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Gene expression can be regulated by small non-coding RNA molecules like microRNAs
(miRNAs) which act as cellular mediators necessary for growth, differentiation,
proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in
many human malignancies, acting both as tumor-promoting and suppressing, and their
abnormal expression is linked to unrestrained cellular proliferation, metastasis, and
perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs)
have crucial roles in both growth, and tissue remodeling in normal conditions, as well
as in promoting cancer development and metastasis. Herein, we outline an integrated
interactive study involving various MMPs and miRNAs and also feature a way in which
these communications impact malignant growth, movement, and metastasis. The present
review emphasizes on important miRNAs that might impact gynecological cancer
progression directly or indirectly via regulating MMPs. Additionally, we address the likely
use of miRNA-mediated MMP regulation and their downstream signaling pathways
towards the development of a potential treatment of gynecological cancers.
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BACKGROUND

Gynecological malignancies, like cervical, ovarian, and endometrial cancers, account significantly for
most of the global cancer load, where cervical cancer (CC) accounts to be the fourth most prevalent
malignancy among women, along with ovarian cancer (OC) comprising 4.4% of the entire cancer-
related mortality among women (1). In 2018, endometrial cancer (EC) was reported to have caused
382,069 cases and 89,929 deaths globally (1). The percentage of women over 65 diagnosed with cancer
is projected to increase dramatically over the next decade (2). As a result, there is already a significant
unmet therapeutic need in the field for successful treatments of gynecological malignancies.

Gynecological cancers have a high mortality rate due to the diagnosis at late stages in addition to
multi-drug resistance, impaired apoptotic pathway, inhibition of the immune system, and aberrant
Abbreviations: miRNAs, microRNAs; MMP, matrix metalloprotease; ECM, extracellular matrix; CC, cervical cancer; OC,
ovarian cancer; EOC, epithelial ovarian cancer; EMT, epithelial-mesenchymal transition; AGO, Argonaute.
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MMP production (3, 4). Extracellular matrix (ECM) remodeling
is crucial for maintaining extracellular microenvironment
homeostasis and tissue turnover. Tumor cells must be able to
disrupt the surrounding ECM to proliferate, invade, and
metastasize. Uncontrolled tumor proliferation, tissue
remodeling, inflammation, cellular invasion, and metastasis are
all consequences of abnormal ECM proteolysis. Matrix
metalloproteases (MMPs) are enzymes capable of degrading
multiple ECM components, leading to wound healing, tissue
repair, embryonic development (5). Rampant MMP expression
has been associated with tumor aggressiveness, metastasis, and
vascularization and is correlated with late diagnosis in various
malignancies such as lung, prostate, colon, breast, and pancreatic
cancers (6–10). MMP expression is closely monitored by many
regulatory mechanisms, which include zymogen activation,
compartmentalization, endogenously produced tissue inhibitors
of metalloproteases (TIMPs), and miRNAs.

miRNAs are endogenously produced non-coding RNA
elements responsible for gene silencing by degrading target
mRNA. They are frequently altered during tumorigenesis and
their ability to regulate various genes has made them an
attractive candidate for cancer therapeutics (11). Dysregulation
of both MMP and miRNA levels is a pronounced feature of
gynecological cancers (12–14). The involvement of miRNAs to
regulate the expression of the MMP gene has recently received a
lot of attention. MMP regulation by various miRNAs may affect
cancer progression. Moreover, the functional relevance of
miRNA-mediated MMP regulation in malignancies might be
explored further by examining the post-transcriptional
regulation system controlling MMP gene expression. The
current study focuses on the mechanisms controlling MMP
expression by miRNAs in gynecological cancers and also aims
to come up with a strategy to assist miRNAs targeting MMPs for
diagnosis and therapeutic intervention.
miRNA BIOGENESIS

Numerous small RNAs have been evolved to negatively regulate
undesired genetic elements and transcripts (15). miRNAs are the
most dominating group of small RNAs having a length of ~22
nucleotides and are generated by RNase III proteins namely
Dicer and Drosha (16). miRNA functions as a guide by targeting
specific mRNAs at its 3’untranslated region (3’UTR) region
usually by base-pairing thereby inducing RNA silencing (17)
and AGO proteins act as the effector proteins recruiting factors
that induce mRNA deadenylation, translational repression, and
mRNA degradation (18).

Because each miRNA affects a vast number of mRNAs, the
miRNA biogenesis pathway has a pivotal role in gene regulation
as well as their networks. Throughout the last decade, miRNAs
have been revealed to play important roles in tumor cell
recruitment, progression, and metastasis (19). The miR 17-92
cluster expression, which cooperated with MYC to induce cancer
growth in a B cell lymphoma mouse model, was the very first
example (20). Certain miRNA also functions as tumor
Frontiers in Oncology | www.frontiersin.org 2
suppressors, for instance, the let 7 family suppresses tumor
development and metastasis via targeting key oncogenic genes
like high-mobility group AT-hook 2 (HMGA2), members of the
RAS family (NRAS, KRAS, and HRAS), and MYC (21–23). As a
result, cancer-related variations in the expression profiles of
miRNA are emerging as promising diagnostic markers as well
as the targets, for therapeutics, that are frequently linked to
tumor growth and overall survival (19). Although particular
miRNAs possess either an oncogenic or tumor-suppressive
effect, multiple reports suggested a decreased miRNA
expression universally in cancerous cells in contrast to healthy
cells, implying that miRNA synthesis may be disrupted during
tumorigenesis (24, 25).

Most of the miRNA genes are transcribed as pri-miRNA,
made up of a hairpin loop structure which consists of a sequence
of miRNA, by RNA polymerase II (Pol II) either as intronic
clusters in the pre-mRNAs or as individual genetic elements,
encoded within long non-coding RNAs (26). The biogenesis of
miRNAs is carried out in two steps, first processed inside the
nuclei and then in the cytoplasm (26, 27). DROSHA, an RNase
type III enzyme, along with other related proteins comprises the
microprocessor complex which catalyzes the nuclear event (26).
This nuclear processing event leads to the synthesis of pre-
miRNAs, which are ~70 nucleotides stem-loop-like precursor
miRNAs that are then exported to the cytosol through the
Exportin-5 (XPO-5) export receptor (28). The pre-miRNAs are
later catalyzed in the cytosol by DICER, another RNase type III
enzyme, which leads to miRNA duplex formation. These miRNA
duplexes are then incorporated into RISC (RNA-Induced
Silencing complex) along with another protein namely
Argonaute (AGO), where only a single strand is chosen to
form the mature miRNA (Figure 1) (29).

Also, there is a non-canonical miRNA biogenesis pathway
that also produces functional miRNAs. Such as mirtrons which
are produced through the pre-mRNA splicing process, while
certain other miRNAs are produced from small nucleolar RNA
(snoRNA) precursors, m7G pre-miRNA/Exportin1 pathway, t-
RNA derived pathway, etc (16). Mirtrons are miRNAs, a
byproduct of intron splicing, made by a non-canonical route
that skips the Drosha cleavage step. Mirtrons go through lariat-
debranching by DBR1, a debranching enzyme, then enter the
conventional route at the exportin-5 level, therefore known as
canonical mirtrons (Figure 1) (30).

Phosphorylation, ubiquitination, and sumoylation are some
of the post-translational modifications of miRNA processing
factors that can influence DGCR8, DROSHA, and/or DICER
complex components. In another report, it was revealed that the
regulation of miRNA biogenesis can also happen in a cell
density-dependent manner (26).
ROLE OF MMPs IN CANCER

MMPs are endopeptidases monitoring ECM’s physiological
turnover and remodeling. While collagens, gelatins,
proteoglycans, and elastin are among their substrates, they
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have a wide range of effects on many other proteins (31). Because
MMPs digest a diverse array of substrates, their actions have a
major impact on the extracellular environment, and if left
uncontrolled, can lead to unnecessary ECM degradation (32,
33). MMPs consist of a predomain, catalytic domain, hemopexin
domain and prodomain. MMPs are secreted as pro-enzymes,
which are made inactive by interacting with a cysteine-
sulphydryl group in the N-terminal (pro) domain with the zinc
ion in the catalytic domain. The elimination of this association is
known as the “cysteine switch,” and it is triggered by pro-
hormone convertases (furin) (34). Another level of MMP
regulation is performed by TIMPs that bind to the MMP
catalytic site and regulate proteolytic activity. Nonspecific
antagonists such as 2-macroglobulin, thrombospondin-1, and
Frontiers in Oncology | www.frontiersin.org 3
-2 can also inhibit MMPs (35). MMPs are divided into
Collagenases, Gelatinases, Stromelysins, Matrilysin and
membrane-type and non-classified MMPs subtypes. MMPs are
crucial in the biochemical interplay between tumor and stroma.
Stromal cells produce the majority of MMPs in the tumor
microenvironment, bringing about ECM cleavage, thereby
forming a path for cell movement from the tumor niche into
adjoining areas and also releasing several bioactive compounds.
Interaction of tumor cells with neighboring stromal cells is
critical in facilitating cancer initiation and progression. Tumor
cells secrete growth factors such as VEGF, EGF, FGF,
interleukins, and IFN, which stimulate surrounding cells in the
tumor tissues to release MMPs, allowing tumor cells to migrate
(36, 37).
FIGURE 1 | MicroRNA biogenesis through a canonical and non-canonical pathway. In the canonical pathway the pri-miRNA is processed by DROSHA and DGCR8
to form pre-miRNA which then is exported to the cytoplasm via exportin-5, wherein the cytoplasm this pre-miRNA is processed by DICER-1 which gives rise to
miRNA duplex. This miRNA duplex is then incorporated into RISC together with an argonaute protein to form mature miRNA. This mature miRNA then binds with an
mRNA in the processing body where mRNA decay happens. On the contrary, in the non-canonical pathway, the pre-miRNA is generated from mitrons by DBR1.
This pre-miRNA is transported by exportin-5 and enters the canonical pathway. DROSHA, Class 2 ribonucleaseIIIenzyme; DGCR8, DiGeorge syndrome critical
region 8 gene; DBR1, Debranching enzyme; XPO-5, Exportin-5; DICER, ribonucleaseIIIenzyme; AGO, Argonaute protein; RISC, RNA-Induced Silencing complex; P-
Body, Processing Body.
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MMPs in Cell Growth
Cancer cells are known for their uncontrolled proliferation. The
tumor reaches this state in one of two ways: by being self-
sufficient in growth-promoting signals or developing immunity
to antigrowth signals. Cellular proliferation can be unchecked as
a result of MMPs cleaving growth factor binding proteins,
increasing their bioavailability, or activating growth factor
receptors (38, 39). TGF-b It is activated by proteases like
MMP-9, -2, -14, which leads to increased invasion and
metastasis (40, 41). MMP-1 is found in stromal and epithelial
cancer cells of invasive carcinomas and regulates cervical
tumorigenesis and lymph node metastasis via the PPAR
signaling pathway (42, 43). MMP-7 is implicated in cell
proliferation, migration, and invasion, possibly through the
wnt/catenin pathway (44, 45). Activation of the PKC pathway
led to an increase in MMP-7 and 10 in cancer cells, indicating
their involvement in cell proliferation and migration in OC (46).
MMP-2 was shown to participate in OC cell proliferation via
p38/MAPK pathway (47).

MMPs in Apoptosis
Fas ligand binds to extracellular receptors like Fas receptors and
activates intracellular caspases, resulting in the degradation of
subcellular compartments, thus halting malignant spread. MMP
activity inhibits apoptosis in malignant cells, by cleaving pro-
apoptotic ligands or receptors (48).In human OC cells,
downregulation of MMP-9 was shown to induce apoptosis and
prevent proliferation (49). In another study, MMP-2 increased
cell proliferation and reduced apoptosis in OVCAR3 (ovarian
cancer cell line) cells, thereby lowering the effect of
chemotherapeutic drugs on tumor cells (50).

MMPs in Invasion and Metastasis
The tumor cells will subsequently enter the circulation and spread
throughout the body by modulating MMP production (51).
MMP-2 and -9 are the most prominent MMPs modulating
cancer cell invasion. In both OC and CC, MMP-2 and -9 are
implicated in cancer cell invasion and metastasis and are
associated with poor survival (52, 53). Furthermore, MMP-2
promotes the attachment of metastatic OC cells to peritoneal
surfaces by cleaving ECM and increasing their binding to integrin,
as well as the OC cells’ propensity to metastasize (54). Similarly, in
CC, an association of MMP-2 activation with avb3 integrin/MT1-
MMP/TIMP-2 has been implicated in tumor cell migration (55).
MMP-7 is the primary MMP linked with invasion and metastasis
in EC (56). MMP-7 is also overexpressed in ovarian serous cancer
tissues, where it increases cellular invasiveness by activatingMMP-
2 and -9 or by IGFBP breakdown, enhancing IGF concentration
and cancer cell proliferation (57, 58).

MMPs in Angiogenesis
The role of MMPs in angiogenesis is dependent on the
neighboring environment, such as substrate abundance and
MMP expression time points during angiogenesis (59). MMP-2
is a widely known influencer of vascularization during cancer
development. In OC, MMP-2 expression was increased via PI3K/
Frontiers in Oncology | www.frontiersin.org 4
Akt and NFkB pathways, enhancing endothelial progenitor cell
proliferation (60). Activation of PAR-1 via MMP-1 causes OC
cells to secrete multiple angiogenic factors, resulting in cell
proliferation, endothelial tube formation, and migration (61,
62). MMP-9 has a role in the release of VEGF from tumors
(63). OC cells implanted into Mmp9-/- nude mice showed
significantly lower levels of VEGF in tumors, thereby
contributing to angiogenesis (64).
REGULATION OF MMPs BY miRNAs

Considerable interest is seen in investigating post-transcriptional
regulations of MMPs by miRNAs in recent times. Bioinformatics
analyses have identified several miRNAs binding sites at the
3’UTR of MMP transcripts, thereby inducing mRNA instability
or translational repression (11, 65). Studies have shown the
participation of miRNA in regulating MMP gene expression
thereby playing a key role in migration, differentiation,
apoptosis, etc (66–68). These miRNAs either promote or repress
malignant phenotype, acting as either oncogenic or tumor-
suppressor, respectively. Oncogenic miRNAs (OncomiRs) are
overexpressed in cancers whereas tumor-suppressor miRNA is
downregulated, thereby leading to the onset of carcinogenesis,
metastasis, and poor survival. However, there are conflicting
pieces of evidence as if a miRNA behaves like an oncogene or
tumor-suppressor in the tumor microenvironment. This review
wishes to directly examine the effects of miRNAs towards MMP
regulation in gynecological cancer development and disease
progression (Table 1).

OncomiRs
Several oncogenic miRNAs were found to be linked with
gynecological cancer development and are involved in cell
migration, angiogenesis, apoptosis, etc. (73, 78). Each miRNA
has many different targets and modulate different signaling
pathways in different cancer types (75, 99). The endogenous
inhibitors of MMPs are known as tissue inhibitors of matrix
metalloproteases (TIMPs). Disruption of MMPs/TIMPs balance
occurs during multiple pathological conditions including cancer.
In CC, miR-106a downregulates TIMP-2 through direct binding
to its 3’-UTR region resulting in the induction of MMP-2 as well
as MMP-9 expression and subsequently promoting cellular
invasion, and migration (69). Alteration of TIMP-2 expression
partly eradicates the invasion, migration, and MMP-2/9
expression in CC cells (34). Similarly, in HPV-induced CC,
miR-21down-regulates TIMP-3, PTEN, and STAT3 expressions
(61). Additionally, in uterine endometrial stromal sarcoma, miR-
21 decreases the level of PTEN by directly binding to 3’UTR,
leading to increased proliferation, invasion, decreased apoptosis,
and metastatic potential thereby upregulating MMP-2 and -9 (73,
78). Epithelial-to-mesenchymal transition (EMT) is a crucial
feature of cancer enabling cells to acquire mobility and
translocate to distant sites. miR-183 promotes cellular
proliferation and EMT in uterine EC by inhibiting CPEB1
expression and up-regulating MMP-9 expression. Studies
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revealed CPEB1 andMMP-9 as the direct target of miR-183, also a
binding region for 3’UTR of MMP-9 is found at the seed region of
miR-183 (75, 76).

Von Hippel Lindau (VHL), a tumor suppressor, targets
HIF1a/2a by ubiquitination involving E3 ligase to proteasomal
degradation. Loss of VHL results in the accumulation of HIF1a
inside the nuclei and expression of HIF target genes which
subsequently leads to oncogenesis (100). In OC, miR-92
inhibits VHL, which in turn de-repress HIF-1a. HIF-1a, in
turn, stimulates VEGF by acting as a transcription factor
together with p300 and p-STAT3 (99). Similarly, miR-210 is
another important miRNA activated during the hypoxic
Frontiers in Oncology | www.frontiersin.org 5
condition and has a role in DNA damage response,
mitochondrial metabolism, cellular proliferation, angiogenesis,
and apoptotic cell death. Loss of VHL in OC stabilizes HIF-1a
which in turn stimulates miR-210 expression inducing tumor
aggressiveness (79).

DNA methylation/histone acetylation forms a complex
framework for epigenetic regulation during cancer
development. An altered methylation pattern is seen in cancer
cells, both globally and CpG islands in the promoter region
(101), leading to aberrant gene activity during tumorigenesis. In
EC, different levels of miR-130b expression and its CpG
methylation were linked to MMP-2/9 expression and EMT-
TABLE 1 | Oncogenic and tumor suppressor miRNAs regulating MMPs during development of gynecological cancers.

Disease microRNA ExpressionLevel MMPs
Involved

Binding Function(s) References

Cervical Cancer miR-1246 Upregulated 2/9 Indirect Induces proliferation, tumor growth, cell migration, invasion, metastasis
and EMT.

(69–72)
miR-106a Upregulated Indirect
miR-183 Downregulated Direct
miR200b Downregulated Indirect

Cervical Cancer miR-21 Upregulated 2/9 Indirect Increased STAT3 decreased TIMP-3 and PTEN expression leading to
cell invasion.

(73)

Cervical Cancer miR-195-
5p

Downregulated 14 Direct Promotes proliferation and invasion by directly binding of miR-195-5p to
3’UTR of MMP-14 and modulating TNF-a pathway

(74)

Endometrial Cancer miR-183 Upregulated 2/9 Direct Promotes cell proliferation and invasion. (75–77)
miR-130b Upregulated Indirect

Uterine Endometrial
Stromal Carcinoma

miR-21 Upregulated 2 Indirect Induces cell invasion and wound healing. (78)
miR-31 Downregulated Indirect
miR-145 Upregulated Indirect
miR-195 Upregulated Indirect

Ovarian Cancer miR-92 Upregulated 2/9 Indirect Promotes migration and angiogenesis by inhibiting VHL and upregulating
HIF1a pathway genes.

(79, 80)
miR-210 Upregulated Indirect

Ovarian Cancer miR-205 Upregulated 2/10 Indirect Promotes invasion via inhibiting TCF-21. (81)
Endometrial
Adenocarcinoma

miR-410 Downregulated 14 Direct Promotes tumor formation. (13, 82)

Endometrial Cancer miR-195 Downregulated 2/9 Indirect Promotes EMT by targeting GPER/PI3K/AKT. (83)
Endometrial
Endometroid
Carcinoma

mir-22 Downregulated 2/9 Indirect Induces cell proliferation and invasion. (84)

Endometrial Cancer miR-320a Downregulated 3/9 Indirect Inhibits TGFb-induced EMT. (85)
miR-340-
5p

Downregulated Indirect

Ovarian Cancer miR-574-
3p

Downregulated 9 Indirect Promotes migration and invasion, inhibiting AKT, FAK and c-Src by
targeting EGFR.

(86)

Ovarian Cancer miR-29b Downregulated 2 Direct Induces cell migration by regulating crosstalk between OC cells and
fibroblast.

(12, 87)

Ovarian Cancer miR-1236-
3p

Downregulated 2 Indirect Promotes proliferation and invasion and EMT via VEGF. (88)

Ovarian Cancer miR-16 Downregulated 2/9 Indirect Promotes migration and invasion via Wnt/b-catenin signaling pathway. (89)
Ovarian Cancer miR let-7d-

5p
Downregulated 2/9 Indirect Promotes proliferation by regulating p53 signaling pathway via HMGA1. (90)

Ovarian Cancer miR-
1273g-3p

Downregulated 2/9 Indirect Regulation of TNF-a and COL1A1. (91)

Ovarian Cancer miR-199a-
5p

Downregulated 2/9 Indirect Promotes cellular growth, proliferation and invasion via NF-kB pathway. (92, 93)

miR-9 Downregulated Indirect
Ovarian Cancer miR-122 Downregulated 2/14 Indirect Promotes EMT by targeting P4HA1. (94)
Ovarian Cancer miR-130b-

3p
Downregulated 2/9 Indirect Promotes EMT, cellular attachment and proliferation (50, 95)

miR-200 Downregulated Indirect through TGF-b signaling pathway.
Ovarian Cancer miR-17 Downregulated 2 Indirect Promotes metastasis by regulating integrin a5 and b1. (96)
Ovarian Cancer miR-340 Downregulated 2/9 Indirect Promotes metastasis and inhibits apoptosis via NF-x03BA;B1 activation. (97)
Ovarian Cancer miR-543 Downregulated 7 Direct Promotes invasion by direct binding of miR-543 to 3’-UTR of MMP-7. (98)
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related genes. Reversing miR-130b promoter hypermethylation
decreased EC cell malignancy, suggesting that CpG island
hypermethylation-mediated miRNA silencing contributes to
carcinogenesis and is related to aggressive tumor behavior via
increased MMP-2/9 expression, however, the mechanism behind
the regulation of MMP expression by this miRNA is still
unknown (77).

Tumor Suppressor miRNAs
Tumor suppressor miRNAs are under-expressed during cancer
progression and regulate cancer development by downregulating
genes involved in tumorigenesis. The majority of ECs are
accompanied by abnormal hormone signaling, where estrogen
receptor a (ERa) behaves as oncogenic stimuli (102). Estrogen
induction regulates cellular proliferation and subsequent
invasion in EC and is accompanied by a downregulation of
miR-22 in ER-a positive cell lines. Transfected miR-22 mimics
into endometrial cells reduced the release of MMP-9 andMMP-2
thereby reversing 17b-estradiol (E2)-mediated progression of the
cell cycle, cellular proliferation, and invasiveness of ERa-positive
EC cells (84).

miR-200 family members have an enormous function in
multiple cancer types (103–106). miR-200b plays a key role in
regulating EMT and is correlated with cancer growth,
proliferation, drug resistance in numerous diseases (107, 108).
Cytoskeletal remodeling is the central event in the metastatic
spread of cancerous cells. Actin structures facilitate cell
migration and invasion, disruption of which leads to increased
metastatic spread (109). In CC, miR-200b can suppress RhoE
function, which regulates actin cytoskeleton and cell migration
by altering cell motility by targeting MMP-9 thus suppressing
EMT (70). Another report showed that downregulation of miR-
200 family expression by TGFb induced MMP-2, -9, and
fibronectin 1 production and stimulated cancer cell attachment
to human primary mesothelial cells (110). Catalpol induces miR-
200 expression which sequentially inhibits MMP-2 expression
levels, decreases cell proliferation, and accelerates apoptosis in
OC cells (50). Similarly, TGFb1 induced EMT was linked with
decreased miR-320a and increased MMP-3 and -9 expressions in
EC cells. Excessive expression of miR-320a or miR-340-5p
substantially inhibited HEC-1A (endometrial adenocarcinoma
cell line) cell invasion and migration through its binding to eIF4E
mRNA 3’-UTR and diminished TGF-1-induced EMT properties
(85). Another report suggested the involvement of miR-130b-3p
in EMT, invasion, migration in cancer various types, mainly via
the TGFb pathway (111, 112). In OC overexpression of CMPK,
cytidine nucleoside monophosphate kinase is seen, and CMPK
knockdown dramatically decreases the cellular proliferation,
invasion, and migration, along with MMP-9/-2 expression in
epithelial OC. Downregulation of miR-130b-3p is seen in EOC
which upregulates CMPK via the TGF-b signaling pathway (95).

Rak et al. showed a higher MMP-14 expression in endometrial
adenocarcinoma tissue with a decrease in miR-410 level,
suggesting a regulatory effect of miR-410 in modulating EC cell
progression although the mechanism is largely unknown (13).
Studies in odontoblast cells suggest the presence of a probable
Frontiers in Oncology | www.frontiersin.org 6
binding site for miR-410 on 3’UTR of MMP-14 (82). In lung
cancer, miR-410 has a tumor-suppressive role by inducing
apoptosis through downregulating JAK/STAT3/SOCS3 signaling
pathway (113). Another miRNA, miR-195 has tumor-suppressive
nature which negatively regulates cellular proliferation, migration,
invasion, and promotes apoptosis (114–116). miR-195
overexpression ectopically decreased the viability, migration, and
invasiveness of the endometrial carcinoma cell lines, along with
the TIMP-2 upregulation and MMP-2/9 downregulation. miR-
195 targets GPER (G protein-coupled estrogen receptor) and
reduced the phosphorylation levels of PI3K/AKT, thus
negatively regulating EMT in endometrial carcinoma (83). miR-
195 also suppresses CC cellular proliferation, invasion, and
migration through the TNF-pathway. The MMP-14 3’UTR
binds to miR-195-5p directly through which its expression is
directly inhibited. MMP-14 can modulate the expression of TNF-
a. A downregulated miR-195-5p and an upregulated MMP-14
were noticed in CC (74).

miR-574-3p has an enormous role in cancer progression,
EMT, metastasis, invasion, and chemosensitivity (117, 118). In
epithelial OC, it inhibits the activation of AKT, FAK, c-Src, and
MMP-9 by negatively regulating EGFR, inhibiting the cell
invasion, and migration, and also increasing EOC cell
sensitivity to paclitaxel and cisplatin (86). Different patterns of
Let-7 family miRNAs were found in multiple cancers. In OC, let-
7d-5p induces cell apoptosis and rescues chemosensitivity to
cisplatin by targeting HMGA1 directly and thereby regulating
the p53 pathway, MMP-2 and -9, and apoptotic pathway (90).

miR-17 is a highly conserved 6-membered gene cluster and is
shown to have numerous roles in various pathways (119–121). In
OC cells, it is seen to be downregulated thereby suppressing its
inhibitory action of peritoneal metastasis via targeting integrin a5
and b1 and MMP-2 expression. miR-17 specifically binds to the
a5 and b1 integrins 3’UTR region directly and decreases their
expression. The addition of miR-17 to OC cells in vitro showed a
significant decrease in adhesion and invasion (96). miR-29b is
dysregulated in various cancers. It has a tumor-suppressing role in
OC and is seen to be involved in tumor malignancy. It increases
the a-SMA (mesenchymal cell markers) expression in fibroblasts
which is a component of the cellular microenvironment that
contributes to tumor malignancy by getting hyperactive and
acquiring CAF (cancer-associated fibroblast) profile during
carcinogenesis. These fibroblasts downregulate miR-29b
expression in SKOV3 cells (ovarian cancer cell line), resulting in
an increased invasion and migration. miR-29b can potentially
target MMP-2 which is also found to be upregulated in OC (12).
Studies in lung cancer metastasis also revealed the presence of a
binding site of miR-29b at the MMP-2 3’UTR region through
which it downregulates MMP-2 expression (87).miR-543 has been
seen to be dysregulated in many cancers. It regulates proliferation,
migration/invasion, EMT, metastasis, and many other pathways
(122–124). miR-543 suppresses MMP-7 gene translation via the
direct binding of MMP-7 3’-UTR whereas placental growth factor
(PLGF), an angiogenic factor, represses the inhibitory action of
miR-543 activating the MMP-7 mediated EMT and invasion in
OC (98). Certain miRNAs have a dual role in carcinogenesis.
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Although previously stated that miR-183 is oncogenic, it is also
seen to possess a tumor-suppressive function. In CC tissues, miR-
183 expression was notably reduced whereas MMP-9 expression
was elevated. The addition of miR-183 in-vitro resulted in a
reduced invasion and migration of CC cell lines, via directly
targeting MMP-9 and reduction of metastatic capability. A
presence of a possible binding site of miR-183 was found at the
3’UTR regions of the MMP-9 gene (71).
PREDICTING THE ROLE OF MMPs IN
CANCER SIGNALING PATHWAYS

To have a better understanding of the functions of MMPs and
their regulation in cancer, an interaction plot has been created in
String database (http://www.string-db.org) and analyzed in
Cytoscape ver 3.8.1. Initially, miRwalk and miRmap database
were used to find the miRNA and understand the regulating
MMPs in gynecological cancer. The MMPs and their correlated
genes were selected with k mean value of 0.23, neighborhood
active interaction source, with a minimum confidence score of
0.45 and minimum stringency. As shown in Figure 2, MMP-9,
-3, -7 and -2 are considered hub genes since most of the protein-
protein interactions are seen among them. MMP-9, -7, -3, -2, -8
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and -14 also show proximity to each other, hence they are
correlated in each other’s biochemical activity. A significant
positive correlation is also seen in MMPs interacting with
genes viz; ADAM17, PLAUR, TGFB1, SERPINE1, STAT3,
EGF and TIMP. Results showed a positive correlation with
genes involved in tumorigenesis and extracellular matrix
proteins (125–130). IGF1, VEGFA, STAT3, PLG, ACAN and
TIMP-2 were found to directly regulate with MMP-3, MMP-9
and MMP-7, respectively (Figure 2).

Screening of the miRNA was performed from the miRNA
library and enrichment analysis was performed to understand
the cellular activity and biochemical pathways in the form of a
heat map showing the association of miRNAs involved in
signaling pathways was created in miRpath (https://tools4mirs.
org/software/target_functional_analysis/mirtar/). Recent
evidence suggests the participation of miRNA in regulating
MMP gene expression and is associated with key physiological
pathways like TGF b, Rap1, Toll-like, Hippo, B cell and T cell
receptor signaling pathway (131–136) (Figure 3). miRNAs
regulate the actin cytoskeleton, which works synergistically on
MMP regulation during cancer growth and metastasis (137, 138).
As seen from th heatmap, among the miRNAs reported to
regulate MMPs in gynecological cancer, miR-199-5p, miR-21-
5p, miR-145-5p and miR-29b-3p have shown the highest
FIGURE 2 | PPI network showing 36 associated proteins in cancer. The nodes are each candidate. Edges represent their interactions. The divisions with nodes are
the shared functions. Blue symbolizes those that have a function in cell proliferation. Green and Red are the ones regulating ECM. Yellow are those with proliferation
and angiogenesis.
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correlation with cancer-related signaling pathways (Figure 3).
miR-145-5p and miR-21-5p are associated with TGF band Hippo
signaling pathway whereas miR-29b-3p regulates FAK pathway,
Insulin pathway and p53 signaling pathway, along with ECM
receptor interactions and is also shown to play a crucial role in
small cell lung cancer and melanoma (Figure 3). From literature
studies, we found that miR-29b directly binds to MMP -2 3’UTR
and regulates their expression in OC (12). Prudent manipulation
of these miRNAs can therefore regulate MMP production in
cancer cells and can act as antitumor agents.
miRNA-BASED ANTI-CANCER
THERAPEUTIC STRATEGIES

miRNA-based therapeutic protocols for regulating gene expression
can be divided into two main strategies: miRNA anti-sense therapy
and miRNA replacement therapy. Inhibition of oncomiRs synthesis
can be achieved by using miRNA inhibitors or oligomers and, on the
other hand, enhancement of miRNA activity can be achieved by
replacement of oncomiRs with the viral vector-mediated introduction
of tumor suppressor miRNAs in a cell-specific manner for
reprogramming target cells. Strategies to inhibit oncomiRs
biogenesis by small-molecule inhibitors, antagomiRs, miRNA
sponges, miRNA masking and approaches for replacement of
miRNAs, including lentiviral vectors, tumor-suppressor miRNA
mimics, CRISPR/Cas-like genome editing tools, are currently being
investigated as potential cancer therapeutics.
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Locked nucleic acid (LNA), a class of high‐affinity bicyclic
RNA analogs, can detect miRNA in tissues and inhibit their
function in vitro and in vivo studies. Miravirsen, a short locked
nucleic acid complementary to miR-122 (Roche/Santaris) is the
world’s first miRNA drug candidate in phase II clinical trials for
hepatitis C virus treatment, along with RG-101, an N-
acetylgalactosamine-conjugated anti-miR targeting miR-122
(139, 140). Furthermore, tumor suppressor miRNA
replacement has been explored utilizing miRNA mimics/
lentiviral vectors producing miRNA, which may influence
endogenous miRNA expression (141–144). As an alternative to
lentiviral vectors that show off-target effects, nonviral miRNA
delivery techniques like polyethyleneimine (PEI)-based
nanoparticles, liposomes, polymeric micelles, and dendrimers
have been proposed. MRX34 was the first miRNA replacement
therapy in modified liposomes to enter clinical trials, restoring a
tumor suppressor miRNA, miR-34, with promising outcomes in
stage I trials (139).

Several potential small molecule drugs targeting enzymes
involved in miRNA biogenesis have been identified using
comprehensive compound library screening. miR-21 is
upregulated in most cancers and suppression of PTEN by
miR-21 can contribute to chemoresistance via activating the
Akt/ERK pathways (145). Screening for small molecules
modulating miR-21 activity resulted in the discovery of a novel
etheramide backbone which led to a reduction in CC cell
proliferation and tumor growth, as well as the activation of
apoptosis by activating caspase-3/7 (145).
FIGURE 3 | Heat map depicts differential expression of miRNAs in various biological processes. Rows represent enrichment results for the target miRNAs whereas
columns show biochemical pathways. Each highlighted miRNA is correlated to the adjacent biological process in the black color gradient. The color of individual
fields represents P-value of the enrichment results. The dark shade shows a strong correlation between miRNA and the target pathways, the light shades
correspond to weaker ones, whereas transparent area explains no role of miRNA in that process.
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miRNA sponges are artificial transcripts containing several
complementary binding sites for one or more miRNA of interest
and can block the activity of multiple miRNAs sharing the same
seed sequence. miR-9 reduced the expression of KLF17, CDH1,
and LASS2 (tumor suppressor genes). A DNA sponge with four
miR-9 binding sites was demonstrated to effectively inhibit miR-
9 activity, restoring natural expression of KLF17, CDH1, and
LASS2 (146). Researchers are also focusing on utilizing CRISPR/
Cas9 gene-editing system for miRNAs inhibition. In human
colon cancer cell lines targeting of miR‐17/miR‐200c/miR‐141
loci was done using CRISPR/Cas9 resulting in decreased levels of
mature miRNA and low off‐target effects (147).

Combination strategies based on the co-administration of
miRNA targeting agents along with antitumor drugs have been
observed to eradicate drug-resistant tumor cells to treatment and
have greater anticancer effects. Nano-liposome-based delivery of
miR-205 mimic was shown to sensitize the tumor to radiation
therapy in breast cancer xenograft model (148). In another
example, PDL1 expression in tumor cells was decreased when
mir-34a mimics (MRX34) were combined with radiation (149).
Therefore, combining miRNA replacement therapies with
conventional anticancer drugs reveal excellent results
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and presents a novel possibility of chemotherapeutic
treatment regimens.

The capacity to target several genes in a particular pathway
and efficiently build novel therapeutic components are two
advantages of miRNA-based treatment. Given that a single
miRNA may regulate multiple MMPs and their downstream
signaling pathways amplifies the scope of utilizing miRNAs to
act as an attractive candidate for anticancer treatments.
However, this also invites additional problems of non-specific
target inhibition by miRNAs. Targeting MMPs has been
clinically challenging due to the non-specificity and
musculoskeletal toxicity of the inhibitors (150). Therefore,
precision medicine designed to target the MMPs increased in a
particular tumor in a patient might show a potential resolution
for this issue.

Even though there are no FDA-approved miRNA therapy
candidates for medical intervention to date, potential candidate
drugs are in clinical development or are in phase I and II clinical
studies (151). Nanoparticle-based, tissue-specific miRNA-drug
delivery to a particular lesion in a patient, can improve solubility
and efficacy of the medicine while avoiding contact with healthy
tissues. Intratumoral injections of miRNA-based therapeutics
FIGURE 4 | Diagrammatic representation showing the regulation of different MMPs through different miRNAs in various forms of gynecological cancer. It is showing
how the upregulation or downregulation of certain miRNAs is promoting the expression of certain MMPs in a specific type of gynecological cancer. Highlighted
miRNAs are highly correlated to major signaling pathways and target MMP-9/2 activities. MMP, Matrix Metalloprotease; miR, MicroRNA.
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directly into the pathogenic site can improve bioavailability,
target specificity, effectiveness, and reduce adverse effects in
cancer-related diseases (152, 153). Computational deep-
learning-based approaches for accurately predicting human
miRNA targets at the site level in patients have enabled the use
of huge multi-omics data and increased the robustness of
prediction models. It is critical to design a good delivery
mechanism with high specificity for targeting cells to execute
miRNA replacement therapy. As a result, miRNA replacement
therapy may be a unique and appealing treatment option for a
variety of cancers, and it is vital to research how to carry the
appropriate miRNA based on the kind of cancer.
CONCLUSION AND FUTURE PROSPECTS

MMPs are powerful regulators of cellular proliferation,
differentiation, angiogenesis, migration, and apoptosis. MMPs
are appealing targets for the creation of selective inhibitors with
high therapeutic potential. However, all of the clinical trials in
advanced cancer patients with MMP inhibitors were
unsuccessful. Numerous MMP inhibitors, including small
molecules and blocking antibodies, have been produced as
drug candidates to attenuate MMP production but most of
their effects tend to be majorly nonspecific. Since MMPs
contain similar active sites and play multiple crucial roles in
important biological processes, making it is challenging to
construct highly selective MMP inhibitors with low toxicities.
Therefore, to increase the clinical utility of MMPs for tumor
therapy, new MMP inhibitors should be able to individually
regulate individual MMPs as well as manage a network of
interlinked molecules. The ability of miRNAs to regulate
potentially hundreds of genes in a cell-specific manner makes
it a powerful target for anticancer treatment (Figure 4). Since
miRNAs may target MMPs more selectively without interfering
with the structural similarities of MMP catalytic domains,
miRNA-mediated MMP regulation may lead to the creation of
Frontiers in Oncology | www.frontiersin.org 10
MMP inhibitors. Furthermore, miRNAs may target several
molecules, often in the context of a network, making them
particularly effective at controlling various biological processes
essential to malignant tumors. Comprehensive inter-atomic
analyses of miRNAs involved in regulating signaling pathways
associated with cancer development and progression might aid
in establishing druggable targets for antitumor treatment.
Therefore, targeting such miRNA will not only help in
understanding their functions but also the underlying cause of
several gynecological disorders arising today. For probing
miRNA-MMP as an anticancer treatment, proper validation
and optimization of miRNA functional role are required in the
clinical system, xenograft and orthotopic models to elucidate a
detailed understanding of their efficacy in carcinogenesis and for
their journey from bench to clinic. Pharmaceutical companies
are constantly developing new miRNA-MMP therapies of low
cytotoxicity and limited side effects. Whether new technologies
targeting miRNAs that regulate MMPs can successfully be
employed to delay or stop cancer progression remains to be seen.
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