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Abstract: Salmonella Typhimurium is a Gram-negative bacterium that causes enterocolitis in humans
and pigs. Lipopolysaccharide (LPS) is a component of the outer leaflet of Gram-negative bacteria
that provokes endotoxin shock. LPS can be synthesized completely or incompletely and creates S
(smooth) or R (rough) chemotypes. Toll-like receptors (TLR) 2, 4, and 9 initiate an inflammatory
reaction to combat bacterial infections. We associated/challenged one-week-old gnotobiotic piglets
with wild-type S. Typhimurium with S chemotype or its isogenic ∆rfa mutants with R chemotype LPS.
The wild-type S. Typhimurium induced TLR2 and TLR4 mRNA expression but not TLR9 mRNA
expression in the ileum and colon of one-week-old gnotobiotic piglets 24 h after challenge. The TLR2
and TLR4 stimulatory effects of the S. Typhimurium ∆rfa mutants were related to the completeness of
their LPS chain. The transcription of IL-12/23 p40, IFN-γ, and IL-6 in the intestine and the intestinal
and plasmatic levels of IL-12/23 p40 and IL-6 but not IFN-γ were related to the activation of TLR2
and TLR4 signaling pathways. The avirulent S. Typhimurium ∆rfa mutants are potentially useful
for modulation of the TLR2 and TLR4 signaling pathways to protect the immunocompromised
gnotobiotic piglets against subsequent infection with the virulent S. Typhimurium.

Keywords: lipopolysaccharide; chemotype; endotoxin; toll-like receptor 4; Salmonella Typhimurium;
∆rfa mutant; germ-free; gnotobiotic; piglet

Key Contribution: Impact of lipopolysaccharide completeness (chemotype) on signaling via toll-like
receptor 4 complex.

1. Introduction

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative
bacteria. It composes hydrophobic domain lipid A, a core oligosaccharide, and an O-antigen [1,2].
LPS can be synthesized in complete smooth (S) or incomplete rough (R) forms (chemotypes) [1–3].
Wild-type Gram-negative bacteria (S chemotype) contains all three regions: (i) the O-polysaccharide
chain, which is made up of repeating oligosaccharide units, (ii) the core oligosaccharide, and (iii) the
lipid A which harbors the endotoxic activity of the entire molecule [1,4,5]. R chemotype characterizes
incompletely synthesized LPS due to biosynthetic defects. The ∆rfa mutants lack the O-specific chain,
and the core-oligosaccharides are presented in various degrees of completeness. The descending
completeness classifies them into five main R chemotypes [3,6]. However, LPS of wild-type bacteria is

Toxins 2020, 12, 545; doi:10.3390/toxins12090545 www.mdpi.com/journal/toxins

http://www.mdpi.com/journal/toxins
http://www.mdpi.com
https://orcid.org/0000-0003-3665-1377
https://orcid.org/0000-0002-7428-7687
http://www.mdpi.com/2072-6651/12/9/545?type=check_update&version=1
http://dx.doi.org/10.3390/toxins12090545
http://www.mdpi.com/journal/toxins


Toxins 2020, 12, 545 2 of 16

not a homogenous S chemotype. It also consists of a variable part without the O-specific chain and
with varying completeness of LPS [7].

LPS is a factor of bacterial virulence that protects bacteria from different attacks—e.g., by antibiotics,
a complement, and environmental stresses [4,8]. It can be actively secreted in the form of bacterial outer
membrane vesicles or passively released after cell wall destruction [9]. The released LPS induces the
production of inflammatory mediators, e.g., cytokines [10,11], which are essential for the development of
early innate and subsequent adaptive immune response [12,13]. Low levels of LPS induce physiological
levels of inflammatory cytokines, with a regulatory effect on the host protection, but its high levels can
trigger excessive production of inflammatory cytokines called a “cytokine storm” [4,14]. These high
cytokine levels dysregulate host response to infection, leading to life-threatening single or multiple
organ dysfunction, and can result in the death of afflicted individuals [11,15,16]. The lipid A is a center
of endotoxic activity of the LPS and is sometimes called endotoxin [1,5], but as endotoxin is usually
considered the whole molecule of the LPS [14,17,18].

Toll-like receptors (TLR), G-protein-coupled receptors, integrins, receptor-like kinases,
and caspases on macrophages, neutrophils, and other cells, including enterocytes, are LPS-interacting
proteins. They sense LPS molecules in picomolar amounts [19–21]. Lipopolysaccharides of
different bacterial origin display broad diversity in their biochemical composition that shows a
close relationship between LPS structure and its bioactivity [1]. TLR4 in complex with myeloid
differentiation protein 2 (TLR4/MD-2) is the main LPS recognizing TLR [22,23]. At first, LPS binds
to a lipopolysaccharide-binding protein (LBP), and LBP transfers it to CD14, which can be either
linked to the cell membrane or soluble. CD14 splits LPS aggregates into the monomeric molecule and
presents them to the TLR4/MD-2 complex [24]. The CD14 is a shared co-receptor also of TLR2 [25] and
TLR9 [26], which use myeloid differentiation factor 88 (MyD88) or TIR domain-containing adaptor
protein inducing IFN-β (TRIF) for downstream signaling, respectively. In contrast to TLR2 and TLR9,
TLR4 can use both adaptor proteins depending on the circumstances [22,23].

An international consortium of scientists recommended the use of animal models that may
more precisely simulate human infections, illnesses, and sepsis than commonly used rodents [15,27].
The human and pig share closely related anatomy, genetics, physiology [28], and microbiome
composition [29]. This predetermines the pig as a suitable animal model in human gastroenterology [30],
infections [31], and sepsis [32]. Salmonella enterica is a Gram-negative human and animal pathogen [33].
Some Salmonella serovars are species-specific, e.g., Salmonella serovars Typhi and Paratyphi are
restricted to humans and cause a systemic illness called typhoid fever [33]. The non-typhoidal
Salmonella Typhimurium belongs to the most widely spread Salmonella serovars. It causes enterocolitis
(salmonellosis) in humans and pigs [34,35] but a typhoid-like fever in mice [36]. Salmonellosis affects
mainly the distal ileum and colon [37] and afflicts individuals by fever, diarrhea, and vomiting, which is
usually self-limiting. However, it can jeopardize immunocompromised individuals, e.g., preterm
infants, by causing life-threatening invasive diseases [38,39].

Gnotobiotic animals are microbiologically-defined animals. They show lower colonization
resistance in comparison with conventional animals [40,41] and can be associated with simple
microbiota [42–44]. This suggests gnotobiotic animal models for studies of host–microbe crosstalk and
microbe–microbe interferences in animals associated with defined microbiota as well as studies of less
virulent bacteria without the interference of undefined microbes [45,46]. Moreover, colostrum-deprived
gnotobiotic piglets lack protective and immunoregulatory maternal immunoglobulins and cells [47,48].
This makes these piglets suitable animal models of immunocompromised hosts [45].

Our work aimed to elucidate changes in the TLR4/MD-2 complex signaling pathway in gnotobiotic
piglets mono-associated/challenged with wild-type Salmonella Typhimurium strain LT2 or its isogenic
∆rfa mutants with variable completeness of their LPS. The appropriately attenuated S. Typhimurium
∆rfa mutants with the precisely defined mutation may be helpful in the modulation of the innate
immune response to obtain time for the development of more effective and specific adaptive immune
response to protect the piglets against salmonellosis.
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2. Results

2.1. Virulence of Wild-Type Salmonella Typhimurium Strain LT2 for Germ-Free Piglets

Four one-week-old germ-free piglets that were orally infected with 1 × 108 CFUs of wild-type
Salmonella Typhimurium LT2 strain died or were ante finem euthanized 36–48 h after the infection.
Their germ-free counterparts thrived.

2.2. Colonization of Germ-Free Piglets with Wild-Type Salmonella Typhimurium and Its Isogenic ∆rfa Mutants

All germ-free (GF) piglets and piglets mono-associated for 24 h with wild-type S. Typhimurium
(WT) or its isogenic ∆rfaL, ∆rfaG, and ∆rfaC mutants with variously truncated LPS survived the 24 h
experimental period. The piglets infected with wild-type S. Typhimurium showed signs of salmonellosis
(diarrhea, anorexia, sleepiness, and fever). The piglets associated with ∆rfa S. Typhimurium mutants
showed intermediate signs of salmonellosis between WT and their absence in GF piglets that were
less obvious in the piglets challenged with the ∆rfa mutant S. Typhimurium with highly truncated
LPS chain. While it was possible to see this to a lesser extent than in the WT group in the ∆rfaL group,
it was absent in the piglets challenged with ∆rfaG and ∆rfaC mutants.

2.3. Expression of TLR4 in the Colon of the Germ-Free and Wild-Type S. Typhimurium-Infected piglets

Figure 1 depicts TLR4 expression in the colon of the germ-free (Figure 1A) and wild-type S.
Typhimurium-infected (Figure 2B) piglets. Low expression in the colon of the germ-free piglets was
highly induced by infection with S. Typhimurium.
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statistically significant increase was found in the case of the WT group only (Figure 2A). 

Figure 1. TLR4 expression in the colon of the germ-free (GF) and wild-type S. Typhimurium-infected
piglets (WT). The differences in TLR4 staining on the cryosections depict the representative micrographs
of the colon of the GF (A) and WT (B) piglets. Scale bar equals 100 µm.

2.4. Relative Expression of TLR4, MD-2, CD14, LBP, TLR2, TLR9, MyD88, and TRIF mRNA in the Ileum

Relative TLR4 mRNA expression was induced by wild-type and ∆rfaL S. Typhimurium, but a
statistically significant increase was found in the case of the WT group only (Figure 2A).

The WT piglets showed a significant increase in MD-2 (Figure 2B). CD14 was statistically
significantly increased in the WT and ∆rfaL groups and also differences between these groups were
statistically significant (Figure 2C). The induced LBP expression with wild-type S. Typhimurium was
significantly higher from the GF and ∆rfaC groups but not from the ∆rfaL and ∆rfaG ones (Figure 2D).
Both wild-type and ∆rfaL S. Typhimurium significantly induced TLR2 expression (Figure 2E). In contrast,
wild-type S. Typhimurium and its ∆rfa mutants decreased TLR9 expression in comparison to the GF
piglets, but this decrease was significant in the ∆rfaC group only (Figure 2F). MyD88 expression was
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statistically significantly induced with wild-type S. Typhimurium only (Figure 2G). The opposite trend
was found in TRIF expression, but without any statistical significance (Figure 3H).Toxins 2020, 12, x FOR PEER REVIEW 4 of 18 
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Figure 2. TLR4 (A), MD-2 (B), CD14 (C), LBP (D), TLR2 (E), TLR9 (F), MyD88 (G), and TRIF (H) relative
mRNA expression (fold change) in the ileum. The differences were evaluated in control germ-free
piglets (GF) and piglets mono-associated with wild-type S. Typhimurium (WT) or its isogenic ∆rfaL,
∆rfaG, and ∆rfaC mutants. The values are presented as mean + SEM. Statistical differences were
calculated by one-way ANOVA with Tukey’s multiple comparison post-hoc test, and p-values < 0.05
are denoted with different letters above the columns. Six samples in each group were analyzed.Toxins 2020, 12, x FOR PEER REVIEW 5 of 18 
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Figure 3. TLR4 (A), MD-2 (B), CD14 (C), LBP (D), TLR2 (E), TLR9 (F), MyD88 (G), and TRIF (H) relative
mRNA expression (fold change) in the colon. The differences were evaluated in the germ-free piglets
(GF) and piglets mono-associated with wild-type S. Typhimurium (WT) or its isogenic ∆rfaL, ∆rfaG,
and ∆rfaC mutants. The values are presented as mean + SEM. Statistical differences were calculated by
one-way ANOVA with Tukey’s multiple comparison post-hoc test, and p-values < 0.05 are denoted
with different letters above the columns. Six samples in each group were analyzed.

2.5. Relative Expression of TLR4, MD-2, CD14, and LBP mRNA in the Colon

The wild-type and ∆rfaL S. Typhimurium statistically significantly upregulated TLR4 expression
in the colon of the gnotobiotic piglets (Figure 3A).
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In contrast, neither wild-type nor mutant S. Typhimurium influenced the expression of MD-2
(Figure 3B). Similar profiles to TLR4 expression with statistically significant upregulations by wild-type
and ∆rfaL S. Typhimurium were in found CD14 (Figure 3C) and LBP (Figure 3D). Wild-type S.
Typhimurium and its ∆rfaL mutant significantly increased the expression of TLR2 in the colon (Figure 3E).
In contrast, wild-type S. Typhimurium downregulated TLR9 expression, but this downregulation was
not statistically significant (Figure 3F). Wild-type, ∆rfaL, and ∆rfaG upregulated MyD88 expression,
but only in the mutants were these upregulations statistically significant (Figure 3G). TRIF showed a
similar profile to TLR9 expression, but without any significant differences (Figure 3H).

2.6. Relative mRNA Expression of Inflammatory Cytokines IL-12/23 p40, IL-6, and IFN-γ in the Ileum
and Colon

Wild-type S. Typhimurium and its ∆rfaL mutant increased the expression of IL-12/23 p40
(Figure 4A,D), IL-6 (Figure 4B,E), and IFN-γ (Figure 4C,F) in the intestine.Toxins 2020, 12, x FOR PEER REVIEW 6 of 18 
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Figure 4. IL-12/23 p40 (A,D), IL-6 (B,E), and IFN-γ (C,F) relative mRNA expression (fold change) in the
ileum (A–C) and colon (D–F). The differences were evaluated in the germ-free piglets (GF) and piglets
mono-associated with wild-type S. Typhimurium (WT) or its isogenic ∆rfaL, ∆rfaG, and ∆rfaC mutants.
The values are presented as mean + SEM. Statistical differences were calculated by one-way ANOVA
with Tukey’s multiple comparison post-hoc test, and p-values < 0.05 are denoted with different letters
above the columns. Six samples in each group were analyzed.

The wild-type S. Typhimurium induced a statistically significant increase in all observed
cytokines in the ileum (Figure 4A–C) and IFN-γ in the colon (Figure 4F). The ∆rfaL mutant induced a
statistically significant increase in IL-12/23 p40 and IFN-γ mRNA expression in the colon (Figure 4D,F).
Neither ∆rfaG nor ∆rfaC mutants influenced the mRNA expression of any cytokine in the ileum and
colon (Figure 4A–F).

2.7. Local and Systemic Levels of Inflammatory Cytokines IL-12/23 p40, IL-6, and IFN-γ

Wild-type S. Typhimurium induced increased statistically significantly ileal (Figure 5A), colonic
(Figure 5B), and plasmatic (Figure 5C) IL-12/23 p40 protein levels.

The ∆rfaL mutant increased systemic levels only. ∆rfaG and ∆rfaC mutants did not induce local or
systemic levels of IL-12/23 p40. IL-6 was statistically significantly increased in the ileum (Figure 5D),
colon (Figure 5E), and plasma (Figure 5F) in the WT piglet group but a possible increase induced by
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its isogenic ∆rfa mutants was not statistically significant. No local or systemic levels of IFN-γ were
detected, and this is the reason that IFN-γ-corresponding graphs are not included in Figure 5.
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Figure 5. IL-12/23 p40 (A–C) and IL-6 (D–E) levels in the ileum (A,D), colon (B,E), and plasma (C,F).
The differences were evaluated in the germ-free piglets (GF) and the piglets mono-associated with
wild-type S. Typhimurium (WT) or its isogenic ∆rfaL, ∆rfaG, and ∆rfaC mutants. The values are
presented as median, maximal, and minimal values. Statistical differences were calculated by the
Kruskal–Wallis test with Dunn’s multiple comparisons post-hoc test, and p-values < 0.05 are denoted
with different letters above the columns. Six samples in each group were analyzed.

2.8. Systemic Levels of C-Reactive Protein

Both WT and ∆rfaL groups showed statistically significantly increased levels of C-reactive protein
(CRP) in blood plasma (Table 1). Moreover, the wild-type S. Typhimurium-induced CRP levels were
significantly higher than its ∆rfaL mutant.

Table 1. CRP in blood plasma.

CRP GF WT ∆rfaL ∆rfaG ∆rfaC

Mean ± SD
(ng/mL) 1.2 ± 1.4 a 233.3 ± 76.7 b 103.0 ± 22.6 c 4.1 ± 5.6 a 2.3 ± 2.3 a

The statistical differences were calculated by one-way ANOVA with Tukey’s multiple comparison post-hoc test, and
p-values < 0.05 are denoted with different letters above the columns. Six samples in each group were analyzed.

3. Discussion

Studies and vaccine applications against Salmonella or other pathogens are commonly targeted
toward the production of specific antibodies [49–51]. In this study, we focused on the initial phase of
the defense against infection that comprises a sense of infectious agents and the consequent production
of inflammatory mediators. The inflammatory cytokines participate in innate response but also control
the development of more effective and specific but delayed adaptive immune responses [52]. In our
experiments, we used a well-defined laboratory LT2 strain of Salmonella Typhimurium [53]. This strain
showed limited virulence for one-week-old conventional piglets but was avirulent for six-week-old
conventional piglets [54]. The absence of the microbiota in germ-free animals determines their lowered
colonization resistance [41] and, along with the absence of maternal immunoglobulins and cells [47],
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sensitizes the colostrum-deprived germ-free piglets to infection with S. Typhimurium strain LT2 [42,55].
However, mutations can modify its virulence [56,57]. In contrast to well-known virulence for the
germ-free piglets, the lethality of S. Typhimurium LT2 for them was not established. Therefore,
we associated one-week-old germ-free piglets with wild-type S. Typhimurium LT2 strain to clarify
this result. The spontaneous death or euthanasia of the piglets ante finem occurred within 36–48 h
after infection. This knowledge predetermined the 24 h duration of the following experiments, and we
expected that all piglets would be alive for the whole 24 h experimental period.

Humans and pigs show similar sensitivity to LPS [58], but rodents are much less sensitive [59].
The interaction of LPS with cells of various lineages results in the formation and release of different
inflammatory mediators [21,60]. An intense inflammatory reaction to LPS may provoke endotoxin
shock and death [14,61]. R mutants of serovars Infantis and Typhimurium induced an inflammatory
response that protected gnotobiotic piglets against subsequent infection with virulent S. Typhimurium
serovars F98 [44] and LT2 [62]. However, these mutants resulted from spontaneous mutations with
non-defined defects. A similar protective effect showed association of the gnotobiotic piglets with
serum-sensitive probiotic E. coli Nissle 1917 with R chemotype of LPS [63]. In our experiments, we used
isogenic ∆rfa S. Typhimurium strain LT2 mutants with defined deletions to modify LPS [64]. We
expected that changes in LPS completeness in ∆rfa mutants can influence their virulence and ability
to induce an inflammatory reaction. The ability of the ∆rfa mutants to colonize the sterile intestine
of the one-week-old germ-free piglets and induce histopathological changes, modulation of the tight
junction proteins claudin-1 and claudin-2 and occludin expression, as well as induction of inflammatory
cytokines IL-8, IL-10, and TNF-α was verified elsewhere [64]. However, downstream signaling was
never studied in experiments with non-defined Salmonella R mutants [44,62] or with defined ones [64].
Therefore, this work covers the analysis of bacterial recognition by TLR2, TLR4, and TLR9. Induced
inflammatory mediators with different activities serve as biomarkers for the diagnosis of infection and
sepsis [60,65–69].

The distal ileum and colon are the main sites of Salmonella versus host interaction [37]. Relative
constitutive expression of TLR2 and TLR4 mRNA was higher in the colon than in the ileum of weaned
uninfected conventional pigs, but TLR9 showed the reverse relationship [70]. Fourteen-day infection
with S. Typhimurium in these pigs increased the relative expression of TLR4 and TLR9 mRNA in the
ileum. In contrast, the infection decreased TLR9 mRNA expression in the colon. Other six-week-old
conventional piglets were orally infected with 3 × 109 CFU of S. Typhimurium. In the distal ileum,
TLR2 and TLR4 relative mRNA expression significantly increased within 24 h, but TLR9 mRNA
was not influenced [71]. Other authors described expressed mRNA of TLR2, TLR4, and TLR9 in the
intestine of the conventional piglets orally infected with S. Typhimurium. They confirmed variously
induced TLRs in the jejunum, ileum, and colon [72].

We found that infection with the wild-type S. Typhimurium upregulated mRNA in the terminal
ileum in all analyzed members of the TLR4 signaling pathway—TLR4, MD-2, CD14, and LBP. In the
case of the mutant Salmonella, the highest induction showed the ∆rfaL mutant, but it statistically
significantly differed from the unstimulated control only exceptionally. Both other mutants with
less complete LPS chains failed to induce any changes. This indicates that the lowering of LPS
completeness decreased the ability of the mutant S. Typhimurium to trigger TLR4 signaling as a
starting point of the inflammatory process. Conventional mice orally infected with 1 × 109 CFU of
S. Typhimurium wild-type, ∆rfaL and ∆rfaG mutants proved that any truncation of the LPS chain
decreased the ability of the mutant to translocate into mesenteric lymph nodes [50]. This finding
is in agreement with our previous results obtained in the gnotobiotic piglets [64]. However, our
results are in contrast with the results of other authors working with conventional mice infected with
S. Typhimurium. In their experiments, the R mutant S. Typhimurium was superior in the upregulation
of TLR4 expression to wild-type S. Typhimurium and was not dependent on the support of LBP and
CD14 [7]. In contrast to sequential differences in TLRs among species, their function is similar [73].
This discrepancy between the immunostimulatory effect of R mutants in the gnotobiotic piglets and
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conventional mice could have several reasons. Mice show much lower sensitivity to LPS than pigs.
This is probably due to the presence of various factors in murine plasma and their participation in LPS
induced signaling [59,73]. S. Typhimurium causes enterocolitis in pigs but typhoid fever-like illness in
mice. The streptomycin-induced suppression of microbiota diversity in conventional mice results in
the change of the illness from typhoid fever-like to enterocolitis [36,37]. This points to the importance
of microbiota in recognizing PAMPs and the possible role of quorum sensing for the expression of
bacterial virulence factors [36,74].

MD-2, which creates a complex with TLR4, also enables TLR2 to recognize LPS and enhances
TLR2-mediated responses to both Gram-positive and Gram-negative bacteria by recognizing
peptidoglycan, lipoteichoic acid components, and LPS [75]. It was found that Gram-negative
bacteria-induced innate response in conventional mice also took place via TLR2, but its contribution
was neglected [76]. Highly upregulated expression of TLR2 mRNA dependent on the completeness
of LPS attests to the participation of TLR2 in the discrimination of Salmonella. This was probably
due to the cooperation of MD-2 and CD14, which are both crucial molecules in the TLR4 signaling
pathway [77]. The TLR2 mRNA can be also upregulated indirectly, e.g., by a nuclear protein HMGB1
(high mobility group box1) that is an intrinsic ligand of TLR2 [78]. It was released from damaged
enterocytes of the wild-type and ∆rfaL S. Typhimurium-infected gnotobiotic piglets [63,64].

MyD88 is the common adaptor protein in TLR2 and TLR4 signaling pathways, but TRIF participates
in TLR4 and TLR9 signaling pathways [22,23]. The MyD88 mRNA upregulation is in concordance
with the upregulation of TLR2 and TLR4 mRNA expression. The LPS completeness influences the
activation of TLR4 signaling via the MyD88 and TRIF pathways [79]. In our case, we conclude that the
primary signaling pathway was that which took place through MyD88.

CD14 is a membrane protein found in myeloid cells. A cleaved CD14 is present in serum in its
soluble form. It participates in the monomerization of LPS molecule and its better recognition by the
TLR4/MD-2 complex. The soluble CD14 enables epithelial, endothelial, and other cells that do not
express membrane CD14 to sense LPS and respond to it [80]. It was proven that antibody-mediated
neutralization of systemic CD14 modulates the TLR4 signaling pathway induced by E. coli-derived
LPS or virulent E. coli in a pig model of sepsis. This modulation resulted in the induction of low levels
of inflammatory cytokines IL1β, IL-6, IL-8, and TNF-α and decreased activation of neutrophils [69].
CD14 is a co-receptor of TLR4, encompassing both TLR2 [25,77] and TLR9 [26]. This overlapping of
CD14 in TLR2, TLR4, and TLR9-driven signaling pathways led us to include both TLR2 and TLR9 in
our analyses primarily targeted toward TLR4.

Around 200 inflammatory biomarkers have been identified for the evaluation of sepsis. Among the
most frequently used are procalcitonin, C-reactive protein (CRP), interleukin (IL)-6, IL-8, IL-10, IL-12,
and tumor necrosis factor (TNF)-α [60,81]. Levels of inflammatory cytokines indicate whether they
participate in physiological functions or mediate a deleterious effect on hosts [14,16]. The gnotobiotic
piglets infected with necrotoxigenic E. coli O55 that thrived showed low or undetectable levels of
intestinal and systemic inflammatory cytokines 24 h post-infection. In contrast, the piglets with
distinctly expressed clinical signs of infection or piglets ante finem had high levels [82]. In this work,
three inflammatory cytokines with different action, IL-8, IL-12/23 p40, and IL-6, and CRP were taken to
indicate inflammatory processes or sepsis. IL-12/23 p40 is a shared subunit of IL-12 and IL-23 that
forms dimers with p35 and p19 subunits, respectively [83]. IL-12/23 p40 is upregulated by microbial
stimuli [84] and both IL-12 and IL-23 play an essential role in the intestinal inflammation and host
resistance in Salmonella infections [65,66]. Moreover, IL-12 was approved as a relevant biomarker of
sepsis in the infectious pig model [85]. Upregulation of IL-12/23 p40 mRNA and its higher levels in
wild-type S. Typhimurium and the ∆rfaL mutant confirmed higher virulence of this S. Typhimurium
compared to S. Typhimurium ∆rfaG and ∆rfaC mutants with lower completeness of their LPS chain.
The leading producers of IL-12 and IL-23 are antigen-presenting cells [83]. IL-12 controls differentiation
of naive T-cells into IFN-γ producing Th1 cells and induces IFN-γ production by NK cells and
innate lymphoid cells [86,87]. The produced IFN-γ promotes phagocytosis by macrophages and
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the destruction of phagocytosed microbes by free radicals in phagosomes [66,88]. Regarding IFN-γ,
we found highly expressed IFN-γ mRNA in the piglets infected with the wild-type S. Typhimurium, but
these values decreased with decreasing degrees of LPS completeness. In contrast to this unequivocal
effect on IFN-γ mRNA expression, no local or systemic IFN-γ levels were found in the intestine or
blood plasma of any of the S. Typhimurium challenged piglets. Cells that sense infection produce
one cytokine set that induces lymphocytes to produce another cytokine set that activates the effector
response. While IL-12, IL-23, and IL-6 belong to the first cytokine set, IFN-γ belongs to the second
set [52]. This may be the reason that, 24 h after challenge, IFN-γ clearly shows upregulation of its
mRNA, but this time may be too short for the appearance of IFN-γ secreted protein on local and
systemic levels.

Finally, we measured IL-6 as the third inflammatory cytokine. In clinical studies, according
to Sepsis-3 criteria [89], the diagnostic and prognostic value of IL-6 was superior to other
compared markers for both sepsis and septic shock [67]. Both local and systemic IL-6 levels
in the S. Typhimurium-challenged gnotobiotic piglets were related to the completeness of LPS.
The pro-inflammatory cytokine IL-6 is closely related to acute-phase proteins, including their
diagnostically frequently used CRP that is synthesized in the liver [90]. CRP served in our study as “a
classical” inflammatory marker that has been used by clinicians for decades [91]. The synthesis of CRP
in the liver [92] was the reason that we did not measure its intestinal levels, as in the case of cytokines
that are produced by different cell populations, including intestinal epithelial cells [20,93].

4. Conclusions

The wild-type Salmonella Typhimurium LT2 strain with complete LPS chain highly induced TLR2
and TLR4 mRNA expression but not TLR9 mRNA expression in the ileum and colon of one-week-old
gnotobiotic piglets 24 h after challenge. The TLR2 and TLR4 stimulatory effects of the S. Typhimurium
∆rfa mutants related to the completeness of their LPS chain (wild-type > ∆rfaL > ∆rfaG > ∆rfaC) [64].
TLR4 signaling was transduced through MyD88 but TRIF played no role or a marginal role only.
The transcription of inflammatory cytokines IL-12/23 p40, IFN-γ, and IL-6 in the intestine and the
intestinal and plasmatic levels of IL-12/23 p40 and IL-6 but not IFN-γ were related to the activation of
TLR2 and TLR4 signaling pathways. The plasmatic levels of CRP correlated with the cytokine levels.
Future long-term studies are needed to verify the avirulence of the S. Typhimurium LT2 strain ∆rfa
mutants and their potential usefulness in modulation of the TLR2 and TLR4 signaling pathways for the
protection of immunocompromised gnotobiotic piglets against subsequent infection with the virulent
wild-type S. Typhimurium LT2 strain.

5. Materials and Methods

5.1. Ethical Statement

The Animal Care and Use Committee of the Czech Academy of Sciences approved all experiments
with animals (protocol #63/2015; 6 November 2015).

5.2. Bacterial Cultures

Wild-type Salmonella enterica serovar Typhimurium strain LT2 and its isogenic ∆rfaL, ∆rfaG,
and ∆rfaC mutants with different LPS chemotypes were obtained from the collection of microorganisms
of the Laboratory of Gnotobiology of the Institute of Microbiology of the Czech Academy of Sciences.
The mutant Salmonella strains were constructed as described previously [64]. The completeness of their
LPS decreased in the order of wild-type > ∆rfaL > ∆rfaG > ∆rfaC. Wild-type Salmonella has LPS of S
chemotype, and all ∆rfa mutants have their LPS of R chemotypes [64].

The bacterial suspensions of wild-type S. Typhimurium strain LT2 and its isogenic ∆rfa mutants
were prepared by cultivation on meat peptone agar slopes (blood agar base; Oxoid, Basingstoke, UK)
at 37 ◦C overnight. The bacteria were scraped from the agar and resuspended in PBS to approximately
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5 × 108 colony forming units (CFUs)/mL, as measured by spectrophotometry at 600 nm. The CFU
counts were verified by a cultivation method on Luria–Bertani agar (Difco Laboratories, Detroit, MI,
USA) at 37 ◦C for 24 h.

5.3. Gnotobiotic Piglets

Germ-free piglets of miniature Minnesota-derived pig breed [94] (Animal Research Institute,
Kostelec nad Orlici, Czechia) were obtained by hysterectomy under isoflurane anesthesia at expected
term, reared in positive-pressure fiber-glass isolators, fed via nipple by cow’s milk-based formula
(Mlekarna Hlinsko, Hlinsko, Czechia), and microbiologically checked, as described in detail
elsewhere [45]. Each piglet group was created from three independent hysterectomies.

5.4. Virulence of Wild Type Salmonella Typhimurium Strain LT2 for Germ-Free Piglets

In total, 1× 108 CFUs of wild-type S. Typhimurium were orally administered in 5 mL of milk diet to
one-week-old germ-free piglets (n = 4). The piglets were derived from two independent hysterectomies.

5.5. Challenge of the Germ-Free Piglets with Wild-Type and ∆rfa Mutant Salmonella Typhimurium

One-week-old germ-free piglets were orally infected with 1 × 108 CFUs of wild-type (WT), ∆rfaL,
∆rfaG, or ∆rfaC S. Typhimurium in 5 mL of milk diet. The control germ-free piglets (GF) received 5 mL
of milk only. Each piglet group created six piglets that were derived from 3 independent hysterectomies.

5.6. Tissue Sample Collections

Twenty-four hours after the challenge, we euthanized the piglets by cardiac puncture
exsanguination under isoflurane inhalation anesthesia (Piramal Healthcare UK). Then, 1–2 mm
thick cross-sections of the terminal ileum and transversal colon without lumen contents were put into
RNAlater (Qiagen, Hilden, Germany) and stored at −20 ◦C until total RNA purification was performed.

5.7. Immunohistochemistry Detection of TLR4 in the Colon

The transverse colon was embedded in Tissue-Tek (Sakura, Tokyo, Japan), snap-frozen in
isopentane, cooled in liquid nitrogen vapor, and stored at−70 ◦C. Then, 5-µm acetone-fixed cryosections
were cut on a cryostat CM 1860 UV (Leica Microsystems, Wetzlar, Germany) and put on SuperFrost/Plus
slides (Thermo Fisher Scientific, Darmstadt, Germany) and were kept at −40 ◦C until labeling.
The sections were incubated with 10% normal rabbit serum (Life Technologies, Carlsbad, CA, USA)
in a humid chamber for one h at RT. Labeling by anti-TLR4 rabbit polyclonal antibodies (Novus
Biologicals, Centennial, CO, USA) was performed overnight at 4 ◦C. The sections were incubated
with secondary antibody, peroxidase-conjugated F(ab’)2-goat anti-rabbit IgG (H+L) (Life Technologies,
Carlsbad, CA, USA) for 2 h at RT. The TLR4 localization was visualized by an incubation with AEC
substrate kit (Sigma-Aldrich, St. Louis, MO, USA) and examined under an Olympus BX 40 microscope
with Olympus Camedia C-2000 digital camera (Olympus, Tokyo, Japan). Control sections without
primary antibody were treated in the same way.

5.8. Isolation of Total RNA and Reverse Transcription

The total RNA was purified and was reversely transcribed, as we described previously [64]. Briefly,
1–2 mm thick cross-sections of the ileum and colon stored at −20 ◦C in RNAlater (Sigma-Aldrich) were
homogenized by a Teflon piston homogenizer (Institute of Microbiology, Novy Hradek, Czechia) in
1.5 mL Eppendorf tubes and purified by the Spin Tissue RNA Mini Kit (Stratec Molecular, Berlin,
Germany) according to the manufacturer’s instructions. The purity and concentration of the RNA in
10 mM Tris-HCl pH 7.5 buffer were evaluated at 260 and 280 nm, and samples with ratio absorbances
A260/A280 ≥ 2.0 were used for cDNA synthesis. Five hundred ng of the total RNA was reverse
transcribed with the QuantiTect Reverse Transcription kit (Qiagen) according to the manufacturer’s
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recommendation. The synthesized cDNA mixture was diluted 1/10 with PCR quality water (Life
Technologies, Carlsbad, CA, USA), and these PCR templates were stored at −25 ◦C until real-time PCR
was performed.

5.9. Real-Time PCR

Real-time PCR was performed as we described previously [45], and the used a locked nucleic acid
(LNA) probe-based real-time PCR systems are listed in Table 2.

Table 2. LNA probe-based real-time PCR systems.

Gene 5′-Forward Primer-3′ 5′-Reverse Primer-3′ #LNA Probe

BACT 1 TCCCTGGAGAAGAGCTACGA AAGAGCGCCTCTGGACAC 9
CYPA 2 CCTGAAGCATACGGGTCCT AAAGACCACATGTTTGCCATC 48
TLR4 3 CCATGGCCTTTCTCTCCTG TCAGCTCCATGCATTGGTAA 33
MD-2 4 GCTCTGAAGGGAGAGACTGTG TTGTCCCGGAGAAAATCGTA 12
CD14 5 TCTCACCACCCTGGACCTAT AACTTGCGCGGACAGAGA 23
LBP 6 ACTAGACGGCTCCTTTGACG GCCCAGGAGAAGATTGACTG 9

TLR2 3 CTGCTCCTGTGACTTCCTGTC AGGTAGTTCTCCGGCCAGTC 40
TLR9 3 CAATGACATCCATAGCCGAGT CGTTGCCGCTAAAGTCCA 3

MyD88 7 GCAGCTGGAACAGACCAACT GTGCCAGGCAGGACATCT 41
TRIF 8 ATCTCCCTGGAGGCACTGA GCTGTCTACACCAGCCCACT 49

IL-12p40 9 TTCCTGTGTCCATGAAAACTTC AGGTACCAGTGGCCCTGAAT 77
IL-6 9 CAAAGCCACCACCCCTAAC TCCACTCGTTCTGTGACTGC 40

INF-γ10 TGGAAAGAGGAGAGTGACAAAAAGAATGGCCTGGTTATCTTTGA 21
1 β-actin, 2 cyclophilin A, 3 toll-like receptor, 4 myeloid differentiation protein 2, 5 cluster of differentiation 14,
6 lipopolysaccharide-binding protein, 7 myeloid differentiation factor 88, 8 TIR-domain-containing adapter-inducing
interferon-β, 9 interleukin, 10 interferon.

Briefly, two µL PCR template was added to 18 µL of the PCR master mix (FastStart Universal
Probe Master mix; Roche Diagnostics, Darmsted, Germany) containing 500 nM each of the forward
and reverse primers (Generi-Biotech, Hradec Kralove, Czechia) and 100 nM LNA (lock nucleic acid)
probe (Universal ProbeLibrary; Roche Diagnostics). Ten minutes’ initial heating at 95 ◦C was followed
by 45 cycles at 95 ◦C for 15 s and 60 ◦C for 60 s. Samples were incubated and measured in duplicates
on an iQ cycler with iQ5 Optical System Software 1.0 (Bio-Rad, Hercules, CA, USA). Cq for genes of
interest were normalized to β-actin and cyclophilin A, and the relative mRNA fold change expressions
were calculated by GenEx 6.1 software (MultiD Analyses AB, Gothenburg, Sweden) according to the
2−CT method [95].

5.10. Local and Systemic Levels of IL-12/23 p40, IL-6, and IFN-γ

IL-12/23 p40, IL-6 (both R&D Systems, Minneapolis, MN, USA), and IFN-γ (Life Technologies,
Carlsbad, CA, USA) were detected in ileal and colonic lavages and plasma by commercial ELISA kits
with the sensitivities 20 pg/mL, 10 pg/mL, and 10 pg/mL, respectively. The assays were measured in
two dilutions in duplicate at 450 and 620 nm with the Multiskan RC microplate reader (Labsystems,
Helsinki, Finland), and results were evaluated with Genesis 3 software (Labsystems).

5.11. Statistical Analysis

One-way analysis of variance (ANOVA) with Tukey’s post-hoc test was used in the evaluation
of differences in the mRNA expressions and CRP levels. Kruskal–Wallis test with Dunn’s post-hoc
test was used in the evaluation of differences in the cytokine protein expressions. The different
letters indicate statistically significant differences at p < 0.05. The same letter indicates no statistically
significant differences. The statistical comparisons and graphs were processed by GraphPad Prism 6
software (GraphPad Software, San Diego, CA, USA).
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