carlsbad, CA). Cells were stained with anti–PD-L1
APC antibody (10F.9G2, Biolegend) or rat isotype IgG2b APC
(RTK4530, Biolegend) for 20 minutes at 4°C. Sample data were
acquired on a BD Fortessa (BD, San Jose, CA), and data were analyzed
using Flowjo (Treestar, Ashland, OR).

Statistical Analysis for Synergy
Statistical analysis for synergy was performed using a Bliss

independence model [23]. The model is described as follows. If the
rate of total tumor regression due to drug A alone is ra and the rate due
to drug B alone is rb, then the expected rate of total tumor regression
due to drug A and drug B in combination is rBliss = ra + rb − rarb
assuming that the two drugs are Bliss independent. The difference
between the observed total tumor regression rate rab and the expected
rate is defined as the synergy index:

I ¼ rab−rBliss

Then the variance of the synergy index can be written as

var Ið Þ ¼ var rabð Þ þ var rBlissð Þ
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Further,

var rBlissð Þ ¼ var rað Þ þ var rbð Þ þ var rarbð Þ−2cov ra þ rb; rarbð Þ
var rarbð Þ ¼ var rað Þvar rbð Þ þ ra

2var rbð Þ þ rb
2var rað Þ

cov ra þ rb; rarbð Þ ¼ ravar rbð Þ þ rbvar rað Þ
var rabð Þ ¼ rab 1−rabð Þ

nab

var rað Þ ¼ ra 1−rað Þ
na

var rbð Þ ¼ rb 1−rbð Þ
nb

where nab, na, and nb are the respective sample sizes of the
combination experiment and two monotherapy experiments. The
two drugs are said to be synergistic if

I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Ið Þp NZ0:95

where Z0.95 is the 95% percentile of standard normal distribution.
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Figure 1. Synergy of doxorubicin or Doxil in combination with α-PD-1
implanted into Balb/Cmice. Four days after cell implantation,mice were
17; doxorubicin on days 4, 8, and 12; and anti–PD-1 or anti–CTLA-4 on
(B) isotype controls (rat IgG2a + mouse IgG2b; 5/0.5 mg/kg), (C) doxoru
(0.5 mg/kg), (G) doxorubicin + α-PD-1 (4/5 mg/kg), (H) Doxil + α-P
(J) Doxil + α-CTLA-4 (1/0.5 mg/kg). *P b .005 (Bliss independence test
Results
To test the hypothesis that doxorubicin or Doxil may potentiate
antitumor effects of immunotherapeutic agents, CT26 tumor-bearing
Balb/C mice were treated with varying doses of these drugs alone and
in combination with either anti–PD-1 or anti–CTLA-4 antibodies. In
this study, drugs were administered after tumor cell implant but
before formation of palpable tumors. Given that this was a
preventative study, the doses of anti–PD-1 and anti–CTLA-4
antibodies administered were suboptimal as higher doses of these
antibodies in this setting produced strong antitumor responses (data
not shown). Figure 1A shows the growth of CT26 tumors in
untreated mice. Mice treated with a mixture of isotype controls (rat
IgG2a + mouse IgG2b) had no effect on tumor growth (Figure 1B).
Compared to doxorubicin, Doxil had more potent antitumor activity
at a 4-mg/kg dose (Table 1). Indeed, all mice treated with Doxil at its
maximum tolerated dose (5 mg/kg) had a CR. A reduced dosage of
Doxil at 1 mg/kg had nearly equivalent antitumor activity as
doxorubicin at 4 mg/kg (Figure 1, C and D). Although anti–PD-1
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CR = 2

Doxil (1 mg/kg)

CR = 2

α-PD-1 (5 mg/kg)

Doxorubicin (4 mg/kg) +

CR = 8 *

Doxil (1 mg/kg) +

CR = 7 *

C D

G H α-PD-1 (5 mg/kg)

and α-CTLA-4 antibodies in the CT26 tumor model. CT26 cells were
randomized by bodyweight and dosedwith Doxil on days 4, 11, and
days 10, 14, 17, and 21. The groups were as follows: (A) untreated,
bicin (4 mg/kg), (D) Doxil (1 mg/kg), (E)α-PD-1 (5 mg/kg), (F)α-CTLA-4
D-1 (1/5 mg/kg), (I) doxorubicin + α-CTLA-4 (4/0.5 mg/kg), and
).



Table 1.Doxorubicin or Doxil in Combination with PD-1 or CTLA-4 Antibodies Produce a Large
Percentage of CRs

Treatment No. of CRs

Untreated 0/10
Isotype controls (5/0.5 mg/kg) 0/10
Anti–PD-1 (5 mg/kg) 0/10
Anti–CTLA-4 (0.5 mg/kg) 2/10
Doxorubicin (4 mg/kg) 2/10
Doxorubicin (1 mg/kg) 0/10
Doxil (5 mg/kg) 10/10
Doxil (4 mg/kg) 8/10
Doxil (1 mg/kg) 2/10
Anti–PD-1/doxorubicin (5/4 mg/kg) 8/10
Anti–PD-1/doxorubicin (5/1 mg/kg) 5/10
Anti–PD-1/Doxil (5/4 mg/kg) 9/10
Anti–PD-1/Doxil (5/1 mg/kg) 7/10
Anti–CTLA-4/doxorubicin (0.5/4 mg/kg) 9/10
Anti–CTLA-4/doxorubicin (0.5/1 mg/kg) 2/10
Anti–CTLA-4/Doxil (0.5/4 mg/kg) 10/10
Anti–CTLA-4/Doxil (0.5/1 mg/kg) 7/10

The number of CRs from all of the groups from the experiment in Figure 1 is shown. Doxil was
more active than doxorubicin, and doxorubicin or Doxil combined with PD-1 or CTLA-4
antibodies produced a strong antitumor response.
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and anti–CTLA-4 treatment had low to moderate antitumor activity
as single agents (Figure 1, E and F), both antibodies exhibited
synergistic antitumor effects when combined with doxorubicin or
Doxil (Figure 1, G–J). When anti–PD-1 was combined with
doxorubicin (4 mg/kg), the number of complete responders increased
from two to eight animals (Figure 1G). Similarly, the combination of
doxorubicin with anti–CTLA-4 increased the number of complete
responders from two to nine animals (Figure 1I). Similar results were
obtained when anti–PD-1 and anti–CTLA-4 were combined with
Doxil at 1 mg/kg (Figure 1, H and J). The number of complete
responders per group for the entire study is shown in Table 1. These
data demonstrate that both doxorubicin and Doxil are synergistic
with anti–PD-1 and CTLA antibodies and suggest that this feature is
inherent in doxorubicin itself, as utilization of liposomal doxorubicin
had similar synergistic activity as the free drug.

To determine if mice which obtained a CR with Doxil treatment
alone or in combination with anti–PD-1 or anti–CTLA-4 displayed
immunological memory, these animals were rechallenged with live
CT26 cells 70 days after the initial treatment. Whereas CT26 cells
grew in all 10 out of 10 naive, untreated mice (Figure 2A), mice that
achieved CR with Doxil showed widespread tumor rejection with 9
out of 10 mice rejecting tumor (Figure 2B). Eight out of 10 mice
treated with Doxil + anti–CTLA-4 and 9 out of 9 mice with
Doxil + anti–PD-1 also rejected tumors (Figure 2, C and D). These
results demonstrate that treatment with Doxil as a single agent as well
as with Doxil in combination with checkpoint inhibitors resulted in
tumor-specific immunological memory.

Although both Doxil and doxorubicin were active in a
preventative CT26 tumor model, we also were interested in whether
these drugs were effective in inhibiting established CT26 tumors and
whether the activity of these drugs was different in immunocompe-
tent compared with immunocompromised mice. T-cell–deficient
athymic nude mice and immunocompetent Balb/C mice both
bearing CT26 tumors were treated with these drugs at their
maximum tolerated doses when tumors reached approximately
200 mm3. In this experiment, doxorubicin did not elicit antitumor
activity in either immunocompromised or immunocompetent mice
(Figure 3, A and B). In contrast, Doxil treatment showed robust
antitumor activity in immunocompetent mice bearing established
CT26 tumors (Figure 3B) but much less activity in immunodeficient
mice (Figure 3A), demonstrating that Doxil activity is dependent on a
functional immune system. To assess whether other chemotherapeu-
tic agents could produce similar effects, immunodeficient and
immunocompetent mice with CT26 tumors were administered
either oxaliplatin, a DNA cross-linking agent, or gemcitabine, a
nucleoside analog. Oxaliplatin demonstrated increased antitumor
activity in immunocompetent mice (Supplemental Figure 1B)
compared with immunodeficient mice (Supplemental Figure 1A),
consistent with previous reports [24]. In contrast, gemcitabine had
significant antitumor activity in both immunodeficient as well as
immunocompetent mice (Figure 3, C and D). These results are
consistent with prior studies that suggested that certain, but not all,
chemotherapies can effectively induce immunological cell death [18].

Although the combination of Doxil with anti–PD-1 and anti–
CTLA-4 antibodies showed strong antitumor effects in the CT26
model (Figure 1), the limitations of this experiment were that it was a
preventative study and that suboptimal doses of anti–PD-1 and anti–
CTLA-4 antibodies were used. As free doxorubicin was inactive
against established CT26 tumors, Doxil was chosen to investigate
combinations with immunotherapy in this setting. CT26 tumor-
bearing mice were treated with Doxil alone or in combination with
anti–CTLA-4, anti–PD-1, or anti–PD-L1, as well as a mouse OX40
ligand fusion protein (OX40L FP) or a mouse GITR ligand fusion
protein (GITRL FP) all at maximally efficacious doses once tumors
were around 200 to 300 mm3 (Figure 4). Prior studies demonstrated
that higher doses of these mouse-reactive immunotherapeutics did not
result in more antitumor activity at these established tumor volumes
(data not shown). Doxil treatment resulted in a temporary control of
tumor growth, followed by rapid regrowth of tumors, and only one
CR (Figure 4B). Treatment with OX40L FP, anti–PD-1, anti–
PD-L1, and anti–CTLA-4 antibodies demonstrated low to moderate
activity (Figure 4, C–F), with a few complete responders in each
group. Treatment of mice with GITRL FP in these mice was
moderately potent, with 6/12 mice achieving CR and 2/12 achieving
stable disease (Figure 4G). The combination of Doxil with OX40L FP
was additive and increased the time to tumor progression compared
with single-agent therapy (Figure 4H). Strikingly, Doxil in combina-
tion with anti–PD-1, anti–PD-L1, and anti–CTLA-4 produced a
synergistic increase in the number of complete responders, with 11/
12, 9/12, and 8/12, respectively (Figure 4, I–K). These results were
consistent with the synergy observed with the combination of Doxil
with checkpoint inhibitors in the preventative study (Figure 1).
Equally compelling was the observation that the combination of Doxil
with a mouse GITRL fusion protein was also synergistic, with all 12/
12 mice achieving CR (Figure 4L). These experiments demonstrated
that Doxil in combination with checkpoint blockade antibodies
produced dramatic increases in antitumor responses, as well as with a
GITRL fusion protein, even in established-tumor settings at
maximally efficacious doses. This was reflected also in Kaplan-Meier
survival plots which demonstrated that all mice treated with the
combination of Doxil with anti–PD-1, PD-L1, or CTLA-4 antibodies
survived longer than either single agent alone. In addition, mice
treated with Doxil and GITRL FP survived longer than mice treated
with Doxil alone (Supplemental Figure 2).

As the CT26 tumor model is highly sensitive to immunother-
apies, we determined whether Doxil could enhance the activity of
immunotherapies in a potentially less sensitive model, MCA205. This
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was based on prior studies which showed poor response in this model to
anti–PD-L1 and anti–PD-1 antibodies, although MCA205 expressed
marginally higher levels of PD-L1 compared with CT26 (data not
shown and Supplemental Figure 3). Doxil, anti–PD-1, anti–PD-L1,
and anti–CTLA-4 antibodies as well asOX40L FP andGITRLFPwere
dosed at maximally efficacious doses in established MCA205 tumors
starting at a tumor volume between 100 and 150 mm3 (Figure 5). In
this model, Doxil temporarily controlled tumor growth; however, the
majority of the tumors regrew (Figure 5B).Onemouse did achieve a CR
in the Doxil group. In contrast to the CT26 model, anti–PD-1, anti–
PD-L1, OX40L FP, and GITRL FP were minimally active in this
model, with some delay in tumor progression but only one complete
responder in the OX40L FP and GITRL FP groups (Figure 5, C–E
and G). Treatment with an anti–CTLA-4 antibody produced modest
activity with 8/12 mice achieving CR (Figure 5F). For the combination
treatments, combining Doxil with OX40L FP or GITRL FP agonists
did not delay tumor growth significantlymore thanDoxil alone and also
did not provide a significant increase in complete responders (Figure 5,
H and L). In contrast, Doxil in combination with antibodies to
checkpoint inhibitors PD-1, PD-L1, and CTLA-4 produced striking
responses with 9/12, 12/12, and 12/12 mice achieving CR, respectively
(Figure 5, I–K). These results demonstrate that, in this model,
combining checkpoint inhibition with Doxil produced synergistic
effects. Supplementary Figure 4 demonstrates increased survival inmice
treated with Doxil + anti–PD-1, anti–PD-L1, and anti–CTLA-4
antibodies compared with Doxil treatment in this study.

Based on these results, a pharmacodynamic study was
performed to elucidate any effects of Doxil on immune cell
populations in vivo. Because the synergistic effects of Doxil were
greatest when combined with checkpoint inhibition and were similar
between anti–PD-1, anti–PD-L1, and anti–CTLA-4, we chose to
combine Doxil with one of these agents in the MCA205 model.
MCA205 tumor-bearing mice were treated with Doxil, anti–PD-L1,
or the combination, and tumors and blood were harvested at the end
of treatment. In these mice, Doxil increased the percent of CD8+

T cells in the blood, and the combination ofDoxil and PD-L1 produced
a significant increase in the percent of CD8+ T cells in the tumor
(Figure 6, A and B). Doxil also significantly decreased the amount of
tumor-infiltrating Tregs in the tumor, which seemed to be further
augmented by the combination of Doxil and anti–PD-L1 (Figure 6C).
To examine the cause of the T-cell changes, we investigated the
phenotype of themyeloid compartment in blood and tumor. In both the
blood and tumor, Doxil and Doxil + anti–PD-L1, but not anti–PD-L1
alone, induced the expression of the costimulatory molecule CD80 on
CD45+CD11c+MHCIIhi cells, which represent mature dendritic cells
(Figure 6, D and E). The level of CD80 expression tended to be higher
in the combination group compared with Doxil alone. At the same time,
Doxil treatment also increased the percent of CD45+CD11c+MHCIIhi

cells in the blood, which was further significantly increased when
combined with anti–PD-L1 (Figure 6F). This demonstrates that Doxil
can not only increase the level of CD80 onmature dendritic cells but also
induce expansion of these cells. Interestingly, the effect of Doxil-induced
upregulation of CD80 was also observed on CD45+CD11b+Ly6c+ and
CD45+CD11b+Ly6G+ myeloid cells within the tumor (Figure 6, G
and H). The flow cytometric gating paths for the T cells and myeloid
cells are shown in Supplemental Figures 5 and 6, respectively. In
summary, these results demonstrated that, in vivo, Doxil decreases tumor
Tregs, induces CD8+ T-cell expansion, and upregulates CD80
expression in mature DCs as well as myeloid cells in tumors. These
findings are consistent with and may provide an explanation for the
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profound antitumor effects that Doxil had in combination with anti–
PD-L1 and potentially the other mediators of checkpoint blockade
observed in this study as well.

Discussion
In the present study, we demonstrate that the combination of
doxorubicin or Doxil with cancer immunotherapies induces a
potent increase in antitumor efficacy in preclinical models. In a
CT26 preventative mouse tumor model, a synergistic antitumor
effect was observed when doxorubicin or Doxil was combined with
anti–PD-1 or anti–CTLA-4 antibodies. In addition to the CT26
preventative model, synergy of cancer immunotherapies with Doxil
was also observed in a CT26 established-tumor model in
combination with anti–PD-1, PD-L1, and CTLA-4, as well as
with a GITRL ligand fusion protein. Strong synergy was also
observed with Doxil and checkpoint inhibition in the MCA205
model. Although additional tumor models should be examined,
these data suggest that Doxil may act as a broad booster of
antitumor activity when combined with immunotherapy.

The immunomodulatory effects of doxorubicin have been well
described in vitro and in mouse models; however, these effects had
not been reported for Doxil [14,15,17–19,25–27]. Based on these
findings, Doxil was compared with doxorubicin for its ability to
promote immunomodulatory effects in established CT26 tumors. It
was found that Doxil, but not doxorubicin, was able to slow CT26
tumor growth in immunocompetent mice but not in athymic nude
mice, suggesting a role for adaptive immunity in the activity of Doxil.
This finding is consistent with a recent report that described a role for
T cells in the activity of doxorubicin in syngeneic models, and that we
observed a lack of activity with Doxil in T-cell–deficient animals
suggests that T cells are likely important for Doxil activity in vivo as
well [14]. Mice that achieved CR with Doxil treatment in our study
rejected tumors upon rechallenge, demonstrating that Doxil induces a
memory T-cell response. It should be noted that the general feature of
chemotherapy having increased in vivo antitumor activity in
immunocompetent mice is not a property of all drugs. Indeed,
gemcitabine had equivalent antitumor activity in both immunocom-
petent and immunodeficient mice. This finding is in apparent
contrast to a prior report that demonstrated less activity of
gemcitabine in immunodeficient compared with immunocompetent
mice, although not using the CT26 model as performed in our study
[28]. This suggests that there must be differences between tumor
models and their sensitivity to gemcitabine in mice that are T-cell
deficient. This also suggests that, for some models, both direct
cytotoxicity and immunomodulatory effects may be contributing to
antitumor activity.
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Figure 4. Synergistic antitumor responses of Doxil in combination with multiple immunotherapies in an established CT26 tumor model.
Balb/C mice bearing established (~200-300 mm3) CT26 tumors were randomized by tumor volume and treated with maximally
efficacious doses of Doxil (5 mg/kg, days 11 and 19), OX40L FP (2.5 mg/kg; days 14 and 19), α-PD-1 (20 mg/kg; days 11, 14, 19, and 22),
α-PD-L1, (30 mg/kg; days 11, 14, 19, and 22), α-CTLA-4 (20 mg/kg; days 14, 19, 22, and 26), and GITRL FP (5 mg/kg; days 14, 19, 22, 26,
29, and 32). The groups were as follows: (A) untreated, (B) Doxil, (C) OX40FP, (D) α-PD-1, (E) α-PD-L1, (F) α-CTLA-4, (G) GITRL FP, (H)
Doxil + OX40L FP, (I) Doxil + α-PD-1, (J) Doxil + α-PD-L1, (K) Doxil + α-CTLA-4, and (L) Doxil + GITRL FP. The CR number indicates the
number of mice that achieved CR out of 12. #P = .056; *P b .008, Bliss independence test.
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The finding that systemic administration of Doxil to tumor-
bearing mice can produce immunomodulatory effects is significant.
Previous studies have shown this effect with local administration of
doxorubicin only [18,27,29]. Our data suggest that there is no
inherent difference in the ability of Doxil and doxorubicin to
synergize with immunotherapy; however, the data do suggest that, at
least in preclinical models, there may be a concentration threshold of
doxorubicin within the tumor that is required to induce these effects.
In contrast to Doxil, doxorubicin was ineffective in slowing CT26
tumor growth in an established-tumor setting in immunocompetent
animals. This suggests that this concentration threshold is surpassed
by Doxil but not by free doxorubicin. This is likely due to fact that, as
a nanoparticle, Doxil delivers much higher concentrations of
doxorubicin to tumors compared with free doxorubicin due to its
extended circulation time [30]. Thus, although Doxil may be more
active preclinically than doxorubicin, this is not to suggest that
doxorubicin may not be able to exert these effects clinically.
In both CT26 and MCA205 syngeneic models, the combination
of Doxil with anti–PD-1, PD-L1, or anti–CTLA-4 antibodies
generally produced the strongest antitumor response, although Doxil
combined with a novel mouse GITR ligand fusion protein led to CRs
in 100% of the mice in the CT26 model. The CT26 model was
generally more sensitive to these immunotherapies compared with
MCA205, although interestingly this cell line had less expression of
PD-L1 (Supplemental Figure 3). This being stated, it is difficult to
determine whether PD-L1 expression may predict sensitivity to a
combination regimen that includes Doxil, as this study only
examined two syngeneic models. One potential explanation for the
increased activity of Doxil in combination with inhibitors of
checkpoint blockade, for example with anti–PD-L1, may be due to
upregulation of the target itself following doxorubicin treatment.
Sistigu et al. have recently shown that treatment of MCA205 tumors
with doxorubicin increased PD-L1 transcript levels [25]. A
Doxil-induced expression of PD-L1 may explain the higher sensitivity
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Figure 5. Synergistic antitumor responses of Doxil in combination with PD-1, PD-L1, and CTLA-4 antibodies in the MCA205 syngeneic
model. C57BL/6 mice bearing established (~100-150 mm3) MCA205 tumors were randomized by tumor volume and treated with
maximally efficacious doses of Doxil (5 mg/kg; days 10, 17, and 24), OX40L FP (20 mg/kg; days 10 and 14), α-PD-1 (10 mg/kg; days 10,
14, 17, and 21), α-PD-L1 (20 mg/kg; days 10, 14, 17, and 21), α-CTLA-4 (10 mg/kg; days 10, 14, 17, and 21), and GITRL FP (5 mg/kg; days
10, 14, 17, 21, 24, and 28). The groups were as follows: (A) untreated, (B) Doxil, (C) OX40L FP, (D) α-PD-1, (E) α-PD-L1, (F) α-CTLA-4, (G)
GITRL FP, (H) Doxil + OX40L FP, (I) Doxil + α-PD-1, (J) Doxil + α-PD-L1, (K) Doxil + α-CTLA-4, and (L) Doxil + GITRL FP. The CR number
indicates the number of mice that achieved CR out of 12. *P b .008, Bliss independence test.
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of tumors to this combination and perhaps less activity in
combination with OX40L FP. The combination of Doxil with either
anti–PD-1 or anti–PD-L1 greatly increased complete responder rates
in both models, further emphasizing the importance of the PD-1/
PD-L1 axis in the response to Doxil. It remains to be determined
whether the combination of Doxil with anti–PD-1 and anti–PD-L1 is
also potent in other syngeneic models, and this should be explored.

Previous studies have highlighted the importance of dose
scheduling to achieve maximal antitumor effects in preclinical and
clinical studies of immunotherapy combinations with chemotherapy
[31,32]. In our studies, two different dose schedules were
investigated. In separate studies, Doxil and doxorubicin were dosed
both before (7 days) and concurrent with immunotherapy, with no
apparent differences in antitumor response when combined with
immunotherapies. This suggests that the cell death induced by
doxorubicin generates an immunogenic effect lasting at least a week in
mice, possibly via the release of tumor antigens and thus enhancing
the effects of antigen-presenting cells and T-cell priming. However, it
remains to be determined whether the duration between doxorubicin
administration and immunotherapy treatment could be extended
even longer.

Investigations into the mechanism as to how Doxil was functioning
in vivo demonstrated a key role for Doxil in the induction of CD80
expression on dendritic cells. Doxil also increased the percent of
CD45+CD11c+MHCIIhi dendritic cells in the blood. In addition,
upregulation of CD80 tended to be higher when Doxil was combined
with anti–PD-L1. These data provide evidence that Doxil activates
dendritic cells and results in increased antigen presentation.
Interestingly, we also found that Doxil increased CD80 expression
on granulocytic and monocytic myeloid cells. This finding is in
apparent contrast to a report that showed that CD80 expression on
granulocytic myeloid-derived suppressor cells had immunosuppressive
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Figure 6. Immunomodulatory functions of Doxil in vivo. C57BL/6 mice bearing MCA205 tumors were dosed with α-PD-L1, Doxil, or the
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which was further augmented by the addition of α-PD-L1. (G) Expression of CD80 in tumor-isolated CD45+CD11b+Ly6C+ cells as well as
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functions, which were dependent on the presence of Tregs [33]. One
potential explanation for this is that, in our study, Doxil alone
significantly reduced the percentage of Tregs in the tumor, which was
further decreased when combined with anti–PD-L1. Therefore,
depletion of Tregs may allow relief of inhibitory functions of CD80 on
these cells and other myeloid cell populations. It is possible that these
cells possess more of an antigen-presenting phenotype due to the
upregulation of CD80 and the correlation of this with antitumor
activity. In a finding that is consistent with the observed increased
CD80 expression on dendritic cells, Doxil was shown to increase the
percent of CD8+ cells in the blood and, in combination with anti–
PD-L1, to increase the percent of CD8+ cells in the tumor. In
summary, these results likely explain the striking antitumor activity of
Doxil in combination with anti–PD-L1 and likely with the other
mediators of checkpoint blockade.
The combination of doxorubicin with immunotherapy has been
conducted previously, notably in combination with IL-2 or IL-18 in
preclinical animal models as well as in human clinical trials [34–36].
Increases in survival were observed in the preclinical studies which
offer promise for clinical successes; however, IL-2 therapy is associated
with significant side effects and requires careful management [37]. A
recent report also investigated localized treatment of microparticle
formulations of doxorubicin in combination with anti-OX40 and
CTLA-4 antibodies in mice [29]. Our study is the first to
demonstrate the potential of Doxil to be combined with cancer
immunotherapies such as T-cell checkpoint blockers or TNFR-family
agonists, including a novel GITR ligand fusion protein. Based on the
potent combination effect with Doxil seen in these studies, lower
doses of certain immunotherapies, such as anti–CTLA-4 antibodies,
could be used in a combination strategy to alleviate some of the
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toxicities that have been observed in clinical trials [38]. In summary,
our findings give strong preclinical rationale for clinical evaluation of
Doxil combinations with these and similar classes of cancer
immunotherapies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neo.2015.08.004.
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