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We consider the problem of reconstructing finite energy stimuli encoded with a population of spiking leaky integrate-and-fire
neurons. The reconstructed signal satisfies a consistency condition: when passed through the same neuron, it triggers the same
spike train as the original stimulus. The recovered stimulus has to also minimize a quadratic smoothness optimality criterion. We
formulate the reconstruction as a spline interpolation problem for scalar as well as vector valued stimuli and show that the recovery
has a unique solution. We provide explicit reconstruction algorithms for stimuli encoded with single as well as a population
of integrate-and-fire neurons. We demonstrate how our reconstruction algorithms can be applied to stimuli encoded with ON-
OFF neural circuits with feedback. Finally, we extend the formalism to multi-input multi-output neural circuits and demonstrate
that vector-valued finite energy signals can be efficiently encoded by a neural population provided that its size is beyond a
threshold value. Examples are given that demonstrate the potential applications of our methodology to systems neuroscience
and neuromorphic engineering.

1. Introduction

Formal spiking neuron models, such as integrate-and-fire
(IAF) neurons, encode information in the time domain
[1]. Assuming that the input is bandlimited with a known
bandwidth, a perfect recovery of the stimulus from the
train of spikes is possible provided that the spike density
is above the Nyquist rate [2]. Using results from frame
theory [3] and statistics [4], these findings were extended
to (i) bandlimited stimuli encoded with a population of IAF
neurons with receptive fields modeled as linear filterbanks
[5], (ii) multivariate (e.g., space-time) bandlimited stimuli
encoded with a population of IAF neurons with Gabor
spatiotemporal receptive fields [6], and (iii) sensory stimuli
encoded with a population of leaky integrate-and-fire (LIF)
neurons with random thresholds [7].

These results are based on the key insight that neural
encoding of a stimulus with a population of LIF neurons
is akin to taking a set of measurements on the stimulus.
These measurements or encodings can be represented as
projections (inner products) of the stimulus on a set

of sampling functions. Stimulus recovery therefore calls
for the reconstruction of the encoded stimuli from these
inner products. These findings have shown that sensory
information can be faithfully encoded into the spike trains
of a neural ensemble and can serve as a theoretical basis for
modeling of sensory systems (e.g., auditory, vision) [8].

In this paper we investigate the problem of reconstructing
scalar and vector stimuli from a population of spike trains
on a finite time horizon. The encoding circuits consid-
ered are either single-input multi-output or multi-input
multi-output (MIMO). The increasing availability of multi-
neuron population recordings has led to a paradigm shift
towards population-centric approaches of neural coding
and processing. Examples of MIMO models in systems
neuroscience include extensive investigations of spike train
transformations between neuron populations [9] as well as
the analysis of the causal relationships between neurons in
a population [10]. In neuromorphic engineering MIMO
models have been used for brain-machine interfaces [11],
as well as silicon retinas and related hardware applications
[12].
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The stimuli considered in this paper have finite energy
and are defined on a finite time horizon. Even though
restricted to finite time intervals, finite energy signals have
infinite degrees of freedom. Consequently, the formal stim-
ulus recovery is ill-defined. We cast the stimulus reconstruc-
tion problem in the abstract spline theory [13] and recover
the stimulus as the unique solution to an interpolation spline
problem. Splines serve as a valuable mathematical tool for
interpolation problems, and their applications arise in many
areas such as data smoothing in statistics [4], computer
graphics [14], and digital signal processing [15].

Through the formulation of the interpolation spline
problem, the reconstructed signal will give the same mea-
surements as the original one. We show that this leads to
a signal recovery that is consistent in the sense that the
reconstructed signal triggers exactly the same spike train
when passed through the same neuron as the original
stimulus. The reconstructed signal is also required to achieve
a maximum degree of smoothness gauged by a quadratic
criterion. This condition ensures that the problem has a
unique optimal solution.

A preliminary version of some of the ideas presented here
appears in [16]. The analysis was based on results arising in
generalized sampling [17]. Here the theory is presented in a
more general setting using the spline theoretic framework,
and all proofs are included. We apply our theoretical results
to stimuli encoded with a number of spiking neural circuits
of interest. These include populations of integrate-and-fire
neurons with linear receptive fields that arise in hearing, ON-
OFF neural circuits with feedback that arise in vision and
multi-input multi-output (MIMO) neural circuits that arise
in olfaction.

Formally, MIMO neural circuits encode M-dimensional
vector-valued finite energy stimuli into the spike trains of
a population of N neurons. Their architecture consists of
an N × M linear, time invariant filtering kernel that feeds
into an ensemble of N neurons. For this novel neural circuit
we formulate and solve the problem of optimal consistent
recovery and also discuss some of the key conditions that
the filtering kernel has to satisfy in order to get a good
reconstruction.

The paper is organized as follows. Section 2 formulates
the problem of consistent reconstruction on a finite time
horizon as a spline interpolation problem and presents its
general solution. In Section 3 the reconstruction problem
is addressed for stimuli encoded with a population of LIF
neurons. Section 4 presents general MIMO neural encoding
circuits and the corresponding optimal consistent stimulus
reconstruction. A neuroscience inspired example is pre-
sented where the filtering kernel performs arbitrary (but
known) delays and scalings to input stimuli akin to simple
synaptic models. Finally Section 5 concludes our work.

2. Encoding with LIF Neurons and
Consistent Stimulus Recovery

In this section we formulate and solve the problem of
optimal consistent reconstruction for the simple case of a
stimulus encoded with a single LIF neuron. We show how

the spiking of an LIF neuron can be associated with a series
of projections in the general L2 space. We impose intuitive
constraints on the desired reconstructed signal and show
that the reconstruction algorithm can be reduced to a spline
interpolation problem.

2.1. Neural Encoding with Single LIF Neurons. Let u =
u(t), t ∈ [0,T], be a signal (or stimulus) of finite length
and energy, that is, u ∈ L2([0,T]). In what follows we
assume that the stimulus u is the input to a Leaky Integrate-
and-Fire (LIF) neuron. Throughout this paper (tk), k =
1, 2, . . . ,n, denotes the set of recorded spikes. As in the case of
bandlimited signals [5], neuron encoding can be associated
with the projection (measurement) of the stimulus on a
set of functions. By applying the t-transform [2], we can
determine both the sampling functions and the projections
of the stimulus on these functions using only the knowledge
of the spike times.

Assume that the encoder is an LIF neuron, with threshold
δ, capacitance C, resistance R, and constant bias b. The
membrane potential of the LIF neuron is governed by the
differential equation

C
dV(t)
dt

= −V(t)
R

+ u(t) + b (1)

with the initial condition V(0) = 0 and reseting conditions

V(tk) = δ =⇒ lim
t→ t+k

V(t) = 0 (2)

for all t ∈ [0,T], and k = 1, 2, . . . ,n. By solving the
differential equation in each interspike interval, the t-
transform of the LIF neuron is given by

∫ tk+1

tk
(u(s) + b) exp

(
− tk+1 − s

RC

)
ds = Cδ (3)

for all k, k = 1, 2, . . . ,n− 1. The t-transform can be rewritten
as

Lku = qk, (4)

where Lk : L2([0,T]) �→ R is a linear functional given by

Lku =
∫ tk+1

tk
u(s) exp

(
− tk+1 − s

RC

)
ds, (5)

qk = Cδ − bRC
(

1− exp
(
− tk+1 − tk

RC

))
(6)

for all k = 1, 2, . . . ,n − 1. Therefore, we have the following
result.

Lemma 1. The t-transform of the LIF neuron can be written
in inner-product form as

〈u,φk〉 = qk, (7)

where

φk(t) = exp
(
− tk+1 − t

RC

)
1[tk ,tk+1](t), (8)

and 〈·, ·〉 : L2([0,T]) × L2([0,T]) �→ R is the standard
L2 inner product restricted to the domain [0,T] for all k =
1, 2, . . . ,n− 1.
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Remark 2. The inner products or projections 〈u,φk〉, k =
1, 2, . . . ,n − 1, in (7) represent a set of measurements or
encodings of the signal u on [0,T]. Since (φk) and (qk), k =
1, 2, . . . ,n − 1, in (6) can be readily derived from the
knowledge of the spike times and the neuron parameters,
the signal encodings are available to an observer reading the
spike times (tk), k = 1, 2, . . . ,n− 1.

2.2. Consistent Stimulus Recovery. The problem of stimulus
reconstruction calls for estimating the signal u given the set
of spikes (tk), k = 1, 2, . . . ,n. This problem is, for the class
of stimuli u ∈ L2([0,T]), ill-defined. (Signals that lie in a
L2 space have, in general, infinite degrees of freedom and
thus cannot be perfectly recovered by a finite number of
observations.) A remedy is provided by introducing a set of
constraints on the recovery. The first constraint considered
here requires the reconstructed signal û to generate the
same spikes as the original stimulus. The second constraint
requires choosing among the reconstructed stimuli the one
with the maximum degree of smoothness. The latter is
formulated as an optimization criterion.

Definition 3. A reconstruction û of u based on the spike times
(tk), k = 1, 2, . . . ,n, is said to be consistent if û triggers exactly
the same spike train as the original stimulus u.

Remark 4. As before, assume that at time 0 the membrane
potential of the LIF neuron is set to the resting potential 0.
Then the consistency condition above is equivalent with

〈u,φk〉 = 〈û,φk〉 (9)

for all k, k = 1, 2, . . . ,n− 1.

Definition 5. A consistent reconstruction û that minimizes
the quadratic criterion

‖Ju‖ =
⎛
⎝
∫ T

0

(
d2u

ds2

)2

ds

⎞
⎠

1/2

(10)

is called the optimal consistent reconstruction of u.

Remark 6. ‖Ju‖ is the norm of the second derivative of the
reconstructed stimulus.

Lemma 7. The optimal consistent reconstruction û solves the
spline interpolation problem

û = argmin
〈u,φk〉=qk

∥∥∥∥∥
d2u

dt2

∥∥∥∥∥, (11)

where ‖ · ‖ is the standard L2-norm restricted to the interval
[0,T].

Proof. It follows directly from Definitions 3 and 5.

Remark 8. An introduction to splines and the general
solution to spline interpolation problems is presented in the
Appendix A.
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Figure 1: Encoding and reconstruction with a single LIF neuron.

Theorem 9. The optimal consistent reconstruction is unique
and is given by

û(t) = d0 + d1t +
n−1∑
k=1

ckψk(t), (12)

where

ψk(t) =
(
φk ∗ |·|3

)
(t) =

∫ tk+1

tk
|t − s|3 exp

(
− tk+1 − s

RC

)
ds,

(13)

where ∗ denotes the convolution, and | · | denotes the absolute
value. With c = [c1, c2, . . . , cn−1]T , d = [d0,d1] and q =
[q1, q2, . . . , qn−1]T the coefficients c and d satisfy the matrix
equations

⎡
⎢⎢⎢⎣

G p r

pT 0 0

rT 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c

d0

d1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

q

0

0

⎤
⎥⎥⎥⎦. (14)

Moreover G is an (n − 1) × (n − 1) matrix, and p and r are
column vectors with entries given by

[p]k =
〈
φk, 1

〉
,

[r]k =
〈
φk, t

〉
,

[G]kl = 〈φk,ψl〉,
(15)

where all the inner products are restricted to the interval [0,T].

Proof. The proof follows from Theorem 4 in Appendix A.
Note that the function | · |3 is up to a multiplicative constant
Green’s function for the second-order iterated Laplacian.
(See Lemma 5 in Appendix B).
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The representation functions (13) can be explicitly given
in analytical form as

ψk(t)

(RC)4

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
tk+1 − t
RC

)
− f

(
tk − t
RC

)

× exp
(
− tk+1 − tk

RC

)
, t ≤ tk,

12 exp
(
− tk+1 − t

RC

)
+ f

(
tk+1 − t
RC

)

+ f
(
tk − t
RC

)
exp

(
− tk+1 − tk

RC

)
, tk < t ≤ tk+1,

f
(
tk − t
RC

)
exp

(
− tk+1 − tk

RC

)

− f
(
tk+1 − t
RC

)
, t > tk+1,

(16)

where f (x) = x3 − 3x2 + 6x − 6. The entries of the matrix G
are given by

[G]kl
(RC)5

=
[
g
(
tl+1 − tk+1

RC

)
− g

(
tl+1 − tk
RC

)
exp

(
− tk+1 − tk

RC

)

− g
(
tl − tk+1

RC

)
exp

(
− tl+1 − tl

RC

)

+g
(
tl − tk
RC

)
exp

(
− tk+1 − tk

RC
− tl+1 − tl

RC

)]
· 1(k < l)

+
[

6
(

1− exp
(
−2(tk+1 − tk)

RC

))

−2g
(
tk+1 − tk
RC

)
exp

(
− tk+1 − tk

RC

)]
· 1(k = l)

+
[
g
(
tk+1 − tl+1

RC

)
− g

(
tk+1 − tl
RC

)
exp

(
− tl+1 − tl

RC

)

− g
(
tk − tl+1

RC

)
exp

(
− tk+1 − tk

RC

)

+g
(
tk − tl
RC

)
exp

(
− tl+1 − tl

RC
− tk+1 − tk

RC

)]

· 1(k > l)
(17)

with g(x) = x3 + 6x. Finally

[p]k = RC
(

1− exp
(
− tk+1 − tk

RC

))

[r]k = (RC)2
((

tk+1

RC
− 1

)
−
(
tk
RC

− 1
)

exp
(
− tk+1 − tk

RC

))
.

(18)

Remark 10. By letting R → ∞, one obtains the represen-
tation of the optimal consistent reconstruction for stimuli

encoded with the ideal IAF neuron. The parameters and
representation functions take a simple form:

lim
R→∞

φk(t) = 1[tk ,tk+1](t),

lim
R→∞

qk = Cδ − b(tk+1 − tk),

lim
R→∞

ψk(t) =
∫ tk+1

tk
|t − s|3 ds

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25
[

(t − tk+1)4 − (t − tk)4
]

, t ≤ tk,

0.25
[

(t − tk+1)4

+(t − tk)4
]

, tk < t ≤ tk+1,

0.25
[

(t − tk)4 − (t − tk+1)4
]

, t > tk+1,

lim
R→∞

[p]k = tk+1 − tk,

lim
R→∞

[r]k =
(tk+1)2 − (tk)2

2
,

lim
R→∞

[G]kl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05
[

(tk+1 − tl+1)5 + (tk − tl)5

−(tk − tl+1)5 − (tk+1 − tl)5
]

, k < l,

0.1(tk+1 − tk)5, k = l,

0.05
[

(tl+1 − tk+1)5 + (tl − tk)5

−(tl − tk+1)5 − (tl+1 − tk)5
]

, k > l.

(19)

2.3. Example. The input to an LIF neuron is a bandlimited
signal with bandwidth of 100 Hz. The neuron encodes the
stimulus during the time interval [0, 0.2] second. A bias equal
to b = 3 is also added to the input. The parameters of the
LIF neuron are δ = 0.8,C = 0.01, and R = 50. Under these
conditions the neuron generated 78 spikes. The recovered
signal is shown in Figure 1. In order to quantify the quality of
the recovery, we used the signal-to-noise ratio (SNR) defined
by

SNR = 10 log10

(
‖u‖2

∥∥u− û∥∥2

)
. (20)

In the above SNR definition the noise corresponds to the
error between the original and reconstructed signal. The SNR
was equal to 47.53 dB.

3. Single-Input Multi-Output Encoding and
Consistent Stimulus Recovery

In this section we consider the reconstruction of a stimulus
encoded with a population of LIF neurons. We demonstrate
that the consistent recovery can be again formulated as a
spline interpolation problem and provide the reconstruction
algorithm. We also show how the methodology developed
in this section can be applied to a simple encoding circuit
consisting of two-coupled ON-OFF neurons with feedback.
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3.1. Encoding with a Population of LIF Neurons. In what
follows we consider a neural encoding circuit consisting
of N leaky integrate-and-fire (LIF) neurons. Neuron j has
threshold δ j , bias bj , resistance Rj , and capacitance Cj for
all j = 1, 2, . . . ,N . After each spike every neuron resets its

membrane potential to 0. Let t
j
k denote the kth spike of

neuron j, with k = 1, 2, . . . ,nj , where nj is the number of
spikes that the neuron j generates, j = 1, 2, . . . ,N .

The t-transform of the population of N LIF neurons is
given by

∫ t
j
k+1

t
j
k

(
u(s) + bj

)
exp

⎛
⎝− t

j
k+1 − s
RjC j

⎞
⎠ ds = Cjδ j . (21)

Let

q
j
k = Cjδ j − bjRjC j

⎛
⎝1− exp

⎛
⎝− t

j
k+1 − t

j
k

RjC j

⎞
⎠
⎞
⎠ (22)

for all j = 1, 2, . . . ,N . As in the previous section, we have the
following.

Lemma 11. The t-transform of the LIF neuron can be written
in inner-product form as

〈u,φ
j
k〉 = q

j
k, (23)

where

φ
j
k(t) = exp

⎛
⎝− t

j
k+1 − t
RjC j

⎞
⎠1[t

j
k ,t

j
k+1](t), (24)

and 〈·, ·〉 : L2([0,T]) × L2([0,T]) �→ R is the standard
L2 inner product restricted to the domain [0,T] for all k =
1, 2, . . . ,n and j = 1, 2, . . . ,N .

3.2. Consistent Stimulus Recovery. Let q be a column

vector defined as q = [q1; q2; . . . ; qN ]
T

with q j =
[q

j
1, q

j
2, . . . , q

j
nj−1]

T
, j = 1, 2, . . . ,N . The vectors p, r, c have

the same dimension and are similarly defined. The matrix G
is a block square matrix defined as

G =

⎡
⎢⎢⎢⎢⎣

G11 · · · G1N

...
. . .

...

GN1 · · · GNN

⎤
⎥⎥⎥⎥⎦ (25)

with Gi j ∈ Rni−1×nj−1.
The following theorem first appeared in [16]; its proof is

presented here for the first time.

Theorem 12. Assume that at time 0 the membrane potential
of all neurons is at the rest value 0. The optimal consistent
reconstruction û is unique and can be written as

û(t) = d0 + d1t +
N∑
j=1

nj−1∑
k=1

c
j
kψ

j
k(t), (26)

where

ψ
j
k(t) =

(
φ
j
k ∗ |·|3

)
(t) =

∫ t
j
k+1

t
j
k

|t − s|3 exp

⎛
⎝− t

j
k+1 − s
RjC j

⎞
⎠ds.

(27)

The reconstruction coefficients are given in matrix form by

⎡
⎢⎢⎢⎣

c

d0

d1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

G p r

pT 0 0

rT 0 0

⎤
⎥⎥⎥⎦

+

·

⎡
⎢⎢⎢⎣

q

0

0

⎤
⎥⎥⎥⎦, (28)

where [·]+ denotes the pseudoinverse and

[
p j
]
k
= RjC j

⎛
⎝1− exp

⎛
⎝− t

j
k+1 − t

j
k

RjC j

⎞
⎠
⎞
⎠,

[
r j
]
k
= (RjC j)

2

⎛
⎝
⎛
⎝ t

j
k+1

RjC j − 1

⎞
⎠

−
⎛
⎝ t

j
k

RjC j − 1

⎞
⎠ exp

⎛
⎝− t

j
k+1 − t

j
k

RjC j

⎞
⎠
⎞
⎠,

[
Gi j

]
kl
= 〈φik,ψ

j
l 〉.

(29)

Proof. The proof is notationally more complex but closely
follows the proof of Theorem 9. The representation func-
tions (27) can be computed analytically as

ψ
j
k(t)

(RjC j)4

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f

⎛
⎝ t

j
k+1 − t
RjC j

⎞
⎠− f

⎛
⎝ t

j
k − t
RjC j

⎞
⎠

× exp

⎛
⎝− t

j
k+1 − t

j
k

RjC j

⎞
⎠, t ≤ t

j
k,

12 exp

⎛
⎝− t

j
k+1 − t
RjC j

⎞
⎠ + f

⎛
⎝ t

j
k+1 − t
RjC j

⎞
⎠

+ f

⎛
⎝ t

j
k − t
RjC j

⎞
⎠ exp

⎛
⎝− t

j
k+1 − t

j
k

RjC j

⎞
⎠, t

j
k < t ≤ t

j
k+1,

f

⎛
⎝ t

j
k − t
RjC j

⎞
⎠ exp

⎛
⎝− t

j
k+1 − t

j
k

RjC j

⎞
⎠

− f
⎛
⎝ t

j
k+1 − t
RjC j

⎞
⎠, t > t

j
k+1,

(30)

where f (x) = x3 − 3x2 + 6x − 6.
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b1

u(t)

b2

+

+

−

−

1
κ1

∫
dt

h11(t)

δ1

(t1k)

h12(t)

h21(t)
(t2k)

δ2

1
κ2

∫
dt

h22(t)

Figure 2: Coupled ON-OFF integrate-and-fire neurons.

3.3. Example: Encoding with an ON-OFF Neuron Pair.
We consider an encoding circuit consisting of two inter-
connected integrate-and-fire neurons with feedback. For
simplicity we assume that the IAF neurons are ideal, that is,
R1,R2 → ∞. Figure 2 depicts the circuit. Whenever a spike
is generated, the firing neuron is reset and feedback is added
to the membrane potential. In addition, the firing of each
spike is communicated to the other neuron through cross-
feedback. The two neurons in Figure 2 arise as models of
ON and OFF bipolar cells in the retina and their connections
through the nonspiking horizontal cells [18].

Let t
j
k denote the kth spike of the jth neuron, k =

1, . . . ,nj and j = 1, 2. The t-transform of the neural circuit
amounts to

∫ t1k+1

t1k

u(s) ds = κ1δ1 − b1
(
t1k+1 − t1k

)
+
∑
l≤k

∫ t1k+1

t1k

h11
(
s− t1l

)
ds

−
∑
l

∫ t1k+1

t1k

h21
(
s− t2l

)
ds1{t2l <t1k},

∫ t2k+1

t2k

u(s) ds = κ2δ2 − b2
(
t1k+1 − t1k

)
−
∑
l≤k

∫ t2k+1

t2k

h22
(
s− t2l

)
ds

+
∑
l

∫ t2k+1

t2k

h12
(
s− t1l

)
ds1{t1l <t2k}

(31)

and can be written in inner product form as

〈
u,φ

j
k

〉
= q

j
k, (32)

with q
j
k the right-hand side of (31) and φ

j
k = 1[t

j
k ,t

j
k+1], for all

k, k = 1, 2, . . . ,nj−1, and j, j = 1, 2. With the t-transform in
inner product form, the optimal consistent reconstruction is
given by Theorem 12.
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Figure 3: Recovery of temporal contrast from an ON-OFF IAF
neural pair.

A simple example consisting of two symmetric neurons
with parameters δ1 = −δ2 = δ, κ1 = κ2 = κ, and b1 = −b2 =
b is considered here. The cross-feedback is of the form

h12(t) = h21(t) = c exp(−αt)
(

(αt)5

5!
− (αt)7

7!

)
1[t≥0]. (33)

No other feedback is present, that is, h11 = h22 = 0. The
neuron parameters are δ = 0.75, κ = 0.01, and b = 3.
In addition, α = 1/0.015 sec−1 and c = 1/3. Note that the
impulse response of the filter has mean value zero. If the
mean value is nonzero, the spike density of the ideal IAF
neurons can be driven to zero or infinity.

The input was chosen to be the temporal contrast of an
artificial (positive) input photocurrent. With v denoting the
input photocurrent, the temporal contrast u is defined as

u(t) = d log(v(t))
dt

= 1
v(t)

dv

dt
. (34)

Clearly, even when the input bandwidth of the photocurrent
v is known, the effective bandwidth of the actual neuron
input u cannot be analytically estimated. The input pho-
tocurrent was bandlimited with bandwidth 100 Hz and had
duration 200 milliseconds. Each neuron generated 75 spikes.
The result of the recovery is shown in Figure 3. The SNR is
equal to 28.75 dB.

4. Multi-Input Multi-Output Encoding and
Consistent Stimulus Recovery

In this section we present our model of consistent informa-
tion representation of M-dimensional vector signals using
an N × M-dimensional filtering kernel and an ensemble
of N integrate-and-fire neurons (see Figure 4). We assume
without loss of generality that the neurons are ideal (non-
leaky). Each component filter of the kernel receives input
from one of the M component inputs, and its output is
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h2M
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...

...

...
...

v1

v2

vN
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bN

1
κ1

∫
dt

1
κ2

∫
dt

1
κN

∫
dt

δ2

δ1

(t1k)

(t2k)

(tNk )

Figure 4: Multiple-Input Multiple-Output time encoding machine.

additively coupled into a single neuron. Finally, we describe
an algorithm for stimulus reconstruction that is based on
spline interpolation.

4.1. MIMO Model for Neural Encoding. Let L2
M =

(L2([0,T]))M denote the space of M-dimensional, vector-
valued functions of finite energy over the domain [0,T]. The
general element of this space is u = [u1,u2, . . . ,uM]T , with
ui = ui(t), t ∈ [0,T], modeling the ith component of the
input signal and ui ∈ L2([0,T]) for all i, i = 1, 2, . . . ,M. The
space L2

M endowed with the inner product and norm defined
by

〈u, v〉L2
M
=

M∑
i=1

〈
ui, vi

〉
,

‖u‖2
L2
M
=

M∑
i=1

∥∥∥ui
∥∥∥2

,

(35)

respectively, is a Hilbert space. Let H : R �→ RN×M be a
filtering kernel defined as

H(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11(t) h12(t) · · · h1M(t)

h21(t) h22(t) · · · h2M(t)

...
...

. . .
...

hN1(t) hN2(t) · · · hNM(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

Filtering the signal u with the kernel H leads to an N-
dimensional vector valued signal v defined by

v � H∗ u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h11 ∗ u1 + h12 ∗ u2 + · · · + h1M ∗ uM

h21 ∗ u1 + h22 ∗ u2 + · · · + h2M ∗ uM
...

hN1 ∗ u1 + hN2 ∗ u2 + · · · + hNM ∗ uM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(37)

Equation (37) can also be written in vector notation as

v j = (h j)
T ∗ u, j = 1, 2, . . . ,N , (38)

where h j = [hj1,hj2, . . . ,hjM]T is the filtering vector of
the neuron j, j = 1, 2, . . . ,N . A bias bj is added to the
component v j of the signal v, and the sum is passed
through an integrate-and-fire neuron with integration con-
stant (capacitance) κj and threshold δ j , for all j, j =
1, 2, . . . ,N (see Figure 4). For simplicity we assume that the

IAF neurons are ideal, that is, Rj → ∞. Let t
j
k denote the

kth spike of the neuron j, with k = 1, 2, . . . ,nj , where nj is
the number of spikes generated by neuron j, j = 1, 2, . . . ,N .
The Time Encoding Machine in Figure 4 maps, therefore,

the input vector u into the vector time sequence (t
j
k), j =

1, 2, . . . ,N , k = 1, 2, . . . ,nj .
The t-transform for the jth neuron can be written as

∫ t
j
k+1

t
j
k

(
v j(s) + bj

)
ds = κjδ j , (39)
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or

M∑
i=1

∫ t
j
k+1

t
j
k

(
hji ∗ ui

)
(s) ds = q

j
k, (40)

where q
j
k = κjδ j − bj(t jk+1 − t

j
k), for all k, k = 1, 2, . . . ,nj − 1,

and all j, j = 1, 2, . . . ,N . Note that, without any loss of
generality, after firing all neurons are reset to the zero state.
The t-transform (40) can be written in an inner product
form as

〈u,φ
j
k〉 = q

j
k, (41)

where

φ
j
k = h̃ j ∗ 1[t

j
k ,t

j
k+1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃ j1

h̃ j2

...

h̃ jM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗ 1[t jk ,t

j
k+1

] (42)

for all j = 1, 2, . . . ,N , k = 1, 2, . . . ,nj − 1, and h̃ denotes

the involution (time reversal) of h, that is, h̃(t) = h(−t).
Note that the impulse response of the filtering kernel H is not
restricted to the interval [0,T] and can possibly have infinite
support.

Remark 13. An implicit assumption in writing the t-
transform in the inner product form (41) is that the sampling

functions φ
j
k belong to L2

M . A sufficient condition for the
latter is that all filters are bounded-input bounded-output
(BIBO) stable, that is,

∫
R|hji(s)| ds < ∞ for all i, i =

1, 2, . . . ,M, and all j, j = 1, 2, . . . ,N .

4.2. Consistent Stimulus Recovery. The optimal consistent
reconstruction is given by the solution of the following spline
interpolation problem:

û = argmin〈
u,φ

j
k

〉
=q jk

⎛
⎝ M∑
i=1

∥∥∥∥∥
d2ui

dt2

∥∥∥∥∥
2
⎞
⎠

1/2

. (43)

We have the following result.

Theorem 14. Assume that at time 0 the membrane potential
of all neurons is at the rest value 0. The optimal consistent
reconstruction û is unique and can be written as

û(t) = d0 + d1t +
N∑
j=1

nj−1∑
k=1

c
j
kψ

j
k(t), (44)

where d0, d1 ∈ RM and

ψ
j
k(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃ j1

h̃ j2

...

h̃ jM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗ 1[t jk ,t

j
k+1

] ∗ | · |3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(t)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ t
j
k+1

t
j
k

(
h̃ j1(·)∗ | · |3

)
(t − s) ds

∫ t
j
k+1

t
j
k

(
h̃ j2(·)∗ | · |3

)
(t − s) ds

...
∫ t

j
k+1

t
j
k

(
h̃ jM(·)∗ | · |3

)
(t − s) ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(45)

With p = [p1; p2; . . . ; pN ]T , p j ∈ R(nj−1)×M , and r similarly
defined, the reconstruction coefficients are given in matrix form
by

⎡
⎢⎢⎢⎣

c

d0

d1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

G p r

pT 0 0

rT 0 0

⎤
⎥⎥⎥⎦

+

·

⎡
⎢⎢⎢⎣

q

0

0

⎤
⎥⎥⎥⎦, (46)

with

[p j]ki =
〈

1,φ
ji
k

〉
,

[
r j
]
ki
= 〈1,φ

ji
k 〉,

[
Gi j

]
kl
=
〈
φik,ψ

j
l

〉
,

(47)

where the inner products are restricted to the interval [0,T].

Proof. The proof is based on Theorem 4.

Remark 15. Note that since the signal reconstruction is set up
as a spline interpolation problem, the algorithm presented
in Theorem 14 above will produce a solution that depends
on both the filtering kernel H and the spiking mechanism
of the population of neurons. We will briefly mention here
conditions of no information loss due to filtering. If F
denotes the Fourier transform, we have

(F v)(ω) = (F H)(ω) · (F u)(ω). (48)

The requirement for no information loss implies that F H,
the filtering kernel in the Fourier domain, has rank M for
all frequencies of interest (here for all ω ∈ R). A trivial
necessary condition that comes out of the rank condition
is that N ≥ M; that is, the number of neurons that
encode the stimulus must be at least equal to the number
of its components. This intuitive argument has important
ramifications in experimental neuroscience as it shows
that, in general, multivariate stimuli (e.g., video sequences)
cannot be efficiently represented by the spike train of a single
neuron or a small neural population. Rather, the spike trains
from a larger population of neurons that encode the same
stimulus needs to be used.
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4.3. Example: Delay Filter Bank. We present the realization
of the recovery algorithm for a filtering kernel that induces
arbitrary, but known, delays, and weights on the stimulus.
The kernel models dendritic tree latencies in sensory neurons
(motor, olfactory) [8] or, in general, delays and synaptic
weights between groups of pre- and postsynaptic neurons. In
order to incorporate these delays, we assume that the stimuli
are defined on a time window larger than [0,T]. The inner
product, however, is restricted to the time interval [0,T].

Each filter hji delays the stimulus in time by an arbitrary
positive amount αji and scales it by an arbitrary real number
wji, for all j = 1, 2 . . . ,N , and all i = 1, 2, . . . ,M.

Consequently, hji = wjiδ(t − αji) and h̃ ji = wjiδ(t + αji).

From now on let τ
ji
k = t

j
k + αji for all i, i = 1, 2 . . . ,M all

j, j = 1, 2, . . . ,N and all k, k = 1, 2, . . . ,nj − 1.

The representation functions ψ
j
k, j = 1, 2, . . . ,N , k =

1, 2, . . . ,nj − 1, of (45) are given by

ψ
j
k(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wj1

∫ τ
j1
k+1

τ
j1
k

|t − s|3 ds

w j2

∫ τ
j2
k+1

τ
j2
k

|t − s|3 ds
...

wjM

∫ τ
jM
k+1

τ
jM
k

|t − s|3 ds

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

for all t ∈ [0,T]. Note that the general term of (49) can be
expressed analytically similarly to (19).

The entries of (46) can be computed from (47) as

[p j]ki =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wji
(
τ
ji
k+1 − τ

ji
k

)
, τ

j
k+1 < T ,

wji
(
T − τ jik

)
, τ

ji
k < T < τ

ji
k+1,

0, T < τ
ji
k ,

[
r j
]
ki
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.5wji

(
(τ

ji
k+1)

2 − (τ
ji
k )

2
)

, τ
j
k+1 < T ,

0.5wji

(
T2 − (τ

ji
k )

2
)

, τ
ji
k < T < τ

ji
k+1,

0, T < τ
ji
k ,

[
Gi j

]
kl
= 〈φik,ψ

j
l 〉 =

M∑
m=1

〈φimk ,ψ
jm
l 〉

=
M∑
m=1

wimwjm

∫ τimk+1

τimk

ψ
jm
l (t) dt.

(50)

Note that the entries of G can be computed analytically
as

[Gi j]kl

=
M∑
m=1

wimwjm

20

×
[(

(τimk+1 − τ
jm
l )

5
+ (τimk − τ jml+1)

5

−(τimk − τ jml )
5 − (τimk+1 − τ

jm
l+1)

5
)
· 1
(
τ
jm
l+1 ≤ τimk

)

+
(

(τimk+1 − τ
jm
l )

5 − (τimk − τ jml+1)
5 − (τimk − τ jml )

5

−(τimk+1 − τ
jm
l+1)

5
)
· 1
(
τ
jm
l ≤ τimk ≤ τ

jm
l+1 ≤ τimk+1

)

+
(

(τimk+1 − τ
jm
l )

5 − (τimk − τ jml+1)
5 − (τimk − τ jml )

5

+(τimk+1 − τ
jm
l+1)

5
)
· 1
(
τ
jm
l ≤ τimk ≤ τimk+1 ≤ τ

jm
l+1

)

+
(

(τimk+1 − τ
jm
l )

5 − (τimk − τ jml+1)
5

+ (τimk − τ jml )
5

−(τimk+1 − τ
jm
l+1)

5
)
· 1
(
τimk ≤ τ

jm
l ≤ τ

jm
l+1 ≤ τimk+1

)

+
(

(τimk+1 − τ
jm
l )

5 − (τimk − τ jml+1)
5

+ (τimk − τ jml )
5

+(τimk+1 − τ
jm
l+1)

5
)
· 1
(
τimk ≤ τ

jm
l ≤ τimk+1 ≤ τ

jm
l+1

)

+
(
−(τimk+1 − τ

jm
l )

5 − (τimk − τ jml+1)
5

+ (τimk − τ jml )
5

+(τimk+1 − τ
jm
l+1)

5
)
· 1
(
τimk+1 ≤ τ

jm
l

)]
.

(51)

The vector-valued signal u(t) = [u1(t),u2(t),u3(t)]T has
three bandlimited components (M = 3) each with the
same bandwidth Ω = 2π · 100 Hz and time length
T = 100 millisecond. In total, 9 IAF neurons were used
to recover the signal (N = 9). The delays were drawn
randomly from an exponential distribution with mean 3
millisecond. The biases bj and thresholds δ j , j = 1, 2 . . . , 9,
were drawn from uniform distributions on the intervals
[2.3, 3.3] and [0.5, 1.5], respectively. Finally, κj = 0.01 for all
j = 1, 2, . . . , 9.

The recovered stimuli using the spikes from 3, 6, and 9
neurons, respectively, are depicted from top to bottom in
Figure 5. For each component, the recovered signal converges
to the original one.

Figure 6 shows the SNR corresponding to the recovery
of each stimulus component when 3, 4, . . . , 9 neurons are
used. Figure 6 demonstrates that overall, as more neurons are
added to the representation of the stimulus, the SNR of all
stimulus components increases. An exception is observed in
the recovery of the component u3; the addition of a neuron
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Figure 5: Recovery of the 3-dimensional input vector valued signal. In each row the original (blue) and recovered (green) signals are shown
for the indicated number of neurons used for recovery. The columns correspond to each component of the input signal.

from three to four leads to a decrease of the SNR. Note,
however, that the SNR for the recovery of the entire vector-
valued stimulus u increases with the addition of the fourth
neuron from 7.71 dB to 12.23 dB (data not shown).

5. Discussion

The methodology of interpolating splines presented here
applies to the deterministic case where the input stimulus
and the LIF neurons have low noise levels. It ties in naturally
with theoretical results that show that neural encoding of
bandlimited signals leads to perfect signal reconstruction if
Nyquist-type rate conditions are satisfied [5].

In neuromorphic engineering applications the noise
levels can be kept low. Neuronal spike trains, however, often
exhibit strong variability in response to identical inputs
due to various noise sources. For stimuli encoded with
neural circuits the problem of optimal reconstruction can
be formulated as a smoothing spline problem [4]. This case
is presented analytically in [7] for a slightly less general
setup, where the signals belong to a Reproducing Kernel
Hilbert Space [19]. A reconstruction of stimuli encoded with
LIF neurons using both smoothing and interpolating splines
offers an additional alternative. Thus, the methodology of
spline theory provides a general framework for the optimal
reconstruction of signals on a finite time horizon.
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Figure 6: SNR as a function of the number of neurons.

The methodology presented here can be applied to the
reconstruction of stimuli encoded with neurons that belong
to other model classes of interest. An example is provided by
neuron models with level crossing spiking mechanisms and
feedback that have been investigated in [16]. More generally,
the t-transform of any neuron model with piecewise linear
dynamics can be described by a set of linear projections.
Neurons with linear dynamics have been shown to express
complex spiking behaviors [20–22].

The MIMO architecture presented here consists of
a linear, time-invariant filtering kernel that is separated
from the neural spiking mechanism. By relaxing the time-
invariance property and embedding spike-triggered reseting
mechanisms at the level of the filtering kernel, more complex
transformations can be modeled. Consequently dendritic
trees incorporating compartmental neuron models and spike
backpropagation [23] can be analyzed with the methodology
advanced in this paper. The aforementioned architectures
will be the subject of future research.

Appendices

A. Interpolation Splines in Hilbert Spaces

We assume throughout that stimuli u belong to the space
of functions of finite energy over a domain T , that is, u ∈
L2(T ). The information available to a decoder is a set of
measurements

〈φk,u〉 = qk, (A.1)

where φk ∈ L2(T ) are known functions and k = 1, 2, . . . ,n.
The inner products can be written in operator form as

Lu = q, (A.2)

where q = [q1, q2, . . . , qn]T , and L : L2(T ) �→ Rn is a linear
operator defined by

Lu = [〈φ1,u〉, 〈φ2,u〉, . . . , 〈φn,u〉]T . (A.3)

Finding u by inverting (A.2) is, in general, an ill-posed
problem. Additional “smoothness” conditions are needed.
We introduce these by requiring that the reconstructed signal
minimizes a quadratic criterion ‖Ju‖, where J : L2(T ) �→ Y
is a bounded linear operator, Y is the range of J , and ‖ · ‖
denotes the standard L2-norm over T .

Definition 1. The solution to the interpolation problem

û = argmin
u:Lu=q

‖Ju‖2
(A.4)

is called an interpolation spline corresponding to the initial
data q, the measurement operator L, and the energy operator
J .

We restrict ourselves to the case where the operator J has
a finite dimensional kernel of dimension m. The following
standard theorem establishes necessary conditions for the
existence and uniqueness of the interpolation spline. For a
proof see [13].

Theorem 2. If ker(L) ∩ ker(J) = {0}, and the range of
J is closed, then there exists a unique interpolation spline
corresponding to the data q, the measurement operator L, and
the energy operator J .

In order to derive the general form of the interpolation
spline, we introduce the notion of reproducing kernel for
a Hilbert space with respect to the energy operator J .
This notion generalizes reproducing kernels associated with
Reproducing Kernel Hilbert Spaces [19].

Definition 3. The function K : T × T �→ R is called the
reproducing kernel of the space L2(T ) with respect to the
energy operator J , if

(1) for any functional L : L2(T ) �→ R, the function
f (s) = LK(s, ·) lies in L2(T );

(2) any functional L : L2(T ) �→ R that vanishes on the
kernel of J , that is,

Lu = 0, ∀u ∈ ker(J) (A.5)

can be represented as

Lu = B(LK(s, ·),u), ∀u ∈ L2(T ). (A.6)

Here B : L2(T )× L2(T ) �→ R is a bilinear form defined by

B(u, v) = 1
4

(
‖J(u + v)‖2 − ‖J(u− v)‖2

)
. (A.7)

Theorem 4. The solution to the spline interpolation problem is
given by

û =
m∑
i=1

diχi +
n∑
k=1

ckψk, (A.8)

where the set of functions (χi), i = 1, 2, . . . ,m, forms an
orthogonal basis for ker(J) and

ψk(s) = 〈φk,K(s, ·)〉. (A.9)
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With d = [d1,d2, . . . ,dm]T , c = [c1, c2, . . . , cn]T , and q =
[q1, q2, . . . , qn]T , the coefficients c and d satisfy the matrix
equations

⎡
⎣G F

FT 0

⎤
⎦
⎡
⎣c

d

⎤
⎦ =

⎡
⎣q

0

⎤
⎦. (A.10)

Moreover G is an n× n matrix and F is an n×m matrix with
entries given by

[G]kl =
〈
φk,ψl

〉
,

[F]kl =
〈
φk, χl

〉
,

(A.11)

for all i = 1, 2, . . . ,n, j = 1, 2, . . . ,n and all l = 1, 2, . . . ,m.

Proof. For the representation result of (A.8) see [13]. By
substituting (A.8) into (A.2), we obtain

[
G F

]
·
⎡
⎣c

d

⎤
⎦ = q. (A.12)

For the rest of the equations define

J∗(u, c) = ‖Ju‖2 − 2
n∑
k=1

ck
(〈φk,u〉 − qk

)
, (A.13)

where the entries of the vector c are the Lagrange multipliers.
If û is the optimal consistent reconstruction and v ∈ L2(T ),
then

∂

∂α
J∗(û + αv, c)

∣∣∣∣
α=0

= 0 =⇒ B(û, v) =
n∑
k=1

ck
〈
φk, v

〉
. (A.14)

From the Cauchy-Schwarz inequality with v ∈ker(J), we
have

B(u, v) = 0. (A.15)

Therefore, for each of the basis functions of ker(J), χ1, . . . , χm,

n∑
k=1

ck
〈
φk, χj

〉
= 0, (A.16)

which in matrix form can be written as

FTc = 0, (A.17)

with F defined as in (A.11). Combining (A.12) with (A.17)
we obtain (A.10). For more information see [13].

B. Reproducing Kernels for MIMO Signal
Reconstruction

Let L2
M = (L2(T ))M be the space of M-dimensional

vector-valued functions defined over the domain T . The
space equipped with inner product and norm given by
(35) is a Hilbert space. Suppose that we seek a consistent
reconstruction that also minimizes the energy operator

JM(u) =
⎛
⎝ M∑
i=1

∥∥∥∥∥
dmui

dtm

∥∥∥∥∥
2
⎞
⎠

1/2

. (B.1)

Lemma 5. The reproducing kernel for the Hilbert space L2
M

with respect to the energy operator JM is given by

K(t, s) = (−1)m

2(2m− 1)!
|t − s|2m−1 · [1, 1, . . . , 1]T . (B.2)

Proof. It can be shown that the reproducing kernel can be
written in the form

K(t, s) = E(t − s), (B.3)

where E(·) is the fundamental solution for the mth-iterated
Laplacian

ΔmE = δ. (B.4)

For univariate functions the iterated Laplacian is equal to
the 2mth order derivative of each component and the result
follows. A complete proof can be found in a general setting
in [24].

Note that for m = 2 the kernel becomes

K(t, s) = 1
12
|t − s|3 · [1, 1, . . . , 1]T . (B.5)

For the general representation result (A.8), the scalar factor
can be absorbed into the coefficients.
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