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Signal transducer and activator of transcription 3 (Stat3) is responsible for many aspects of
normal development and contributes to the development and progression of cancer
through regulating epithelial cell identity and cancer stem cells. In breast cancer, Stat3 is
associated with triple-negative breast cancers (TNBC) and its function has been related to
the activation of p63, itself a marker of basal-like TNBC and a master regulator of stem cell
activities. Stat3 activation is controlled by dual phosphorylation at tyrosine 705 (pTyr705)
and serine 727 (pSer727), although it is unclear whether these have equivalent effects, and
whether they are related or independent events. To address these issues, we investigated
Stat3 phosphorylation at the two sites by immunohistochemistry in 173 patients with
TNBC. Stat3 phosphorylation was assessed by automated quantitative measurements of
digitized scanned images and classified into four categories based on histoscore. The
results were analyzed for associations with multiple markers of tumor phenotype,
proliferation, BRCA status, and clinicopathological characteristics. We show that the
levels of pTyr705- and pSer727-Stat3 were independent in 34% of tumors. High
pTyr705-Stat3 levels were associated with the luminal differentiation markers ERβ/AR
and MUC1, whereas tumors with high levels of pSer727-Stat3 were more likely to be
positive for the basal marker CK5/6, but were independent of p63 and were EGFR
negative. Combined high pSer727- and low Tyr705-Stat3 phosphorylation associated
with basal-like cancer. Although high Stat3 phosphorylation levels were associated with
less aggressive tumor characteristics, they did not associate with improved survival,
indicating that Stat3 phosphorylation is an unfavorable indicator for tumors with an
otherwise good prognosis according to clinicopathological characteristics. These
findings also show that pTyr705-Stat3 and pSer727-Stat3 associate with specific
breast tumor phenotypes, implying that they exert distinct functional activities in breast
cancer.
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INTRODUCTION

Stat3 is a member of the signal transducer and activator of
transcription (Stat) family of transcription factors and exerts
different and sometimes contrasting functions in normal and
transformed cells (1–3). In the breast, Stat3 regulates mammary
gland development, is activated during the proliferative phase of
pregnancy, and plays roles during lactation and involution (3, 4).
Stat3 activation is a transient and tightly regulated process in
normal tissues, but occurs constitutively in many human tumors,
including breast cancers, most notably in triple-negative breast
cancer (TNBC). Stat3 signaling contributes to tumor cell survival,
proliferation, migration, invasion, and chemoresistance, as well as
influencing angiogenesis, immunosuppression, and cancer stem
cell (CSC) self-renewal/differentiation (1, 5, 6). Whilst
Stat3 regulates many genes and processes, its regulation of
normal and cancer stem cells has been linked particularly with
direct transcriptional activation of ΔNp63, itself a regulator of
normal and CSCs and associated specifically with basal-like
TNBC (1, 7–10).

Despite the observations for oncogenic roles,
immunohistochemical studies of Stat3 give conflicting results
for prognosis (11–15). Importantly, there is increasing preclinical
and clinical evidence that Stat3 inhibitors reduce breast cancer
growth and metastasis (6,16), indicating the potential clinical
value of measuring Stat3 activity. Stat3 activity is controlled by
phosphorylation of tyrosine 705 (pTyr705-Stat3), which leads to
dimerization, translocation to the nucleus, and transcriptional
activation of target genes (17). Stat3 is also phosphorylated on
serine 727 (pSer727-Stat3), and phosphorylation at both sites
provides maximal activity (18, 19). Thus, it is generally thought
that the two phosphorylation events act in concert. However,
Ser727 phosphorylation can reduce Tyr705-Stat3
phosphorylation (20) and Stat3 can be activated through
Ser727 phosphorylation in the absence of pTyr705 (21–23).
Moreover, pSer727-Stat3 has been reported to localize to
mitochondria and the endoplasmic reticulum to mediate their
functions, including mitochondrial apoptosis pathways (24).
Stat3 phosphorylation also has roles in defining cell identity
and differentiation, where pTyr705-Stat3 induces an epithelial
phenotype and pSer727-Stat3 a mesenchymal phenotype in
pancreatic and lung cancers (25), and pTyr705-Stat3 maintains
pluripotency whilst pSer727-Stat3 induces differentiation in
embryonic stem cells (26).

These findings suggest that Tyr705- and Ser727-Stat3
phosphorylation may be independent regulators of cancer cell
phenotypes. Thus, we studied pTyr705- and pSer727-Stat3 in a
set of well-characterized TNBCs and correlated the relative levels
of each Stat3 phosphorylation with each other and with
clinicopathological and phenotypic features. We show that
pTyr705-Stat3 and pSer727-Stat3 are often independent of
each other and influence the basal/luminal phenotype of
TNBC cells in opposite directions. We also show that high
levels of pStat3 are associated with good prognostic indicators
but not with improved survival suggesting it may be a useful
target for therapeutic intervention in these patients.

MATERIALS AND METHODS

Patient Tissues and Immunohistochemical
Staining
Tissue microarrays (TMAs) were prepared from excess material
from formalin-fixed and paraffin-embedded histological tissue
blocks of TNBCs from patients before treatment, as described
previously (27). The samples had been collected from unselected
consecutive cases of TNBCs treated at Masaryk Memorial
Cancer Institute (MMCI) between 2004 and 2009. TMAs
contained two tissue cores of 1.5 mm in diameter for each
cancer. In accordance with the Declaration of Helsinki, all
patients had provided written informed consent to use their
leftover material for research, and permission for the use of
these excesses and redundant anonymized human tissue
samples was approved by the MMCI ethical committee and
the Biobank of clinical samples at MMCI (ethical approval for
grant number NS/10357-3).

Sections were deparaffinized and rehydrated. Endogenous
peroxidase was blocked in hydrogen peroxide (3%) and
antigen retrieval was performed by boiling for 20 min in
EDTA (1 mM, pH 8.0). Primary antibodies were applied
overnight at 4°C and EnVision+ HRP reagents with DAB+
(Dako, Agilent Technologies, Santa Clara, CA, United States)
were used for visualization. Primary antibodies to pTyr705-Stat3
(Cell Signaling Technology, Danvers, MA, United States; #9145,
1:200) or pSer727-Stat3 (Santa Cruz Biotechnology, Dallas, TX,
United States; sc-8001-R, 1:500) were used. These antibodies have
been independently characterized for specificity and performance
in immunostaining previously (28–30). Slides were
counterstained with hematoxylin, dehydrated and cleared in
xylene, coverslipped with Entellan, and scanned by a
Pannoramic Midi Slide Scanner (3D Histech, Budapest,
Hungary). Patient details and clinicopathological
characteristics were described previously (27).

Quantitative Analysis of
Stat3 Phosphorylation and Statistical
Evaluation
QuPath (0.1.2) was used for quantification (https://qupath.
github.io/) (31). TMAs were manually annotated for cancer
cells and representative populations were selected from each of
the two tissue cores for each patient. Positive cells were detected
using the parameters presented in Supplementary Table S1 and
the histoscore (H-score) was calculated for nuclear signal
localization. The weighted average H-score was calculated
from the replicate tissue cores for each tumor. Data were
normalized using the average H-score value/standard deviation
for each antibody separately to take into account differences in
antibody sensitivities and staining characteristics. Thus, a
normalized value of zero represents the average H-score for
that antibody, with values below zero representing tumors
with lower than average staining and above zero representing
above-average values. Above and below-average scores were
subdivided into two groups each according to the following
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cut-offs: group 1 < −0.9; group 2 > -0.9 < 0; group 3 > 0 < 0.9;
group 4 > 0.9.

Associations between pTyr705- and pSer727-Stat3 and
clinicopathological data were evaluated using chi-square tests
or Student´s t-tests in the indicated cases. Kaplan-Meier and
Mantel-Cox log-rank tests were used for survival data (32). We
initially evaluated different cut-offs derived from normalized
H-scores for comparison of pStat3 histoscores with other
immunohistochemical markers and with clinicopathological
variables. Unless indicated otherwise, results provide values for
high versus low dichotomization (low = group 1 and 2 combined;
high = group 3 and 4). For survival analyses and clinical features

such as clinical stage, grade, node status, tumor size and relapse,
very high was used as the cut-off (low = groups 1–3; high = group
4). For cytokeratins (CK) CK5/6, CK8/18, and CK14, very low
was used as the cut-off (low = group 1; high = groups 2–4).

RESULTS

Immunostaining data were obtained for pTyr705- and/or
pSer727-Stat3 in 173 TNBCs. Data were available for both in
151 tumors. Uninterpretable spots were due to loss of tissue on
the array or insufficient numbers of tumor cells.

FIGURE 1 | Immunohistochemistry of Stat3 phosphorylation in TNBC. The four patterns of staining and corresponding examples of QuPath selections are shown.
Selected areas are marked by manually drawn red lines. Cells are color-coded according to the intensity of DAB staining for calculation of the H-score within QuPath. (A)
High pTyr705-/high pSer727-Stat3; (B) low pTyr705-/low pSer727-Stat3; (C) high pTyr705-/low pSer727-Stat3; (D) low pTyr705-/high pSer727-Stat3. Scale bar =
50 μm.
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pTyr705-Stat3 localized to the nuclei of tumor cells and
stromal cells including lymphocytes and fibroblasts, which
served as convenient internal controls for staining.
pTyr705-Stat3 was not seen in the cytoplasm. In contrast,
pSer727-Stat3 was observed in the nucleus and the cytoplasm
of tumor cells and stromal cells, compatible with previous data
on the location of these two phosphorylated forms of Stat3
(25). To investigate the effects of phosphorylation events
specifically on transcriptional activity within tumor cells,
only nuclear labeling of tumor cells was used for
quantification of the selected areas in QuPath, resulting in
an H-score for each phosphorylation event for each tumor.
H-scores for pTyr705-Stat3 ranged from 1.59 to 213.20 (mean
43.59 ± 36.02 SD) and from 8.10 to 242.75 for pSer727-Stat3
(mean 120.50 ± 53.20 SD). For comparison with
clinicopathological variables, nuclear H-scores were used to
divide tumors into groups above and below the mean value for
each phosphorylation.

Figure 1 displays examples of pTyr705- and pSer727-Stat3
immunohistochemical staining and corresponding examples
of QuPath selections. We initially examined whether the two
phosphorylation events were concordant or were
independent of each other. A common trend of staining
was seen in 100 cases (66%), in which low pTyr705- and
low pSer727-Stat3 were present in 60 tumors, and high
pTyr705- and high pSer727-Stat3 in 40 samples. An
opposite trend was observed in 51 patients (34%), with
low pTyr705- and high pSer727-Stat3 in 32, and high
pTyr705- and low pSer727-Stat3 staining intensity in
19 tumors (Figure 2A). Pearson correlation coefficient
showed a positive correlation between pTyr705- and
pSer727-Stat3 normalized histoscores within individual
tumors (r = 0.509; Figure 2B). Whilst the correlation is
statistically significant, it is also evident that many
individual tumors (over one-third of the cohort) showed
discordant values for phosphorylation at the two sites.

Stat3 Shows Phosphorylation-Specific
Clinicopathological Associations
Data were available for pTyr705-Stat3 in 4 lobular-pleiomorphic,
3 metaplastic, 3 micropapillary, 3 papillary, 5 pleiomorphic
tumors, 33 tumors with medullary features, and 117 tumors of
no-special type. Data for pSer727-Stat3 were available in
3 lobular-pleiomorphic, 5 metaplastic, 2 micropapillary,
3 papillary, 6 pleiomorphic tumors, 35 tumors with medullary
features, and 111 no-special type cancers. There were no
significant associations between pTyr705- or pSer727-Stat3
levels and histological subtype, although the numbers of each
special histological subtype were very low (Supplementary
Table S2).

The clinicopathological characteristics in association with
individual pTyr705- and pSer727-Stat3 groupings are shown
in Table 1 and Supplementary Table S3. Figure 3 shows data
for the clinicopathological characteristic that were significantly
associated with either pTyr705- or pSer727-Stat3 levels (p < 0.05).
Clinicopathological correlations with the combined levels of both
pTyr705- and pSer727-Stat3 are shown in Table 2 and
Supplementary Table S4.

pTyr705-Stat3
High levels of pTyr705-Stat3 were associated with ERβ positivity
(p = 0.029) and with combined ERβ and androgen receptor (AR)
positivity (p = 0.022). Interestingly, dual ERβ and AR positivity
correlated specifically with high levels of pTyr705- and low levels
of pSer727-Stat3 (p = 0.036). Furthermore, tumors with high
levels of pTyr705-Stat3 were more likely to be mucin-1 (MUC1,
CA 15-3) positive (p = 0.012). The proportion of patients carrying
BRCA2 mutation was higher in the high pTyr705-Stat3 tumor
group (p = 0.039). High pTyr705-Stat3 also correlated with less
aggressive tumor characteristics such as smaller tumor size (p =
0.029), lower clinical stage (p = 0.002), and absence of lymph node
metastases (p = 0.006).

FIGURE 2 |Correlation between pTyr705- and pSer727-Stat3. Normalized H-scores were calculated for each tumor, whereby a value of zero is the average score
for each antibody across the patient cohort. Samples are color-coded; blue shows tumors that according to their normalized H-scores belong to the low pTyr705-/low
pSer727-Stat3 group; purple shows tumors within the high pTyr705-/high pSer727-Stat3 group; red shows low pTyr705-/high pSer727-Stat3 group; green shows
tumor samples belonging to the high pTyr705-/low pSer727-Stat3 group. (A) The representation of individual groups. (B) Normalized H-score values and
correlation of pTyr705- and pSer727-Stat3. The dotted line shows the association trendline.
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pSer727-Stat3
Tumors with high levels of pSer727-Stat3 were more likely to be
positive for CK5/6 (p = 0.036) but negative for EGFR (p = 0.038).
High pSer727-Stat3 was associated with smaller tumor size (p =
0.016) and lower clinical stage when high levels of pTyr705-Stat3
were also present (p = 0.002), but pSer727-Stat3 did not associate
with lymph node metastasis. Patients with basal-like cancers
showed high levels of pSer727- and low levels of pTyr705-
Stat3 (p = 0.045).

Neither pTyr705- nor pSer727-Stat3 showed an association
with TAp63 or ΔNp63 levels, or with p53 status.
Furthermore, although Stat3 phosphorylation of
Tyr705 and Ser727 was associated with less aggressive
tumor characteristics such as tumor size or clinical stage,
neither phosphorylation showed an association with survival
(Figure 4).

DISCUSSION

The role of Stat3 in cancer is controversial, with several studies
demonstrating an oncogenic role in the development of various
cancers, whereas others have indicated that Stat3 behaves as a
tumor suppressor (1, 25). These contrasting data imply
dependency on tumor type, stage of the disease, and local
microenvironment; Stat3 activation or inactivation can each
support disease progression depending on such factors (33,
34). In breast cancer, Stat3 is more often overactive in TNBCs
than other types (5) and has been implicated in inducing CSC
properties (35).

Stat3 activation involves phosphorylation to allow
dimerization, nuclear transport and binding to response
elements in the promoters of target genes. In general, it is
thought that Tyr705 phosphorylation is the initial event for
Stat3 activation, followed by Ser727 phosphorylation to
provide higher activity. Thus, most immunochemical
studies evaluate total Stat3, or pTyr705-Stat3 as a general
indicator of activity and only exceptionally pSer727-Stat3.
However, data suggest that these two events have distinct
functional effects during embryonic stem cell differentiation
and in dictating epithelial cell identity in pancreatic and lung
cancers (25, 26).

In our study, we found that pTyr705- and pSer727-Stat3
are related events that are often associated with each other.
On the other hand, individual tumors show discrepancies,
where one phosphorylation event occurs in the absence of the
other, suggesting that different signaling events are operating
in these tumors. Most importantly, each phosphorylation is
associated with a distinct tumor cell phenotype, indicating
that pTyr705- and pSer727-Stat3 regulate distinct pathways
within the tumor. In particular, high levels of pTyr705- but
not pSer727-Stat3 were associated with ERβ alone and with
ERβ and AR combined. Our results further showed that
patients with high levels of pTyr705-Stat3 were more likely
to be MUC1-positive. High-level AR is the defining feature of
luminal-AR TNBCs (36) and Burstein et al. (37) further
characterized this phenotype by showing these tumors also
over-express MUC1. Thus, pTyr705-Stat3 associates with an
epithelial cell phenotype in TNBC, analogous to its specific
effects in lung and pancreatic cancers (25). It is also
important to note that transmembrane C-terminal MUC1
(MUC1-c) is necessary for Tyr705-Stat3 phosphorylation in
breast cancer cells and promotes Stat3-mediated
transcription in an auto-inductive regulatory loop (38).
Thus, whether pTyr705-Stat3 is a cause or effect of this
specific phenotype will require further study. We also
found an association between high levels of pTyr705-Stat3
and BRCA2 mutation, which is more common in ER-positive
luminal B tumors (39). Moreover, consistent with our
findings, pTyr705-Stat3 has been reported recently to
disrupt CHK1 phosphorylation, thereby impairing BRCA2-
mediated RAD51 recruitment for homologous
recombination repair of double-strand DNA breaks (40).

In contrast to the association of pTyr705-Stat3 with an
AR+/ERβ+/MUC1+ epithelial phenotype, pSer727-Stat3 is

TABLE 1 | Clinicopathological characteristics in association with either pTyr705-
or pSer727-Stat3 levels.

pTyr705-Stat3 pSer727-Stat3

Low High p-value Low High p-value

AR > 10 14 13 0.585 16 11 0.430
AR < 10 68 50 60 58
ERβ > 10 14 20 0.029 20 16 0.700
ERβ < 10 68 41 56 52
AR and ERβ > 10 25 31 0.022 31 26 0.652
AR and ERβ < 10 57 32 45 44
BLBC + 76 54 0.093 67 62 0.896
BLBC − 4 8 7 6
BRCA1 mutant 18 20 0.300 16 19 0.318
BRCA1 wild-type 27 19 24 18
BRCA2 mutant 2 7 0.039 5 5 0.917
BRCA2 wild-type 36 25 29 27
Clinical stage I 32 16 0.002 32 13 0.267
Clinical stage II-IV 100 14 92 24
Grade 1–2 10 3 0.659 9 5 0.236
Grade 3 122 27 115 32
EGFR 0-2 75 56 0.678 63 69 0.038
EGFR 3 22 14 23 11
MUC1 + 74 63 0.012 72 64 0.918
MUC1 − 11 1 6 5
p53 mutant 58 41 0.555 57 44 0.142
p53 wild-type 24 21 19 25
Relapse yes 35 6 0.434 34 12 0.572
Relapse no 95 24 89 25
ΔNp63 + 8 9 0.325 9 7 0.724
ΔNp63 − 91 62 80 75
TAp63 + 7 8 0.326 8 7 0.938
TAp63 − 92 62 80 73
CK5/6 + 14 82 0.484 14 82 0.036
CK5/6 − 12 52 18 46
CK8/18 + 21 121 0.088 32 109 0.880
CK8/18 − 3 5 2 6
CK14 + 14 63 0.674 15 60 0.861
CK14 − 14 75 19 71
pN + 56 5 0.006 51 14 0.537
pN − 62 22 60 21
pT 1 39 15 0.029 36 19 0.016
pT 2-4 79 12 77 16

BLBC, basal-like breast cancer; pN, pathological regional lymph-nodes; pT, pathological
primary tumor size. Bold indicates statistical significance (p < 0.05).
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associated with a basal cell phenotype, again analogous to the
mesenchymal phenotype induced by pSer727-Stat3 in other
cancers (25). In particular, tumors with high levels of

pSer727-Stat3 were more often CK5/6-positive, the most
useful marker for the basal subgroup of TNBC (41). On
the other hand, basal cancers, especially the BL2 subtype,

FIGURE 3 | Box plots displaying the distribution of ungrouped normalized H-scores. Clinicopathological characteristics in association with pTyr705- or pSer727-
Stat3 with p-value < 0.05 for at least one phosphorylated Stat3 form are included (*p < 0.05, **p < 0.01, ***p < 0.001).
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are characterized by high levels of EGFR (42), whereas high
levels of pSer727-Stat3 were associated with low EGFR in our
samples. These findings are in agreement with the increasing
recognition of intra-tumor heterogeneity that can be caused
by a variety of cell-intrinsic and extrinsic traits that, together
with inter-tumor heterogeneity, significantly affect a patient’s
prognosis, therapy response and clinical outcome (43–45). In
this respect, the use of a tissue core in a tissue microarray may
not provide an overall picture of the entire tumor. In our
study, this potential problem of intra-tumor heterogeneity
was mitigated by using two independent cores taken from
non-adjacent regions of the tumor for all patients, and this
approach has been shown to accurately represent the overall
tumor phenotype (46, 47).

Stat3 is an important regulator of CSC phenotypes (1, 48). It
is becoming evident that various CSC subtypes exist in breast
and other cancers, have different effects on prognosis, and are
another source of tumor heterogeneity (43, 49–51). For

example, ΔNp63 marks a specific subtype of basal/
mesenchymal CSCs in breast cancer, as opposed to the
luminal/epithelial CSC subtype in these tumors (27, 52, 53)
and there is a similar population of ΔNp63-positive basal/
mesenchymal CSCs in prostate adenocarcinomas (54).
ΔNp63 and Stat3 are involved in several common pathways
regulating CSC properties (1, 7), Stat3 is a direct regulator of
ΔNp63 transcription (9, 10) and they cooperate in regulating
epithelial cell identity in KRas-driven lung and pancreatic
cancers (25), whilst ΔNp63 overexpression itself alters
pTyr705- and Ser727-Stat3 levels in TNBC cells (55).
However, our results show that pStat3 is not associated with
ΔNp63 (or TAp63) in TNBC. Thus, although either pSer727-
Stat3 or ΔNp63 may associate with basal cell phenotypes in
TNBC they are independent of each other, suggesting at least
two transcriptional activation routes to this phenotype and
providing further evidence for heterogeneity of CSC
phenotypes in breast cancer.

TABLE 2 | Clinicopathological characteristics in association with combined pTyr705- and pSer727-Stat3.

Low pTyr705-/low
pSer727-Stat3

High pTyr705-/high
pSer727-Stat3

p-value Low pTyr705-/high
pSer727-Stat3

High pTyr705-/low
pSer727-Stat3

p-value

AR > 10 11 10 0.553 1 3 0.110
AR < 10 40 27 25 13
ERβ > 10 10 10 0.334 4 6 0.102
ERβ < 10 41 25 22 10
AR and ERβ > 10 18 19 0.132 5 8 0.036
AR and ERβ < 10 33 18 21 8
BLBC + 47 33 0.675 24 12 0.045
BLBC − 3 3 1 4
BRCA1 mutant 10 10 0.372 8 6 0.925
BRCA1 wild-type 14 8 10 7
BRCA2 mutant 1 4 0.074 1 2 0.364
BRCA2 wild-type 20 12 14 9
CK5/6 + 7 66 0.444 6 4 0.124
CK5/6 − 6 36 4 10
CK8/18 + 13 94 0.137 5 14 0.117
CK8/18 − 2 4 1 0
CK14 + 8 49 0.606 4 5 0.831
CK14 − 7 57 6 9
Clinical stage I 24 8 0.002 4 4 0.399
Clinical stage II-IV 75 4 16 8
EGFR 0-2 40 31 0.135 28 15 0.472
EGFR 3 19 7 3 3
Grade 1–2 8 3 0.064 2 0 0.258
Grade 3 91 9 18 12
MUC1 + 46 35 0.135 23 17 0.096
MUC1 − 6 1 4 0
p53 mutant 39 21 0.072 16 13 0.180
p53 wild-type 12 15 10 3
Relapse yes 27 1 0.149 8 3 0.387
Relapse no 71 11 12 9
TAp63 + 5 4 0.714 1 0 N/A
TAp63 − 55 34 31 18
ΔNp63 + 6 4 0.933 2 1 0.885
ΔNp63 − 54 34 30 18
pN + 44 3 0.155 8 2 0.168
pN − 44 8 12 10
pT 1 26 8 0.004 7 4 0.923
pT 2-4 63 3 13 8

BLBC, basal-like breast cancer; pN, pathological regional lymph-nodes; pT, pathological primary tumor size. Bold indicates statistical significance (p < 0.05).
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High pTyr705-Stat3 is associated with less aggressive
tumor characteristics such as smaller tumor size, lower
clinical stage, and absence of lymph node metastasis,
similar to some previous studies (11, 56–58), but different
from others (59). Levels of pSer727-Stat3 were associated
with tumor size, and, together with high levels of pTyr705-
Stat3 also with clinical stage. This is inconsistent with data
from Yeh et al. (30), where high pSer727-Stat3 was correlated
with larger tumors and higher clinical stages. Contributors to
these differences include method sensitivity and the scoring
systems and cut-offs used (58). In our study, we employed an
objective rather than subjective approach to delineate
pStat3 levels based on the mean values obtained for each
antibody.

Our data show that although pStat3 phosphorylated at either
site is associated with less aggressive tumor characteristics that are
independently associated with better survival, such as tumor size
or clinical stage, pStat3 itself is not associated with survival. Thus,
these data imply that high pStat3 is an unfavorable indicator in
tumors with a good prognosis according to their
clinicopathological factors. This observation may relate to the
ability of Stat3 to induce drug resistance (60, 61). Furthermore,
recent data indicate that cancer cells dynamically exploit
Stat3 activity, whereby both Stat3 activation and inactivation
support cancer progression in a time- and space-dependent
manner (34).

In conclusion, we show that pTyr705- and pSer727-Stat3 are
associated with more favorable clinicopathological features but
not with better survival, inferring its negative role in TNBC
prognosis. Our results further indicate that
Stat3 phosphorylation at Tyr705 and Ser727 have different
effects on the phenotype of TNBCs, analogous to their distinct
roles in embryonic stem cell self-renewal/lineage commitment

(26) and cellular phenotype in pancreatic and lung cancers (25).
In turn, these data indicate complex regulation and roles for
Stat3 in TNBC, helping to explain the discordant results of studies
that report the impacts of total Stat3 levels or single
phosphorylation site analysis. The site-specificity of
Stat3 phosphorylation should be taken into account in clinical
trials that aim to disrupt Stat3 signaling in breast and other
cancers (6, 48).
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