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Background: The precise identification of the position and form of a tumor mass can improve early 
diagnosis and treatment. However, due to the complicated tumor categories and varying sizes and forms, 
the segregation of brain gliomas and their internal sub-regions is still very challenging. This study sought to 
design a new deep-learning network based on three-dimensional (3D) U-Net to address its shortcomings in 
brain tumor segmentation (BraTS) tasks.
Methods: We developed a 3D dilated multi-scale residual attention U-Net (DMRA-U-Net) model for 
magnetic resonance imaging (MRI) BraTS. It used dilated convolution residual (DCR) modules to better 
process shallow features, multi-scale convolution residual (MCR) modules in the bottom encoding path to 
create richer and more comprehensive feature expression while reducing overall information loss or blurring, 
and a channel attention (CA) module between the encoding and decoding paths to address the problem of 
retrieving and preserving important features during the processing of deep feature maps.
Results: The BraTS 2018–2021 datasets served as the training and evaluation datasets for this study. 
Further, the proposed architecture was assessed using metrics such as the dice similarity coefficient (DSC), 
Hausdorff distance (HD), and sensitivity (Sens). The DMRA U-Net model segments the whole tumor (WT), 
and the tumor core (TC), and the enhancing tumor (ET) regions of brain tumors. Using the suggested 
architecture, the DSCs were 0.9012, 0.8867, and 0.8813, the HDs were 28.86, 13.34, and 10.88 mm, and 
the Sens was 0.9429, 0.9452, and 0.9303 for the WT, TC, and ET regions, respectively. Compared to the 
traditional 3D U-Net, the DSC of the DMRA U-Net increased by 4.5%, 2.5%, and 0.8%, the HD of the 
DMRA U-Net decreased by 21.83, 16.42, and 10.00, the Sens of the DMRA U-Net increased by 0.4%, 0.7%, 
and 1.4% for the WT, TC, and ET regions, respectively. Further, the results of the statistical comparison 
of the performance indicators revealed that our model performed well generally in the segmentation of the 
WT, TC, and ET regions.
Conclusions: We developed a promising tumor segmentation model. Our solution is open sourced and is 
available at: https://github.com/Gold3nk/dmra-unet.
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Introduction

Cancer is a disease that causes pathological and physiological 
alterations during cell division, and is a major cause of death 
worldwide. In 2020, there were an estimated 19.3 million 
new cancer cases and 10 million cancer-related deaths  
worldwide (1). The incidence rate of brain tumors worldwide 
is only 1.6%, and the mortality rate is only approximately 
2.5%; however the risk of death for patients with brain 
tumors is significantly higher than that of other cancer 
patients (1).

Brain tumors, which can be either benign or malignant, 
are defined as the abnormal growth and unnatural division 
of cells in brain tissue. The most prevalent type of 
malignant brain tumor is glioma, which is further classified 
into high-grade glioma (HGG) and low-grade glioma 
(LGG) based on the extent of the malignancy. Glimoas can 
be categorized into the following three tumor sub-regions: 
the necrotic tumor core (NCR), enhancing tumor (ET), 
and peritumoral edema (ED) regions. The sizes of gliomas 
also vary, and their forms can exhibit lobulation and other 
characteristics. Consequently, it is difficult to precisely 
segregate brain gliomas and their internal sub-regions.

Multi-modal imaging, or magnetic resonance imaging 
(MRI), is characterized by its ability to produce distinct 
imaging sequences using various contrast techniques, such 
as T1-weighted (T1), T1-weighted contrast-enhanced 
(T1CE), T2-weighted (T2), and fluid-attenuated inversion 
recovery (FLAIR) (2). The analysis of these four modalities 
can lead to a more thorough understanding of brain 
tumors, as various modalities present distinct characteristic 
information. Thus, computer-aided diagnosis and treatment 
based on MRI images is one of the most popular research 
areas in brain tumor image segmentation.

Researchers frequently employed conventional machine-
learning techniques to perform segmentation tasks in the 
early phases of brain tumor segmentation (BraTS) research. 
However, as the morphology and appearance of brain 
tumors can vary widely, it can be challenging to properly 
capture these distinctions. Additionally, these methodologies 
are frequently constrained by subjective criteria and specific 
domain knowledge.

U-Net and its three-dimensional (3D) version, U-Net 
(3,4), are convolutional neural network (CNN) architectures 
widely used for medical image segmentation, such as BraTS 
(5,6). Pereira et al. used two slightly different U-Nets to 
perform pixel-level classification of small two-dimensional 
image slices of brain tumors (7), specifically for LGG and 

HGG. However, this method is time consuming. Dong et al.  
used U-Net to segment slices of each 3D multi-modal MRI 
image (8). This method has fast training and testing speeds, 
and low computational requirements, but it also has a large 
number of parameters. Further, U-Net-based methods 
often fail to fully use the contextual information of 3D 
images.

Milletari et al. developed V-Net (9), an improved model 
based on 3D U-Net. V-Net introduces residual connections 
and batch normalization (BN) operations, effectively 
alleviating gradient vanishing and network degradation 
issues. This allows the features learned at each layer of the 
network to be directly passed to subsequent layers, while 
avoiding excessive computation and parameters. V-Net 
performs well overall; however, its ability to segment 
the tumor core (TC) region, which is of great interest in 
medical diagnosis, is average. Oktay et al. proposed attention 
U-Net (10), which introduces attention gates based on 3D 
U-Net to help the network focus on regions of interest, 
and which was shown to have improved local segmentation 
performance for relatively small volumes. However, its 
overall segmentation performance is average. Isensee et al. 
used an ensemble of multiple 3D U-Nets (11,12), trained on 
a large dataset, which has strong feature learning capabilities. 
The use of region-based training, additional training data 
co-training, post-processing to enhance tumor detection 
by targeting false positives, and combining dice and cross-
entropy losses significantly improves the performance of this 
method. However, repeated training also slightly increases 
the probability of network overfitting (13).

Xu et al. used an architecture composed of a shared 
feature extractor that branches out into three relatively 
smaller 3D U-Nets to segment each sub-region of layered 
tumors (14). Each 3D U-Net contains a feature bridging 
module that is coupled with attention blocks to achieve high 
overall segmentation performance for different brain tumor 
regions. However, this network has a long training time, 
which limits the scalability of architecture variants and data. 
Ruba et al. combined 3D U-Net with the local symmetry 
inter-sign operator (15), which showed good performance 
in the segmentation of sub-regions within tumors, as well 
as good sensitivity (Sens) and specificity. Additionally, this 
method was found to be more efficient than other methods 
in terms of its training and testing times. However, its 
effectiveness is better in HGG compared to LGG, and 
its generalizability may also be affected by the slightly 
poorer performance on LGG datasets. Li et al. proposed an 
enhanced 3D U-Net with enhanced encoding and decoding 
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modules to improve the extraction and use of image 
features (16). They also accelerated the convergence speed 
of the model by using a hybrid loss function. However, 
this method loses some information between blocks 
during block processing, resulting in poor segmentation 
performance for the whole tumor (WT) region.

To address these issues comprehensively, we introduced 
two new convolutional modules to the encoding path of the 
traditional 3D U-Net. These modules have high feature 
extraction levels and a low parameter count, reducing 
the loss of shallow and deep features. We also added 
and modified the channel attention (CA) mechanism in 
3D U-Net to enable it to adapt to 3D brain tumor data, 
removing redundant information, effectively highlighting 
useful information, and allocating computing resources 
reasonably. The main contributions of this study are as 
follows:

(I) We proposed a 3D dilated multi-scale residual 
attention U-Net (DMRA-U-Net) model based on 
3D U-Net for MRI BraTS. The DMRA U-Net 
uses dilated convolution residual (DCR) modules 
to replace the original convolution layers in the 
shallow encoding path of 3D U-Net to more 
efficiently use shallow features. The multi-scale 
convolution residual (MCR) modules replace the 
original convolution layers in the bottom encoding 
path of 3D U-Net to extract richer and more 

comprehensive feature expression, reducing the 
loss or blurring of overall information.

(II) We added a CA module between the encoding 
and decoding paths to alleviate the difficulty of 
extracting and retaining important features when 
processing deep feature maps.

(III) We conducted extensive experiments on four 
BraTS datasets (i.e., BraTS 2018, 2019, 2020, and 
2021), and the results showed that DMRA U-Net 
has good segmentation performance for the WT, 
TC, and ET regions. The performance of DMRA 
U-Net was also comparable to that of other BraTS 
methods.

Methods

In this section, we first introduce the structure of the DMRA 
U-Net for BraTS. We then detail the basic structure and 
function of the DCR module, MCR module, and CA 
module, respectively. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Overall architecture

We constructed the DMRA U-Net by combining the 
proposed DCR, MCR, and modified CA modules with a 
traditional 3D U-Net. Figure 1 shows the model structure 

Figure 1 The basic structure of DMRA U-Net. The changes in the number of image channels caused by some operations are displayed 
above these operations. DMRA U-Net is an end-to-end network that integrates the DCR module, MCR module, and CA module into a 3D 
U-Net model. DCR, dilated convolution residual; MCR, multi-scale convolution residual; CA, channel attention; Conv, convolution; BN, 
batch normalization; ReLU, rectified linear unit; Concat, concatenation; DMRA, dilated multi-scale residual attention.
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of the DMRA U-Net. With skip connections between 
each layer of the encoder and decoder, the DMRA U-Net 
uses the same encoder-decoder architecture as that of 
the traditional 3D U-Net. The left-side encoding path is 
mainly used to input the tumor feature maps from the MRI, 
which reduces the size of the feature maps after a series of 
operations. While the right-side decoding path recovers the 
size of the feature map by jump-joining and transposition 
convolution, which increases the feature map to match the 
size of the input image for end-to-end segmentation. The 
four input channels of the DMRA U-Net correspond to the 
following four modalities of MRI (i.e., T1, T1CE, T2, and 
FLAIR), and the three output channels correspond to the 
three brain tumor regions to be segmented (i.e., the WT 
region, the TC region, and the ET region).

The DMRA U-Net model uses input data 4×128×128 
×128 in size. For the down-sampling operations, maximum 
pooling with a kernel size of 2 and a stride of 2 is used 
to reduce the image size by half, such that the size at the 
bottom of the network becomes 512×16×16×16. The 
up-sampling operations are performed using transpose 
convolution with a kernel size of 2 and a stride of 2 to 
double the image size and restore the spatial information 
and original dimensions of the input. The output data size 
for the DMRA U-Net model is 3×128×128×128. Unlike the 
traditional 3D U-Net, DCR modules are used in the first 
three layers of the encoding path instead of the original 3D 
convolutions. At the bottom of the encoding path, there 
are two MCR modules followed by a CA module. The 
operations in the decoding path are consistent with those of 
the traditional 3D U-Net. Specific details about the DCR 

and MCR modules are described in detail in the following 
sections.

DCR module

The original convolutional layers in the shallow layers of the 
encoding path (i.e., the first three layers) are replaced with 
the DCR module to more effectively use shallow features 
while preserving lower computational complexity and the 
memory consumption of the model. Figure 2 shows the 
basic structure of the module. The DCR module provides 
more discriminative representations without adding 
extra parameters than standard convolution processes. 
Consequently, we decided to add the DCR module for the 
BraTS tasks.

The DCR module is divided into a convolutional path 
and a residual path. First, in the convolutional path, a 3×3×3 
dilated convolution is added with a stride of 1 (17), padding 
of 2, dilation rate of 2, and bias set to “false” for the initial 
feature extraction of the input feature map to this module. 
Next, BN and rectified linear unit (ReLU) operations 
are performed once each, consecutively (18,19). A 3×3×3 
convolution is then applied to further extract image features 
with a stride of 1, padding of 1, dilation rate of 1, and bias 
set to “false.” BN and ReLU operations are then performed 
once each, resulting in the output of the convolutional 
path. Second, in the residual path, a 1×1×1 convolution is 
added with a stride of 1, padding of 1, and bias set to “false.” 
This convolution is used to adjust the channel number of 
the original feature map to match the output feature map 
of the convolutional path. Finally, the output feature maps 

3×3×3 Dilated Conv + BN + ReLU

Element-wise addition

1×1×1 Conv

DCR module

3×3×3 Conv + BN + ReLU

Figure 2 The basic structure of the DCR module. DCR, dilated convolution residual; Conv, convolution; BN, batch normalization; ReLU, 
rectified linear unit.
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from the convolutional path and the residual path are added 
at the pixel level, producing the final output of the DCR 
module.

Dilated convolution convolves the weights in the 
convolution kernel with positions distributed at certain 
intervals in the input tensor. This enlarges the effective 
receptive field of the convolution kernel, increasing the 
perception range and improving the feature extraction 
ability of the network while maintaining the same kernel 
size and number of parameters. The equation for calculating 
the equivalent kernel size of the dilated convolution is 
expressed as follows:

( )( )1 1K k k r= + − −  [1]

where K  is the effective kernel size, k  is the original kernel 
size, and r  is the dilation rate of the dilated convolution, 
which refers to the spacing between the weights in the 
convolutional kernel. When the dilation rate is 1, the 
dilated convolution is equivalent to regular convolution.

The equation for calculating the receptive field of the 
dilated convolution is expressed as follows:

( ) 1
1 1

1 n
n n n ii

r r K s−

− =
= + − ∏  [2]

where nr  is the receptive field size of the current layer, 1nr −  
is the receptive field size of the previous layer, nK  is the 
effective kernel size of the current layer, is  is the stride of 

any previous layer, and 
1

1

n
ii

s−

=∏  is the product of the strides 

of all previous layers.
The introduction of the BN layer has a regularizing 

effect and improves the generalizability of the model. 

The BN layer then estimates the mean and variance of 
each input to the network, and standardizes the input 
data, allowing each layer in the network to learn more 
stably. Finally, the BN layer addresses the issue of gradient 
disappearance and ensures better gradient propagation in 
deep neural networks. The process and equation of the BN 
layer are expressed as follows:
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where B  is a batch of m  values input to the BN layer, Bµ  
is the average of m  values in the input, 2

Bσ  is the variance 
of m  values in the input, ˆix  is the normalized result, iy  
is the final output of the BN layer, γ  is the learnable scale 
parameter, and β  is the learnable shift parameter.

After performing the aforementioned operations of 
mean, variance, normalization, scaling, and shifting on the 
input data B  to the network, the BN layer obtains the final 
output, iy .

MCR module

The MCR module is  used to replace the original 
convolutional layer at the bottom of the encoding path to 
simultaneously process features of different scales, obtain 
a richer and more comprehensive feature set, and decrease 
information loss or blurring. Figure 3 shows the basic 
architecture of the MCR module.

The MCR module is divided into multi-scale convolutional 
paths and residual paths. First,  in the multi-scale 
convolutional path, the input data is simultaneously passed 
through three convolutional paths; the first path is a 1×1×1 
3D convolution with a stride of 1, padding of 0, and bias 
set to “true”; the second path is a 3×3×3 3D convolution 
with a stride of 1, padding of 1, and bias set to “true”; the 
third path is a 5×5×5 3D convolution with a stride of 1, 
padding of 2, and bias set to “true”. The output results 
of the then three convolutional paths are concatenated 
along the channel dimension, after which, a 1×1×1 3D 

Figure 3 The basic structure of the MCR module. MCR, multi-scale 
convolution residual; Conv, convolution; Concat, concatenation.

5×5×5 Conv3×3×3 Conv1×1×1 Conv

Channel-wise concat Element-wise addition

MCR module

C
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convolution is performed with a stride of 1, padding of 0, 
and bias set to “true”. This 1×1×1 convolution can combine 
features at the channel level to integrate information from 
different channels. Second, in the residual path, a 1×1×1 3D 
convolution is added to obtain the output of the residual 
path. Finally, the output feature maps of the multi-scale 
convolutional path and the residual path are added pixel by 
pixel, and the result is the final output of the MCR module.

CA module

We modified the CA module and positioned it between 
the encoder and decoder of the 3D U-Net (20) to address 
difficulties related to the extraction and retention of 
important features when processing deep feature maps. 
Figure 4 shows the basic architecture of the CA module.

Unlike the CA module designed by the original authors (20),  
we replaced some of the original operations for 2D data in 
the CA module with operations that can be adapted to 3D 
data, and made some other minor changes. Our CA module 
has two paths. In the first path, the input feature map is 
first passed through two parallel maximum pooling layers 
and average pooling layers, transforming the feature map 
from a size of C × D × H × W to a size of C×1×1 ×1. It then 
passes through a shared fully connected layer. The fully 
connected layer first compresses the number of channels of 
the feature map to 1/r times that of the original, where r is 
the reduction ratio, which was set to 16 in this study. Next, 
it passes through a ReLU activation function, and then 

expands back to the original number of channels, yielding 
two results, after which the ReLU activation function is not 
applied to the results. The two output results are element-
wise added, and then passed through a sigmoid activation 
function to obtain the output weight of the first path. In the 
second path, no operation is performed on the input feature 
map. Finally, the output weight of the first path is element-
wise multiplied with the original feature map of the second 
path to obtain the final output of the CA module.

Statistical analysis

The t-test, also known as the Student’s t-test, was used 
to compare whether there was a significant difference 
between the means of two samples. The P value is the 
probability value of the t-distribution, which measures the 
level of confidence in rejecting the null hypothesis. Thus, 
the smaller the P value, the higher the level of confidence 
in rejecting the null hypothesis. A P value less than 0.05 
indicated that the results obtained from the two methods 
were statistically significant.

Experiments

Datasets
In this study, we used the BraTS 2018–2021 datasets (21,22), 
which are publicly available brain glioma datasets provided 
by the Medical Image Computing and Computer Assisted 
Intervention (MICCAI) Society, to train and evaluate our 

Figure 4 The basic structure of the CA module. CA, channel attention.

Max pooling Average pooling Fully connected layer

SigmoidElement-wise addition Element-wise multiplication

CA module
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proposed model. The datasets comprised multi-modal brain 
MRI scans, including T1, T1CE, T2, and FLAIR scans, from 
multiple medical centers. Each MRI sequence has 155 images,  
and each image is sized 240×240 pixels. Detailed information 
about the BraTS datasets is provided in Table 1. As Table 1 
shows, the training sets of BraTS 2018 and BraTS 2019 were 
further classified into HGG and LGG sets. However, since 
2020, the form of the BraTS dataset has undergone a number 
of changes, and the training dataset no longer distinguishes 
between HGG and LGG data.

The dataset has four label categories: Label 0, which 
represents the healthy background region; Label 1, which 
represents the NCR region; Label 2, which represents the 
ED region; and Label 4, which represents the ET region. 
Figure 5 provides an example of a sample from the BraTS 
2018 training dataset, where each label is represented by 
a corresponding color: Label 1 (i.e., the NCR region) is 
shown in red; Label 2 (i.e., the ED region) is shown in 
green; and Label 4 (i.e., the ET region) is shown in yellow. 
The BraTS dataset also has three segmentation result labels, 
which are used to segment the WT region, TC region, and 
ET region. The WT region includes green, yellow, and red 

labels; the TC region includes red and yellow labels, and 
the ET region only includes the yellow label.

Data preprocessing
Due to uncertainties related to brain tumor morphology 
and location, as well as the blurriness of boundaries and 
manual annotation biases, the preprocessing of brain tumor 
images is particularly important. Previous studies have 
shown that data augmentation techniques can significantly 
affect a model’s generalizability to BraTS (23-25). The data 
augmentation methods adopted in this study can be used 
to randomly scale, flip, and rotate input data during the 
training process to increase data diversity and help improve 
model generalizability and robustness. First, we adjusted 1% 
of the non-zero outliers in each image. Second, minimum-
maximum normalization was applied to all images. Third, 
we cropped the MRI image of each sample from a size 
of 155×240×240 pixels to a size of 128×128×128 pixels. 
We applied a centrosymmetric cropping technique on the 
image portion of the target size, ensuring that the cropped 
location was equally spaced from the original image’s edge 
along all axes. With this cropping technique, the important 
portions of the brain tumor image are preserved while a 
significant number of useless background pixels are removed, 
alleviating the class imbalance of brain tumors and reducing 
computation. Finally, with an 80% probability, we performed 
the following data augmentation operations on each sample 
image in turn: the code has a 20% chance to discard any 
one of the channels of this image; we randomly scaled the 
intensity values of the image, with scaling factors between 
[0.9, 1.1]; and we randomly rotated and flipped the image.

Evaluation metrics
There are various evaluation metrics for medical image 

Figure 5 An example of brain MRI data from the BraTS 2018 training dataset. (A) FLAIR, (B) T1, (C) T1CE, (D) T2, and (E) ground 
truth. MRI, magnetic resonance imaging; BraTS, brain tumor segmentation; FLAIR, fluid-attenuated inversion recovery; T1, T1-weighted; 
T1CE, T1-weighted contrast-enhanced; T2, T2-weighted.

Table 1 Detailed information about the BraTS 2018–2021 datasets

Dataset
Training

Validation
HGG LGG Total

BraTS 2018 210 75 285 66

BraTS 2019 259 76 335 125

BraTS 2020 – – 369 125

BraTS 2021 – – 1251 219

BraTS, brain tumor segmentation; HGG, high-grade gliomas; 
LGG, low-grade gliomas.

A B C D E
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segmentation. We evaluated the performance of the model 
using commonly used metrics in medical segmentation, 
including the dice similarity coefficient (DSC), Hausdorff 
distance (HD), and Sens.

The DSC is a measure of set similarity commonly 
used to calculate the similarity between two samples. The 
value of the DSC ranges from 0 to 1, where a value closer 
to 1 indicates a higher similarity between segmentation 
contours. The DSC is expressed as:

2 2
2

A B TPDSC
A B FP TP FN

= =
+ + +


 

[8]

where A  is the set of predicted labels, B  is the set of true 
labels, TP  is the true positive voxel count, FP  is the false 
positive voxel count, TN  is the true negative voxel count, 
and FN  is the false negative voxel count.

The HD is the maximum distance from a set to the 
nearest point in another set. It is often used in image 
segmentation tasks because it is sensitive to the segmented 
boundaries. A smaller HD indicates greater similarity 
between two sets. The HD is expressed as:

( ),
a A b B

hd A B max min a b
∈ ∈

= −  
[9]

( ),
b B a A

hd B A max min b a
∈ ∈

= −  [10]

( ) ( ) ( )( ), , , ,HD A B max hd A B hd B A=
 

[11]

where ( ),hd A B  is the one-way HD from set A  to B , and 

( ),hd B A  is the one-way HD from set B  to A . The longest 

distance between ( ),hd A B  and ( ),hd B A  is selected, which 

represents the HD between set A  and set B .
Sens refers to the proportion of actual positive samples 

that the model successfully identifies as positive, and is also 
known as the true positive rate or recall. It measures the 
ability of a model to correctly identify positive samples. The 
value of the Sens ranges from 0 to 1, with higher values 

indicating that the model is better at identifying positive 
samples. Sens is expressed as:

TPSens
TP FN

=
+  

[12]

Parameter settings
Setting appropriate parameters can help prevent the 
model from getting trapped in local minima, accelerate the 
convergence speed, and achieve better segmentation results. 
In this study, we used the stochastic gradient descent 
(SGD) optimization algorithm with an initial learning rate 
of 1×10−4, a momentum of 0.9, a normalization function 
of BN, and a loss function of dice loss. The batch size was 
set to 1, and the number of epochs was set to 300. During 
the training phase, the BraTS 2018 dataset was randomly 
divided into a training set and a validation set at a ratio of 
8:2. After every 3 epochs of training, 1 epoch of validation 
was performed. During the testing phase, as the providers 
of the datasets did not provide ground truth labels for the 
validation and testing patients in this series of datasets, 
and the BraTS 2019 dataset added 50 cases to the BraTS 
2018 dataset (including 49 HGG cases and 1 LGG case), 
these additional 50 cases from the BraTS 2019 dataset were 
selected as the test set to evaluate the performance of the 
model. In addition, this study also selected 34 additional 
samples from the BraTS 2020 training set, which were 
added to the BraTS 2019 dataset, as the second test set. 
From the BraTS 2021 dataset, the last 50 samples (with 
identification numbers ranging from 01617 to 01666) from 
the training set were selected as the third test set. The 
models trained on the BraTS 2018 dataset were directly 
tested on these three datasets for the statistical analysis. The 
specific dataset divisions are shown in Table 2.

Our experiments were conducted on a NVIDIA A100-
PCIE graphics card with a memory of 40 GB. The model 
was implemented using Python 3.9.0 and the PyTorch 
1.12.0+cu113 deep-learning framework.

Results

To validate the effectiveness of our proposed DMRA U-Net, 
we conducted comparative experiments with other methods 
on the BraTS 2019 dataset, and the final segmentation 
results are shown in Table 3. Table 3 provides a comparison 
of the DSC, HD, and Sens between our proposed model 
and other methods for the WT, TC, and ET regions. 
As Table 3 shows, the DSC significantly improved from 

Table 2 Specific numbers of the datasets used in this study

Dataset Training set Validation set Testing set

BraTS 2018 228 57 –

BraTS 2019 – – 50

BraTS 2020 – – 34

BraTS 2021 – – 50

BraTS, brain tumor segmentation.



Quantitative Imaging in Medicine and Surgery, Vol 14, No 10 October 2024 7257

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(10):7249-7264 | https://dx.doi.org/10.21037/qims-24-779

0.8567, 0.8614, and 0.8752 (3D U-Net) to 0.9012, 0.8867, 
and 0.8813 (DMRA U-Net) for the WT, TC, and ET 
regions, respectively; the HD significantly decreased from 
50.69, 29.77, and 20.88 mm (3D U-Net) to 28.86, 13.34, 
and 10.88 mm (DMRA U-Net) for the WT, TC, and ET 
regions, respectively; the Sens significantly improved from 
0.9394, 0.9380, and 0.9164 (3D U-net) to 0.9429, 0.9452, 
and 0.9303 (DMRA U-Net) for the WT, TC, and ET 
regions, respectively. In addition, we compared our results 
(listed in Table 3) with the results of the most recent models 
that used the BraTS 2019 dataset. The results showed that 
the DMRA U-Net proposed in this study ranked first in 
four metrics. More specifically, it achieved the highest DSC 
in the TC region (1.9% higher than the previous highest 
score), the best HD in the TC region (1.59 mm lower than 
the previous lowest score), the best HD in the ET region 
(0.85 mm lower than the previous lowest score), and the 
best Sens in the TC region [1.9% higher than the previous 
highest score in a published paper (33)]. Notably, the DSC 
for the WT region (0.9012) of our method was close to the 
best score (0.9060), and the Sens for the ET region (0.9303) 
was close to the best score (0.946). The above comparisons 
showed the powerful ability of our model to undertake 
semantic segmentation.

Additionally, we visualized the BraTS results of our 
proposed DMRA U-Net model as shown in Figure 6. 
Each row in Figure 6 represents a sample. From left to 
right, the seven columns display the FLAIR image of the 
patient sample, the ground truth, the segmentation of the 
3D U-Net, the segmentation of the residual 3D U-Net 
(Res 3D U-Net), the segmentation of the multipath 
residual attention block 3D U-Net (MRAB 3D U-Net), 
the segmentation of the Enhanced 3D U-Net (16), and 
the segmentation of the proposed DMRA U-Net. As 
Figure 6 shows, the traditional 3D U-Net exhibits poor 
segmentation performance around the edges of the brain 
tumor and the surrounding regions as indicated by the blue 
arrows. This is due to the single information extraction 
approach of the 3D U-Net, leading to the emergence 
of numerous false positive voxels. Other state-of-the-art 
methods improve the segmentation performance compared 
to 3D U-Net; however, there are still a few false positive 
voxels, and the segmentation among different regions 
inside the tumor is not ideal. Conversely, the DMRA U-Net 
finely delineates the various regions in the tumor without 
obvious under- or over-segmentation, and significantly 
reduces false positive mis-segmentation around the tumor 
periphery.

Table 3 Comparison of the DSC, HD, and Sens with other methods using the BraTS 2019 dataset

Methods
DSC HD (mm) Sens

WT TC ET WT TC ET WT TC ET

DANet (26) 0.842 0.853 0.797 – – – 0.885 0.915 0.839

R2U-Net (27) 0.843 0.861 0.787 – – – 0.875 0.895 0.843

AttUNet (28) 0.849 0.866 0.789 – – – 0.878 0.918 0.848

H2NF-Net (29) 0.8879 0.8537 0.8277 – – – – – –

Context aware 3D U-Net (30) 0.8912 0.8467 0.7910 – – – 0.8998 0.8555 0.8428

Two-stage-VAE 3D U-Net (31) 0.8729 0.8357 0.8205 11.42 19.96 15.67 – – –

nnU-Net (12) 0.9060 0.8426 0.7767 – – – – – –

Res 3D U-Net (32) 0.8734 0.8687 0.8780 56.96 32.92 21.34 0.9609 0.9232 0.9287

MRAB 3D U-Net (33) 0.8241 0.8673 0.8587 35.26 14.93 15.28 0.9821 0.9263 0.8733

Enhanced 3D U-Net (16) 0.778 0.875 0.903 56.26 18.62 11.73 0.906 0.926 0.946

3D U-Net 0.8567 0.8614 0.8752 50.69 29.77 20.88 0.9394 0.9380 0.9164

DMRA U-Net (ours) 0.9012 0.8867 0.8813 28.86 13.34 10.88 0.9429 0.9452 0.9303

DSC, dice similarity coefficient; HD, Hausdorff distance; Sens, sensitivity; BraTS, brain tumor segmentation; WT, whole tumor; TC, tumor 
core; ET, enhancing tumor; DA, dual attention; R2, recurrent residual; Att, attention; H2NF, hybrid high-resolution and non-local feature; 
3D, three-dimensional; VAE, variational auto-encoder; nn, no new; Res, residual; MRAB, multipath residual attention block; DMRA, dilated 
multi-scale residual attention.
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Discussion

We conducted ablation experiments on the new dataset 
from BraTS 2019 to evaluate the effectiveness of our model 
in BraTS. Specifically, we used 3D U-Net as the baseline 
model. We also conducted a detailed comparative statistical 
analysis between 3D U-Net and DMRA U-Net.

The encoding path of the traditional 3D U-Net has 
many issues, including weak feature extraction capabilities, 
that make it difficult to avoid information loss, and fixed 
convolution operations that struggle to adapt to both local 
and global features in medical image data. Thus, in this 
study, we retained the U-shaped structure of the 3D U-Net, 
but redesigned the encoding path by replacing the original 
convolution operations with a new DCR module and a 
MCR module. This improved was done to improve the 
segmentation performance of the model in BraTS tasks.

In addition, many researchers have shown that segmentation 
methods based on attention mechanisms significantly 
improve segmentation accuracy. However, few researchers 
have considered the shortcomings of spatial attention (SA) 
mechanisms in removing truly redundant information when 
dealing with small-sized deep feature maps. We attempted 
to combine CA, SA, and CA and SA, and ultimately chose 

the CA mechanism, which is better able to process deep 
feature maps. We also made some modifications to reduce 
the computational complexity of our proposed model while 
ensuring the effectiveness of the CA module.

Ablation experiments on the hyperparameters

In terms of the selection of optimization algorithms, we 
experimented with different algorithms for training, including 
Adaptive Moment Estimation (Adam), Adam with Weight 
Decay Fix (AdamW), and SGD (Table 4). As Table 4 shows, 
the model trained with the SGD algorithm achieved optimal 
results in five out of nine metrics on the BraTS 2019 dataset, 
attaining the best segmentation performance. Therefore, we 
ultimately chose the SGD algorithm for the core experiments.

A small batch size can achieve better generalization while 
preventing a significant increase in training time. We showed 
this by training the model on the BraTS 2018 dataset, and 
testing it on the BraTS 2019 dataset. The specific training 
times and test results are shown in Table 5. As Table 5 shows, 
increasing the batch size from 1 to 2 reduced the average 
training time per epoch by 7.85 seconds, but led to a decrease 
in eight out of nine metrics on the BraTS 2019 dataset. 

A B C D E F G

Figure 6 Segmentation results of the DMRA U-Net and the comparative models. The blue arrows indicate areas where the models exhibit 
poor segmentation performance. (A) FLAIR, (B) ground truth, (C) 3D U-Net, (D) Res 3D U-Net, (E) MRAB 3D U-Net, (F) enhanced 
3D U-Net, and (G) DMRA U-Net. DMRA, dilated multi-scale residual attention; FLAIR, fluid-attenuated inversion recovery; 3D, three-
dimensional; Res, residual; MRAB, multipath residual attention block.
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Table 4 The effects of optimization algorithms on the segmentation performance of the proposed model using the BraTS 2019 dataset

Optimization algorithms
DSC HD (mm) Sens

WT TC ET WT TC ET WT TC ET

Adam 0.8933 0.8877 0.8802 31.74 15.34 12.44 0.9735 0.9419 0.9220

AdamW 0.8792 0.8870 0.8819 34.90 14.46 9.19 0.9678 0.9219 0.9037

SGD (ours) 0.9012 0.8867 0.8813 28.86 13.34 10.88 0.9429 0.9452 0.9303

BraTS, brain tumor segmentation; DSC, dice similarity coefficient; HD, Hausdorff distance; Sens, sensitivity; WT, whole tumor; TC, tumor 
core; ET, enhancing tumor; Adam, adaptive moment estimation; AdamW, adaptive moment estimation with weight decay; SGD, stochastic 
gradient descent.

Table 5 The effects of batch size on the training behavior and generalization performance of the proposed model

Batch size
Training time/epoch (s)

(mean ± SD)

DSC HD (mm) Sens

WT TC ET WT TC ET WT TC ET

2 102.95±9.05 0.8872 0.8728 0.8473 36.95 14.17 9.04 0.9032 0.8967 0.8302

1 (ours) 110.80±6.54 0.9012 0.8867 0.8813 28.86 13.34 10.88 0.9429 0.9452 0.9303

DSC, dice similarity coefficient; HD, Hausdorff distance; Sens, sensitivity; WT, whole tumor; TC, tumor core; ET, enhancing tumor; SD, 
standard deviation.

Figure 7 The effects of batch size settings on model convergence behavior. (A) Batch size 2, and (B) batch size 1 (our model). 

Additionally, we recorded the impact of batch size settings 
on the convergence behavior of the model during training as 
shown in Figure 7. As Figure 7 shows, when the batch size is 1, 
the model’s convergence speed in the early stages of training 
is significantly faster compared to the control group with a 
batch size of 2. This is because a small batch size allows for 
more frequent updates of the model parameters, with each 
update based on different small sample sets, enabling quicker 
exploration of the loss function surface. Due to limitations 
in our experimental equipment, we did not conduct ablation 
experiments with a batch size bigger than 2.

Ablation experiments on the DCR module

First, we performed ablation tests to assess the effectiveness 

of the DCR module in the shallow encoding path of the 
3D U-Net. We replaced the original convolution layers 
in the first, second, and third layers of the encoding path 
with the DCR module, and the segmentation results 
obtained are shown in Table 6. As Table 6 shows, replacing 
specific original convolution layers in the encoding path 
with the DCR module alleviated the problem of inefficient 
use of shallow features in BraTS tasks and achieved good 
segmentation results.

Ablation experiments on the MCR module

Next, we tested the effectiveness of the MCR module in the 
deep encoding path. We replaced two original convolutions 
in the fourth layer of the 3D U-Net encoding path with 
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Table 7 Ablation experiment results of the MCR module using the 
BraTS 2019 dataset

Metrics 3D U-Net 3D U-Net + MCR

DSC

WT 0.8567 0.8953

TC 0.8614 0.8833

ET 0.8752 0.8839

HD (mm)

WT 50.69 42.27

TC 29.77 14.99

ET 20.88 13.97

Sens

WT 0.9394 0.9441

TC 0.9380 0.9294

ET 0.9164 0.9166

MCR, multi-scale convolution residual; BraTS, brain tumor 
segmentation; 3D, three-dimensional; DSC, dice similarity 
coefficient; WT, whole tumor; TC, tumor core; ET, enhancing 
tumor; HD, Hausdorff distance; Sens, sensitivity.

Table 8 Ablation experiment results of the CA module using the 
BraTS 2019 dataset

Metrics 3D U-Net
3D U-Net  

+ CA
3D U-Net  
+ CBAM

3D U-Net  
+ SE

DSC

WT 0.8567 0.8747 0.8884 0.8871

TC 0.8614 0.8697 0.8510 0.8690

ET 0.8752 0.8859 0.8666 0.8718

HD (mm)

WT 50.69 52.57 53.08 47.78

TC 29.77 33.90 30.76 36.21

ET 20.88 21.39 26.03 28.82

Sens

WT 0.9394 0.9394 0.9139 0.9060

TC 0.9380 0.8930 0.9104 0.9256

ET 0.9164 0.8697 0.8795 0.8827

CA, channel attention; BraTS, brain tumor segmentation; 3D, 
three-dimensional; CBAM, convolutional block attention module; 
SE, squeeze-and-excitation; DSC, dice similarity coefficient; 
WT, whole tumor; TC, tumor core; ET, enhancing tumor; HD, 
Hausdorff distance; Sens, sensitivity.

Table 6 Ablation experiment results of the DCR module using the 
BraTS 2019 dataset

Metrics 3D U-Net 3D U-Net + DCR

DSC

WT 0.8567 0.8902

TC 0.8614 0.8725

ET 0.8752 0.8763

HD (mm)

WT 50.69 47.71

TC 29.77 27.14

ET 20.88 19.84

Sens

WT 0.9394 0.9517

TC 0.9380 0.9364

ET 0.9164 0.9161

DCR, dilated convolution residual; BraTS, brain tumor 
segmentation; 3D, three-dimensional; DSC, dice similarity 
coefficient; WT, whole tumor; TC, tumor core; ET, enhancing 
tumor; HD, Hausdorff distance; Sens, sensitivity.

the MCR module, and the segmentation results obtained 
are shown in Table 7. As Table 7 shows, the 3D U-Net + 
MCR model outperformed the 3D U-Net model in almost 
all evaluation metrics in all regions, with a decrease of 
only 0.86% in Sens for the TC region. This indicates that 
replacing the two original convolutions in the lowest layer 
of the encoding path with the MCR module enables a richer 
and more comprehensive feature set to be obtained through 
different receptive field sizes, reducing information loss or 
blurring.

Ablation experiments on the CA module

Moreover, we individually validated the CA module, which 
is capable of adapting to 3D volumetric data, into the 3D 
U-Net. We tested the performance of the module without 
the SA module (20) designed by the original authors. We 
added the CA module between the encoding and decoding 
paths of the 3D U-Net, and the segmentation results 
obtained are shown in Table 8. As Table 8 shows, the addition 
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of the CA module led to a slight decrease in HD, but a 
significant improvement in the other evaluation metrics. 
The DSC significantly improved from 0.8567, 0.8614, and 
0.8752 (3D U-net) to 0.8747, 0.8697, and 0.8859 (3D U-Net 
+ CA) for the WT, TC and ET regions, respectively. Further, 
we conducted a quantitative analysis comparing attention 
modules, such as the convolutional block attention module 
(CBAM) and squeeze-and-excitation (SE) module (20,34). 
The modified CA module emerged slightly ahead in overall 
segmentation performance. The addition of our CA module 
addressed the issues related to extracting and preserving 
important features when processing with deep feature maps.

Comprehensive ablation experiments on all modules

After  ver i fy ing the performance of  each module 
independently, we conducted a comprehensive multi-
module ablation experiment on the BraTS 2019 dataset, 
the results of which are shown in Table 9. As Table 9 shows, 
our proposed final model achieved the best segmentation 
performance in terms of most of the evaluation metrics in 
the multi-module ablation experiment. The DSC scores 

for WT, TC, and ET segmentation were 0.9012, 0.8867, 
and 0.8813, respectively, which were 4.5%, 2.5%, and 0.6% 
higher than the 3D U-Net, respectively. Additionally, the 
dual-module combination of DCR and MCR surpassed 
the 3D U-Net by 3.4%, 1.1%, and −0.07% in DSC 
scores for WT, TC, and ET, respectively. This indicates 
that the DCR, MCR, and CA modules all possess strong 
independent stability and can be combined effectively, 
improving the model’s ability to perform BraTS tasks.

Statistical analysis results

Finally, to further assess the performance of DMRA U-Net, 
we conducted comprehensive tests with the DMRA U-Net 
model, which was trained on the BraTS 2018 dataset. The 
tests were performed on the BraTS 2019, BraTS 2020 and 
BraTS 2021 datasets. We compared various metrics between 
the DMRA U-Net model and the 3D U-Net model, and 
the statistical analysis results are shown in Figure 8. All the 
calculations and drawings were performed using GraphPad 
Prism (version 8.0). An unpaired one-tailed Student’s t-test 
was used to compare the statistical difference between two 
groups. As Figure 8 shows, except for the t-test values of 
Sens for the WT region, the DSC for the ET region, and 
the Sens for the ET region, the t-test values of all other 
values were less than 0.05, and thus statistically significant.

Conclusions

The results showed that our model achieved good 
overall segmentation performance for the WT, TC, 
and ET regions. However, our model did not achieve 
the best segmentation performance in the ET region. 
This may be due to the relatively small volume and large 
variability among the samples in the ET region. The 
sizes and positions of the ET region vary across different 
samples in the dataset. We intend to explore the design 
of post-processing operations in the future to address 
the shortcomings of our model in handling the relatively 
small and less stable ET region in terms of volume and 
information. Currently, precise BraTS techniques can 
segment clear and detailed brain tumor images. These 
images can offer accurate parameter assessments in clinical 
applications, helping doctors monitor treatment effects 
and disease progression more precisely. In the future, 
we plan to expand our BraTS methods to include the 
application of clinical parameters such as the volume of 
enhanced lesions and the Response Assessment in Neuro-

Table 9 Ablation experiment results of the DCR, MCR, and CA 
modules using the BraTS 2019 dataset

Metrics 3D U-Net
3D U-Net  

+ DCR
3D U-Net + 
DCR + MCR

3D U-Net + DCR + 
MCR + CA (ours)

DSC

WT 0.8567 0.8902 0.8912 0.9012

TC 0.8614 0.8725 0.8728 0.8867

ET 0.8752 0.8763 0.8745 0.8813

HD (mm)

WT 50.69 47.71 43.29 28.86

TC 29.77 27.14 16.48 13.34

ET 20.88 19.84 18.80 10.88

Sens

WT 0.9394 0.9517 0.9454 0.9429

TC 0.9380 0.9364 0.9249 0.9452

ET 0.9164 0.9161 0.8957 0.9303

DCR, dilated convolution residual; MCR, multi-scale convolution 
residual; CA, channel attention; BraTS, brain tumor segmentation; 
3D, three-dimensional; DSC, dice similarity coefficient; WT, whole 
tumor; TC, tumor core; ET, enhancing tumor; HD, Hausdorff 
distance; Sens, sensitivity.
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Figure 8 Statistical comparison of the performance metrics between DMRA U-Net and 3D U-Net using the BraTS 2019, BraTS 2020, and 
BraTS 2021 datasets. (A) WT region, (B) TC region, and (C) ET region. DSC, dice similarity coefficient; 3D, three-dimensional; DMRA, 
dilated multi-scale residual attention; HD, Hausdorff distance; Sens, sensitivity; BraTS, brain tumor segmentation; WT, whole tumor; TC, 
tumor core; ET, enhancing tumor.
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