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Abstract

Using large-scale small molecule screening techniques, Li et al. have identified a compound that 

inhibits the UT-B urea channel. They propose that this or similar compounds could be used as 

aquaretic agents to increase water excretion without changes in electrolyte excretion. Such 

compounds would potentially be useful in treatment of hyponatremic disorders. Here we review 

the physiological basis for the action of urea channel inhibitors in the kidney and assess their 

clinical potential.

A paper by Li and colleagues in this month’s edition of Kidney International,[1] together 

with two recent papers from the laboratory of Alan Verkman [2][3], introduce two new 

chemical families of drugs that increase water excretion by inhibiting urea channels 

expressed in the kidney. The agent studied by Li et al., PU-14, was shown to increase water 

excretion in rodents with relatively little effect on the excretion of electrolytes, thereby 

putting it into a functional class of drugs (along with the vaptans) termed “aquaretic” agents. 

The authors project possible roles for these urea channel inhibitors (UCIs) in the treatment 

of hyponatremic states associated with volume expansion, e.g. congestive heart failure, 

hepatic cirrhosis, nephrotic syndrome, and the syndrome of inappropriate antidiuresis. Based 

on current knowledge about the physiological roles of renal urea channels, potential 

advantages and disadvantages of such agents for human use can be posited.

Renal urea channels are termed “UT-B” (coded by the SLC14A1 gene) and “UT-A” (coded 

by the SLC14A2 gene). The latter gene produces several protein products as a result of 

alternative splicing and use of alternative promoters. Two of these, UT-A isoform 1 and UT-

A isoform 3, are expressed in the inner medullary collecting ducts (IMCDs), while a third, 

UTA isoform 2, is expressed in the thin descending limbs of Henle. Originally, these 

proteins were thought to mediate carrier-mediated transport, but recent x-ray crystallography 

studies have revealed that the UT-B protein is channel-like in character [4]. The agents 

described by Li and colleagues in this issue of KI and by Verkman’s group were identified 
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by small molecule screening of drug libraries using an assay based on the fact that 

endogenous UT-B in erythrocyte membranes protects against osmotic lysis when exposed to 

gradients of a chemical analog of urea, acetamide. Candidate UCIs were therefore identified 

by their abilities to sensitize red blood cells to osmotic lysis. Consequently, these drugs are 

UT-B inhibitors, although Li et al showed that their agent, PU-14, can weakly inhibit UT-A 

isoform 1. How do UCIs increase water excretion? In brief, in the absence of urea channel 

activity, endogenous urea becomes a powerful de facto osmotic diuretic. Understanding why 

this is true requires a deeper discussion of the physiology of urea transport in the context of 

the urinary concentrating mechanism.

The role of urea transport in renal water conservation is widely misunderstood. The old 

notion that urea gradients in the inner medulla are involved in generating an axial sodium 

chloride gradient (based largely on the Kokko-Rector passive countercurrent model [5]) has 

been dispelled based on findings in urea channel knockout mice (UT-A1 and 3) 

demonstrating that the absence of urea channels in the inner medullary collecting duct does 

not alter sodium chloride concentrations in inner medullary tissue [6]. Rather, our 

understanding of the role of urea in the medullary concentrating mechanism has returned to 

a view originally expressed by Berliner and colleagues in 1959 [7], which is summarized as 

follows:

In mammals including humans, urea is the prime molecular vehicle for excretion of excess 

nitrogen when dietary protein intake exceeds that required for growth and repair (plus the 

small amounts of arginine utilized for production of nitric oxide and the small amount of 

glutamine used for the production of ammonium in the kidney). Consequently, when protein 

intake is high, the rate of urea excretion is high. From an osmotic perspective, the amount of 

urea excreted is substantial, creating a conundrum. The large amount of urea excreted 

creates an osmotic load in the renal tubule lumens. If the same amounts of any other solute 

(e.g. mannitol) were introduced into the tubule lumens, a massive osmotic diuresis would 

occur. Thus, the requirement to excrete large amounts of urea potentially conflicts with the 

need to conserve water. Nature’s solution to this problem is urea channel-mediated 

accumulation of urea in the renal medullary interstitium, which osmotically balances the 

urea in the collecting duct lumen, thereby preventing urea-dependent osmotic diuresis that 

would otherwise occur.

How does urea accumulate in the inner medullary interstitium? All of the known urea 

channel isoforms are involved (Figure 1). The combination of UT-A isoform 1 and isoform 

3 in the collecting duct provides a source of urea delivered to the inner medullary 

interstitium from the collecting duct lumen. However, a source of urea is not enough 

because blood flow to the inner medulla would tend to dissipate whatever urea gradients are 

generated. Dissipation however is prevented by countercurrent exchange of urea which 

occurs in specialized structures called “vascular bundles” located in the inner part of the 

inner stripe of the outer medulla. These vascular bundles utilize the urea channel UT-B of 

the descending vasa recta and UT-A isoform 2 of the descending limb of Henle to rapidly 

return urea that effluxes from the fenestrated ascending vasa recta. A failure of this 

countercurrent exchange process would rapidly deplete urea from the inner medulla. An 

additional feature of this mechanism is the UT-B urea channels present in erythrocyte 
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membranes which allows urea inside of red cells to exit rapidly enough to be included in this 

recycling process. The ability of PU-14 to block UT-B in erythrocytes and descending vasa 

recta, therefore subverts the countercurrent exchange process necessary for retention of urea 

in the inner medulla. Indeed, direct measurements of solute concentrations in the inner 

medullary tissue by Li and colleagues confirmed that PU-14 dissipates urea from the inner 

medulla, while leaving sodium concentrations unaffected. Consequently, as discussed above, 

there will not be enough urea in the inner medulla to osmotically balance the urea in the 

inner medullary collecting duct lumen, causing the luminal urea to behave as an osmotic 

diuretic.

Do UCIs have clinical potential? Li et al have proposed use as aquaretic agents for treatment 

of hyponatremic disorders. Obviously, developing a drug for clinical use is a long and 

expensive process. We would argue that further groundwork is required to target UT-A 

rather than UT-B. The authors have targeted UT-B primarily because of ready availability of 

an assay using red blood cells. However, an argument could be made that a UT-A inhibitor 

would be a better target based on the physiology reviewed above. First, UT-A inhibitors 

may be more effective as aquaretics than UT-B selective drugs because they would inhibit 

both the source of urea to the inner medulla (UT-A 1 and 3 in the IMCD) and the 

countercurrent exchanger in the vascular bundles (UT-A2). By inhibiting urea absorption in 

the inner medullary collecting duct, UT-A inhibitors (but not UT-B inhibitors) would also 

increase fractional excretion of urea. This could be of value in patients with hyponatremia 

due to heart failure in whom azotemia is common. In addition, UT-A inhibitors would 

potentially have fewer adverse effects since UT-A’s only known physiological function is in 

the kidney whereas UT-B inhibitors could have effects elsewhere, e.g. causing hemolysis as 

illustrated by the screening assay. Development of UT-A selective UCIs could be 

accomplished either by additional large-scale small-molecule screens using an appropriate 

assay for transport via UT-A, or by designed modifications of UT-B selective agents. The 

latter option would be benefited by further X-ray crystallography work to discover the 

structure of UT-A. Also, before the development of a therapeutic UCI, attention should be 

paid to questions of oral availability and potency, which can in principle be optimized 

through systematic modifications of the hypothetical UT-A selective lead compound in the 

manner followed by Anderson et al. for UT-B inhibitors [3].

Could UCIs compete with vaptans (vasopressin V2 receptor blockers) for use in 

hyponatremic disorders? Given the entirely different mechanism of action, we believe that 

UCIs could provide a potentially useful option for clinicians, with a different spectrum of 

potential adverse effects. Indeed, UCIs are predicted to be more selective for water versus 

Na transport compared with vaptans since the transport via the epithelial sodium channel is 

strongly regulated by vasopressin (via the V2 receptor) in the renal collecting duct [8][9]. In 

contrast, UCIs would be of little utility in the treatment of autosomal dominant polycystic 

kidney disease, where vaptans show great promise as a result of their abilities to block 

vasopressin-dependent signaling [10]. An additional caveat is that the efficacy of UCIs 

would be predicted to be dependent on the rate of urea excretion and consequently on the 

level of protein intake and nitrogen balance in the patient. As demonstrated by Yao et al. [2], 

when rats were given a low protein diet, a UT-B inhibitor was without demonstrable effect.

Knepper and Miranda Page 3

Kidney Int. Author manuscript; available in PMC 2013 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, the paper by Li and colleagues provides us with a nice ‘proof of principle’ study 

introducing a new class of drugs potentially useful in the treatment of hyponatremic 

disorders. It will be interesting to follow future developments with this class of drugs.
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Figure 1. Diagram illustrating roles of urea channels in the process responsible for accumulation 
of urea in renal inner medulla
See text for explanation. DVR, descending vasa recta; AVR, ascending vasa recta; OS-OM, 

outer stripe of outer medulla; IS-OM, inner stripe of outer medulla; IM, inner medulla; 

IMCD, inner medullary collecting duct. UT-B, UT-A1, UT-A2, and UT-A3 are urea channel 

isoforms described in the text.
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