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Abstract

For many applications in ecology, it is important to examine the phylogenetic relations
between two communities of species. More formally, let 7 be a phylogenetic tree and let A
and B be two samples of its tips, representing the examined communities. We want to com-
pute a value that expresses the phylogenetic diversity between A and B in 7. There exist
several measures that can do this; these are the so-called phylogenetic beta diversity (G-
diversity) measures. Two popular measures of this kind are the Community Distance (CD)
and the Common Branch Length (CBL). In most applications, it is not sufficient to compute
the value of a beta diversity measure for two communities A and B; we also want to know if
this value is relatively large or small compared to all possible pairs of communities in 7 that
have the same size. To decide this, the ideal approach is to compute a standardised index
that involves the mean and the standard deviation of this measure among all pairs of spe-
cies samples that have the same number of elements as A and B. However, no method
exists for computing exactly and efficiently this index for CD and CBL. We present analytical
expressions for computing the expectation and the standard deviation of CD and CBL.
Based on these expressions, we describe efficient algorithms for computing the standard-
ised indices of the two measures. Using standard algorithmic analysis, we provide guaran-
tees on the theoretical efficiency of our algorithms. We implemented our algorithms and
measured their efficiency in practice. Our implementations compute the standardised indi-
ces of CD and CBL in less than twenty seconds for a hundred pairs of samples on trees with
7 - 10* tips. Our implementations are available through the R package PhyloMeasures.

Introduction

Ecologists often distinguish three kinds of diversity. Alpha diversity describes the diversity of one
sample (such as the number of plant species in a vegetation plot), beta diversity describes the dis-
similarity between a pair of samples, and gamma diversity describes the diversity of a large set of
samples [1, 2]. These concepts can be applied to a number of diversity measures, including spe-
cies richness, functional diversity and phylogenetic diversity [3, 4]. Phylogenetic beta diversity
describes the phylogenetic distance among pairs of communities [5]. It is an increasingly widely-
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used concept in ecology, with many interesting recent applications, for example in biogeographi-
cal regionalization [6] and understanding broad-scale species distributions [7, 8]. Accordingly,
there has also been a recent proliferation of methods to describe beta diversity [9].

Recent work on phylogenetic diversity has made great progress in developing efficient
approaches to calculating alpha diversity measures (e.g. the works by Steel, O’'Dwyer et al., Tsir-
ogiannis et al., Nipperess and Matsen, Chao et al. [10-15]). On the other hand, so far there are
no known algorithms that can efficiently compute phylogenetic beta diversity on large num-
bers of samples given large phylogenetic trees. This limits their practical applications, and the
problem will grow as ecologists analyze larger and larger trees and numbers of samples. To ful-
fill their potential in a world of growing datasets, it is important that phylogenetic beta diversity
metrics can be computed efficiently. Here, we focus on two widely-used metrics related to beta
diversity. The first, Community Distance (CD), is the beta diversity analog of the Mean Pair-
wise Distance (MPD) alpha diversity measure. The second, Common Branch Length (CBL) is
not strictly speaking a beta diversity measure (because it describes similarity, rather than differ-
ence, between two samples), but it is intimately related to two frequently-used measures, Phy-
loSor and UniFrac, of which UniFrac is a measure of dissimilarity and PhyloSor can be easily
converted to one using 1-PhyloSor [9]. Our primary goal is to develop methods to compute
these measures efficiently even on very large trees.

A notable lack in the literature on phylogenetic beta diversity measures is a correction for
the species richness of the samples. With respect to phylogenetic alpha diversity measures such
as the Mean Pairwise Distance (MPD), the Mean Nearest Taxon Distance (MNTD), and the
Phylogenetic Diversity (PD), it is well-known that these measures depend on species richness,
and so it is common practice to compute an index that standardizes these values against the
species richness of the sample using one of a number of possible null models [16, 17]. This
index combines the original value of the measure for a species sample K on a given tree 7, with
the mean and the variance of this measure’s value among all species samples in 7 that have the
same number of elements as K. However, despite the dependencies of phylogenetic beta diver-
sity measures on species richness, such corrections are not usually applied, perhaps because of
the difficulty in standardizing against two species richness values simultaneously. And when
such corrections are attempted, they involve slow and imprecise randomization tests [8, 18-
20]. Hence, a second goal is to allow such standardization for phylogenetic beta diversity mea-
sures by developing algorithms to efficiently and precisely compute the expectation and vari-
ance of a beta diversity measure given a tree and pair of species richness values. This
expectation and variance depend on a null model which describes the probability of drawing
any particular pair of species sets with the specified species richness values. Here, we consider
the case that all such pairs are equally probable. It is also possible to define a variety of
unequal-probability cases, where the probability can depend on species abundances [21].

Care must be exercised in the interpretation of phylogenetic beta diversity measures, partic-
ularly CD and its standardised version [22]. In particular, CD is not a suitable dissimilarity
measure, as the CD for a community A and itself is generally not zero, and may be greater than
the CD between A and a different community B. As long as this limitation is understood, the
measure can still be a useful description of phylogenetic beta diversity in some contexts (e.g. as
indicated in the works of Swenson et al. and Pellisier et al. [4, 20]). And, as with measures of
standardized alpha diversity, it is crucial to carefully consider the appropriate species pool
upon which to base the standardization [5]. When considered carefully, however, the depen-
dence on pool size may actually prove to be a useful feature, allowing more nuanced ecological
inference [21, 23], as one allows pool size to vary.

In the present work, we provide results that lead to efficient computations of the the beta
diversity measures CD and CBL, and their standardized indices. First, given a phylogenetic tree
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T, we show how to derive analytical expressions for computing exactly the mean and the vari-
ance of the CD and the CBL among pairs of species samples in 7 that have given sizes. Based
on these expressions, for each of these two measures we describe efficient algorithms for com-
puting the measure’s standardized index for a given pair of samples (and also the measure’s
original value for this pair). These algorithms are developed based on standard techniques in
Algorithms Design, and we provide theoretical guarantees for their performance. We imple-
mented all of the algorithms the we describe, and we conducted experiments that exhibit their
efficiency in practice. We measured the performance of our algorithms on trees of several sizes,
extracted from a phylogeny that has 71,181 tips and 83,751 nodes in total. As we show later in
detail, our implementations ran very fast even for the largest trees that we considered; for each
of the two measures, our programs managed to compute in less than a minute the standardized
indices for one hundred pairs of species samples on the complete tree with the 71,181 tips. We
have made the programs that we developed publicly available through the open source R pack-
age PhyloMeasures [24]. To exhibit the strength of fast beta diversity computations, we
also present an application example; we compute heat maps that illustrate the beta diversity
values between a focal point assemblage and assemblages distributed on a world grid. Given
our efficient algorithms, it is now possible to produce several such maps in high resolution,
something that was infeasible with previously existing software.

Analysis
Terminology and Notation

Let 7 be a phylogenetic tree. We use V to indicate the set of nodes (representing the species/
taxa) in 7', and we use E to denote the set of edges (links between nodes) in this tree. For an
edge e € E, we denote the (always positive) weight of this edge by w,. Depending on the context,
the edge weights in 7 may represent time intervals, molecular distance, or some other notion
of difference between taxa. The analysis in this paper does not depend on this notion of differ-
ence. We denote the set of leaf nodes in 7 (taxa that do not have any child species) by S. We
refer to these nodes as the tips of 7. We indicate the number of the tips in 7 by s(7") or simply
s, and we indicate the number of all the nodes in 7" by n. We consider that 7 is a rooted tree.

For any edge e be in 7, we use Ch(e) to denote the edges that are adjacent to the child node
of e. We call these edges the children of e. Let u be a node in 7, and let e be the edge that con-
nects u with its parent node. We use interchangeably 7 (1) and 7 (e) to denote the subtree of
7T whose root is u. We use S(u) and S(e) to indicate the set of tips that appear in 7 (u). We
denote the number of these tips by s(#) and s(e).

Let u, v be two nodes in 7. We call a simple path between these nodes the cycle-free
sequence of edges that we have to traverse in order to reach u from v. We call the cost of this
path the sum of the weights of all the edges in the path. We denote this cost by cost(u, v). Since
T is a tree, there exists a unique simple path between any pair of nodes in 7. We call the height
of 7 the maximum number of edges that appear on a simple path between the root of 7 and
any leaf. We represent the height of 7 by h(7'). Let R C S be any sample (subset) of the tips in
7. We denote the number of tips in this sample by |R|. We indicate the set of all paths that con-
nect two elements in R by Paths(R), that is:

Paths(R) = {p(u,v) : u,v € R}
We denote the set whose elements are all subsets of S that have cardinality exactly r by Sub(S,

r). For an edge e € E and a subset R of the tips of 7, we denote the elements of S(e) that are also
elements of R by Sg(e), that is Sg(e) = S(e)NR. We indicate the the number of these tips as sp(e).
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For a given phylogenetic tree 7 we call the total path cost of T the sum of the costs of all dis-
tinct simple paths that connect tips of 7. We denote this quantity by TC(7 ). Thus, the toal
path cost of a tree 7 is equal to:

TC(T) = Z cost(u, v).

{uy}es

Let e be an edge of 7. We call the total path cost of e the sum of the costs of all simple paths in
Paths(S) that contain e. We denote this quantity by TC(e), thus:

TC(e) = Z cost(u, v).
{uyv}es
ecp(u,v)

For a node u that is a tip of 7', we call the total path cost of u the sum of the costs of all simple
paths between u and any other tip of 7. We indicate this quantity by TC(u). Note that TC(u) =
TC(e), where e is the edge adjacent to u.

The Community Distance

Let 7 be a phylogenetic tree, and let A, B C S be two samples of its tips with |A| = 4, and |B| =
b. The Community Distance (CD) between A and B is equal to the sum of the costs of all paths
that connect a tip in A with a tip in B, divided by the total number of these paths. Therefore,
the community distance between A and B is equal to:

CD(T,A,B) = %ZZ cost(u, v).

u€A veB

Samples A and B may not necessarily be of equal size. The CD is analogous to the Mean
Pairwise Distance measure for computing the average distance between two samples of
species.

The f Net Relatedness Index. Given a phylogenetic tree 7" and two samples of its tips A,
B such that |A| = a and |B| = b, the standardized index of the CD for these samples is equal to:

CD(T, A, B) —Eqp (T, a, b)
sdep(T ,a,b) ’

NRI,(T, A, B) = (1)

where E.,(7,a,b) and sd, (7 , a, b) are respectively the expectation and the standard devia-
tion of the CD for all pairs of tip samples such that one sample contains a tips and the other
sample contains b tips. The following theorem provides an analytical expression for the expec-
tation of the CD.

Theorem 1. Let T be a phylogenetic tree that has s tips, and let a, b be positive integers with
a, b <. The expected value of the CD among all pairs of tip samples in T, such that one sample
consists of a tips, and the other consists of b tips, is equal to:

2
Beo(T,4,b) == - TO(T)
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Proof. The expectation of the CD is equal to:

Ep(T,a,b) =
AeSub(Su Z cost(u, v) P,(u) - APy(v) + AP, (v) - APy(u)) | =
B € Sub(S, b) {u vies

1 Z COSt u V AeSub [AP ( ) APB(V) +APA(V) 'APB(M)L

where AP4(u) is a random variable such that AP,(u) = 1 if u € A, otherwise its value is zero. It
holds that:

E,c Sub(S, a) [APA(I") ’ APB(V) + AP, (V) : APB(”)] =

B € Sub(S, b)

s [AP, (1) - AP(v)] = 222

2
S
Be Sub( h)

2-E

)

which yields the analytical expression for the expectation of the CD measure.

Next we present an analytical expression for calculating the standard deviation of the CD
measure.

Theorem 2. Let T be a phylogenetic tree that has s tips, and let a, b be positive integers with
a, b < s. The standard deviation of the CD among all pairs of tip samples in T, such that one
sample consists of a tips, and the other consists of b tips, is equal to:

\/k1 TCHT) + (ky — k)Y TCu) + (k, — 2k, + k) w, - TC(e) — E2,(T, a,b),

ues ecE

abs?"

where: k d(a—1)(b— ;’k — 2(a=D)(b— 1)+ b=l 4 a1 k3 :2(u*1)(b*1)+ 2

abs®(s—1)* abs?(s— 1)2 abs?(s—1) abs?(s—1) abs2(sfl)2
Proof. The standard deviation of the CD is equal to:

B € Sub(S, b)

\/EA Csws.0 [CDX(T, A, B)] — (T, a,b).

We already provided an analytical expression for the expectation of the CD; hence, we now

focus on deriving an expression for the expectation of the squared value of this measure. We
get that:

E, € Sub(S, a) [CDZ(’T, A, B)] =

B € Sub(S, b)

1
EAESub(S.a) @ Z Z COSt(”a V) ! COSt(xv Z) : P(uv VaAvB) ' P(X, ZaAaB) = (2)

B € Sub(S, b) {uv}eS {x.z}€S

1

2b2 Z Z COSt(”’ V) : COSt(X, Z) : EA € Sub(S,a) [P(uv V7Aa B) ) P(X, Z7A> B)]a
a {uy}eS {xz}es B € Sub(S, b)

where P(u,v,A,B) = AP, (u) - APy(v) + AP,(v) - APy(u).
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From the last expression we get:
E,c Sub(S, a) [P(uv Vv, A, B) . P(xv z, A, B)] =
B € Sub(S, b)

fale—Lbb1) if {u,v}n{x,z}=0.

52(571)2

2a(a—1)b(b—1)
2(s—1)%

a(a—1)b
s2(s—1)

4+ D {u, vy N {x, 2} = 1.

s2(s—1)

+

72‘1(?2_(2}1(;72_1) + if {u,v} ={x,z}.

Thus, we can rewrite Eq (2) as follows:

k, Z Z cost(u,v) - cost(x, z)

{uv}es {x,z} €S§
{u,v}n{x,z} =0

+k, Z Z cost(u,v) - cost(x,z) + k, Z cost®(u, v),

{uy}es {uv}es

(3)

{x,z} €$
{u,vhn{x. 2| =1

_ 4a(a—1)b(b-1) _ 2a(a—1)b(b-1) a(a—1)b ab(b—1) _ 2a(a—1)b(b-1) 2ab
where k, = =5 Tk =S5 T ey TRy and k=500 5

Next, we simplify the expression that appears in Eq (3). The last of the three sums in this
expression can be rewritten as:

ZcostQ(u,V)Z Z Z W, w = Z Z We W = (4)

{uyv}es {uv}eS elep(uy) {u,v}eS elep(uy)

wa Z Z w, = Zwe - TC(e)
)

E pla,b) € pahs(s) P ecE (5)

ecpla,b)

The second double sum in Eq (3) can be simplified as follows:

> Y ot costlz) =

{ur}es {x,z} €S
v} 0 {2} = 1

Z cost(u, v) Z cost(u, k) + Z cost(m,v) — 2 cost(u,v)| = (6)

{u,v}es keS—{u} meS—{v}
ZTCZ(u) -2 Z cost*(u,v) = ZTCQ(u) - 2Zw2 - TC(e)
ues {u}es ues ecE

The first double sum in Eq (3) can be rewritten as:

2 > cost(u,v) - cost(x,z) =

{uv}es (rz}es
{u,v}N{x,z} =0
Z cost(u, v)[TC(T) — TC(u) — TC(v) + cost(u,v)] = (7)
{u,v}es
TCH(T) — ZTCZ(u) + Zwe - TC(e)
u€es ecE
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Combining Eqs (5), (6) and (7) with Eq (3) we get the expression that appears in the definition
of the theorem.

The Common Branch Length

Let 7 be a phylogenetic tree and let A, B C S be two samples of its tips. The Common Branch
Length (CBL) between A and B is the sum of the weights of all edges that appear both in 7 (A)
and in 7 (B). Recall that 7 (R) denotes the smallest subtree in 7 that contains all the tips of a
sample R. Therefore, the CBL between A and B is equal to:

CBL(7T,A,B) = Z w,.
ecT (A

Samples A and B may not have the same number of elements. The CBL is analogous to the
Phylogenetic Diversity measure for computing a diversity value between two samples of
species.

The Common Length Index. For a phylogenetic tree 7 and two samples of its tips A, B
such that |A| = a, and | B| = b, we denote the standardized index of the CBL by:

CBL(T, A, B) — E,, (T, a,b)
sdeg (T, a,b) ’

CLI(T,A,B) = (8)
where B, (7, a,b) and sd, (7, a, b) are respectively the expected value and the standard
deviation of the CBL for all possible pairs of tip samples where one sample contains exactly a
tips and the other contains exactly b tips. We call this index the Common Length Index of A
and B. The following two theorems provide analytical expressions for the expectation and stan-
dard deviation of the CBL.

Theorem 3. Let T be a phylogenetic tree that contains s tips, and let a, b be two positive inte-
gers such that a, b < s. The expected value of the CBL among all pairs of tip samples in T such
that one sample consists of a tips and the other sample consists of b tips, is equal to:

Eep (T, a,b) = ZW< %)(1_W>

ecE a b

Proof. The expectation of the CBL for two independtly selected samples A and B is equal to:

ECBL(T7a7b) = EAESub(S.a) lz(w APAB ] ZW EAESubSu [APAB( )]

Besu(s,b) | ees ecs B € Sub(S, b)
where AP, p(e) is equal to one if e € 7 (A) N 7 (B), otherwise is zero. The expectation of AP,
p(e) is equal to:

E, ¢ suns,a) [APA,B(e)] =Prlec T(A)NT(B)] = Prlec T(A)] - Prlec T(B)] =

B € Sub(S, b)

(1 —Prle ¢ T(A))(L = Prle ¢ T(B)]) =

(1(“:)) E)(Si“))) (1 (‘(”)()( ))7

and the expression for the expectation follows.
Theorem 4. Let T be a phylogenetic tree that contains s tips, and let a, b be two positive inte-
gers such that a, b < s. The standard deviation of the CBL among all pairs of tip samples in T
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such that one sample consists of a tips and the other sample consists of b tips, is equal to:

sdey (T, a,b) = \/ZZWB (1= F(S,e,1,a))(1 = F(S,e,1,b)) — By (T,a,b), ()

ecE I€E

where:

if 1€ T (e).

(1) s—=s(e)) __ ([ s(D—s(e)
Fenn=1 D=0 (10)

(s—s(e)) + (s—s(l)) _ (s—s(e)—s(l))

otherwise.

Proof. The standard deviation of the CBL is equal to:

\/EAESub [CBLZ(T A B)} CBL(T a b)

B € Sub(S, b)

In Theorem 3 we provided an expression for the expectation of the CD. It remains to derive
an expression for the expectation of the squared value of this measure. We get that:

wesis o [CBL (T A B =D " w,-w By o [APas(e) - AP (D] = (g

B € Sub(s, b) ecE I€E B € Sub(s h)

E

ZZW«‘? -w, - Prl{e,1€e T(A)} Nn{e, 1 € T(B)}] (12)

ecE Ic€E

Events {e,] € T(A)} and {e,! € 7 (B)} are independent, so the probability value in the last
sum can be rewritten as:

Pri{e,le T(A)} N{e,1 € T(B)}| = Prle,l € T(A)] - Prle,l € T(B)]. (13)
Value Prle,] € T (A)] is the probability that both edges e, l appear in 7 (A). Recall that

7 (A) is the smallest subtree of 7 that contains all tips in A. An edge e does not appear in 7 (A)
if either all, or none of the elements in A are tips in the subtree of e. Given that, we get:

Prle,1 € T(A)] =1 - Pr(e¢ T(A)) U (I¢T(A))] =
1= Prie¢ T(A)] = PriI¢ T(A)] + Prl(e¢ T(A)) N (I T(A))] =

pr|
P R ”(f DD L prieg T4 0 (12 T(AY)]

For the probability value Pr[(e¢ T (A)) N (I¢ T (A))] we distinguish three cases:
(I). Edgel e 7 (e):

s=s@) (s, (s(e) =50
”WéTmDﬂﬂ$ﬂMH=< ) ) () (15)

(14)
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(II). Edge e € T(]). This case is symmetric to case (I):

=0 s(e) s()=s(e)
Pr[(eg;‘T(A))ﬁ(lgé']'(A»]:( a )"‘( )+( )

(II). Subtrees 7 (e) and 7 () do not contain each other:

s(e) s
Pri(eg T(4)) N (12 T(A))] = Lo )

Q=
~—

(17)

The probability value Pr{(e,] € 7 (B))] can be expressed in a similar manner. The analytical
expression for the standard deviation of the CBL follows by combining Eqs (11)-(17).

Design of Algorithms

Based on the analytical expressions that we presented in the previous sections, we designed effi-
cient algorithms for calculating the value and the standardized indices of the CD and the CBL.
Next, we present in short how we designed these algorithms, and we also give a theoretical
measure for their efficiency. Before continuing with the description of the algorithms, we
explain standard concepts and notation from the field of Algorithms Design that we use to
describe the efficiency of our algorithms.

In many applications, it is important to define a simple bound that describes the order of
growth for a given function. For example, let G be a set of n real numbers. Suppose that we
want to count the number of possible subsets that can be created by picking four elements of G.
The exact number of these subsets is equal to f(n) = ; (n* — 6n* 4+ 11n* — 6n). But, this
expression is quite complicated. Suppose that we want to express how fast f{n) grows as the
value of n increases. In that case, for large values of n, the term that influences the value of f(n)
the most is n*. The standard way to express this in short is to say that f{n) = O(n*). The nota-
tion O(n*) is used to indicate that the value of f{1) grows roughly as fast as #n* when #n becomes
large. This is known as the Big-Oh notation. More formally, let g(#n) and f(n) be two functions.
We say that f(n) = O(g(n)) if there exist two positive constants ¢ and #, such that f(n)<c - g(n)
for every n > n,,.

In the fields of Algorithms Design, the O(-) notation is used extensively for measuring sev-
eral aspects of an algorithm’s efficiency. The standard way of measuring the efficiency of an
algorithm is to count the number of basic operations that would take place during its execution.
When we refer to basic operations, we mean all simple mathematical operations (such as com-
parisons, additions, divisions), but also standard operations like initialising a variable, or
assigning a value to this variable. Let .4 be an algorithm, and suppose we have an input dataset
for this algorithm that has size #; for instance a phylogenetic tree 7 that consists of n elements.
Instead of counting exactly the number of basic operations that take place when A processes
T, we can bound this number using the Big-Oh notation. Ideally, we would like to prove that,
for some function g(n), algorithm A takes O(g(n)) operations to process any input of size n. In
that case, we say that the worst case running time complexity of A, or simply the worst case time
complexity of this algorithm is O(g(n)).

Next we describe in short the algorithms that we designed for computing the standardized
indices of the CD and the CBL. For each of the algorithms that we describe, we also provide a
bound for its worst case time complexity. Let 7 be a phylogenetic tree, and let A and B be two
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samples of tips in 7 such that A has a tips and B has b tips. As described in Eqs (1) and (8), to
compute the standardized index of either CD or CBL we need to calculate three values; we
need to calculate the value of one of these measures for samples A and B, and we need to com-
pute the expectation and the standard deviation of this measure among all pairs of samples in
T where one sample has a tips and the other sample has b tips. Next, for each measure, we
describe an algorithm for computing each of these three values.

Algorithms for computing the CD and NRlg

Computing the value of the CD for a given pair of samples. To compute the value of the
CD efficiently, we rewrite the expression of this measure so that it can be evaluated with a
small number of basic operations. Let e be an edge in 7, and let Num(A4, B, e) denote the num-
ber of simple paths that connect a tip in sample A with a tip in sample B, and contain edge e.
The value of the CD for samples A and B can be rewritten as:

CD(T,A,B) =) w,-Num(A,Be). (18)

ecT

For any edge e € T, value Num(A, B, e) is equal to:
Num(A, B, ) = s,(e) - (b — s(€)) + s5(e) - (@ = s,(e)). (19)

Therefore, computing CD(7, A, B) boils down to computing values s4(e) and sp(e) for
every edge e € 7. We can compute all these values in O(n) operations using a simple recursive
algorithm; for each edge e that we process, we first calculate values s4(e’) and sp(e), for every
edge ¢ € Ch(e); recall that Ch(e) is the set of the edges that are adjacent to the child node of e.
Then, we can calculate values s4(e) and sg(e) for e by simply adding the corresponding values
of the edges in Ch(e). We can do this with only O(n) operations, by traversing the edges in 7°
appropriately. We start from the root of 7, and traverse the tree top to bottom. For each edge e
that we encounter for the first time, we consider two cases; if e is adjacent to a tip, we check if
this tip belongs to A or B, and we set values s4(e) and sp(e) to one or zero accordingly. Then, we
move upwards in the tree and we use s4(e) and sp(e) to calculate the corresponding values for
the parent edge of e. If e is not adjacent to a tip, then for every edge I € Ch(e) we first visit the
subtree of ] and we calculate recursively the values s4(-) and sz(-) for every edge in this subtree.
After calculating these values for every I € Ch(e), we can compute s4(e) and sg(e) in O(Ch(e))
time by evaluating sums s (e) = X ¢ cn(e) sa(l) and sg(e) = X ¢ cne) sa(D). Such a traversal is
known as a post-order traversal, and requires visiting each edge in 7 at most two times. Since
T has O(n) edges, this traversal requires O(n) operations. We also perform O(Ch(e)) arithmetic
operations to compute s4(e) and sp(e) for every edge in 7', which sums up to O(n) time opera-
tions in total. After calculating values s4(e) and sp(e), we can compute CD(7, A, B) with O(n)
arithmetic operations using Eqs (18) and (19). Therefore, the total number of operations that
are needed to compute the value of the CD for two tip samples in 7 is O(n).

Computing the expectation of the CD. In Theorem 1 we provide an analytical expression
for the expectation of the CD. Evaluating this expression boils down to evaluating TC(7).
Recall that TC(7) is equal to the sum of the costs of all simple paths that connect pairs of tips
in 7. We can rewrite this values as:

TC(T) = Zs(e) (s —s(e)).

ecT

Therefore, to compute the expectation of the CD, it remains to compute s(e) for every edge e in
T . This can be done in O(n) operations with a post-order traversal of 7', as described also for
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the algorithm that calculates the value of the CD for two samples. Hence, we can compute the
expectation for this measure with only O(n) operations.

Computing the standard deviation of the CD. For the standard deviation of the CD we
presented an analytical expression in Theorem 2. This expression contains sums that have O
(n) terms in total. Among other terms, these sums contain values TC(7) and TC(e) for every
edge ein 7. In the algorithm that we described for computing the expectation of the CD, we
showed already how we can compute TC(7 ) with O(n) operations. We can also compute TC
(e) for every edge e in the tree, with O(n) operations in total. This can be done as follows. For
an edge e, we use w,(e) to denote the value:

wr(e) = Z s() - w,.

1€T (e)

For any edge e in the tree, value TC(e) is equal to:

TC(e) =y TC() + (s(e) = (1)) - wy (1) +s(1) - (wy(e) — wy (1) (20)
)

leCh(e

To compute the standard deviation of the CD, we perform two post-order traversals of the
tree 7. In the first traversal, we compute value w, (e) for each edge e based on the correspond-
ing values of the edges in Ch(e). In the second traversal, we use the values w,(-) that we just
calculated to compute TC(e) for every edge in the tree. Then, using these values we can evaluate
the expression in Eq (20). It takes O(n) operations to traverse the tree twice and, given values
TC(T) and 7 (e) for every edge in 7, it takes O(n) arithmetic operations to calculate the
expression in Eq (20). Hence, we can compute the standard deviation of the CD with O(n)
operations in total.

Using the algorithms that we describe above, we can compute the value of the CD for two
samples A and B, but also the expectation and the deviation of this measure in O(n) time in the
worst case. Therefore, by combining these algorithms, we can derive an algorithm that com-
putes NRIgin O(n) time in the worst case.

Algorithms for computing the CBL and CLI

Computing the value of CBL for a given pair of samples. Recall that, for two tip samples
A and B, the value of the CBL is equal to the sum of the weights of all edges e such that e
belongs to both subtrees 7 (A) and 7 (B). Let R be a sample that consists of |R| = r tips in 7. If
edge e belongs to subtree 7 (R), then it holds that 0 < sg(e) <r. Hence, the weight of an edge e is
counted in the value CBL(7, A, B) if 0 < s,(e)<a and 0 < sp(e)<b. Therefore, to decide for
every edge e € T whether to include w, in the CBL value, we simply have to compute values
sa(e) and sp(e). In the algorithm that computes the value of CD, we showed how we can com-
pute values s4(e) and sp(e) with O(n) operations. Thus, the total number of required operations
for computing the value of CBL is also O(n).

Computing the expectation of the CBL. Theorem 3 provides an analytical expression for
the expectation of the CBL. This expression consists of a sum with O(n) terms, and can be eval-
uated with O(n) arithmetic operations, given that we have already computed value s(e) for each
edge e in the tree. When describing an algorithm that calculates the expectation of the CD, we
showed how we can compute these values with O(n) operations. Therefore, we can compute
the expectation of the CBL in O(n) time.

Computing the standard deviation of the CBL. The standard deviation of the CBL can
be calculated using the expression that we provide in Theorem 4. This expression contains a
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sum of O(n?) terms. Evaluating this sum directly takes o(n?) operations, which can be ineffi-
cient in practice.

In a previous paper, we presented a technique for computing similar expressions [13]. We
can use this technique for evaluating the sum in Eq (9). As we presented in our previous work,
this technique is quite efficient when 7 is relatively balanced. More precisely, the worst case
time complexity of this algorithm is O(SI(7")), where SI(7) denotes the Sackin’s Index of a
tree 7. The Sackin’s Index of 7 is equal to the sum of the depths of all tips in 7. The depth of a
tip v is equal to the number of edges that appear on the simple path between v and the root of
the tree. For a perfectly balanced tree that consists of n nodes, the depth of each tip is O(log
(n)). In this case, the value of of the Sackin’s Index is equal to O(n log n). However, if the tree is
skewed, there may exist many tips with depth close to n and therefore the value of the Sackin’s
Index is O(n*). Hence, in the worst case, the algorithm that we consider for computing the
standard deviation of the CBL takes quadratic time with respect to the size of the input tree. In
practice, phylogenetic trees are relatively balanced, and therefore the proposed algorithm is
quite efficient. In the next section, we provide evidence for this argument; there we present
experiments that we conducted using our algorithms on large tress.

Results and Applications
Experimental Evaluation

We implemented all the algorithms that we present in this paper, and we measured their per-
formance in practice. Our implementations are developed in C++, and are publicly available
through the software package PhyloMeasures [24]. This package provides functions for
computing the value and the standardized indices of several phylogenetic biodiversity mea-
sures, and it is available both as an R package and a C++ library.

For the experiments that we conducted, we used a large phylogenetic tree from which we
extracted several subtrees of several sizes. The tree that we used was constructed by Goloboff
et. al [25]. This is the largest evolutionary tree of eukaryotic organisms that has been so far con-
structed from molecular and morphological data. It consists of 71,181 tips and 83,751 nodes in
total. This tree is unrooted; for the needs of our experiments we picked arbitrarily an internal
node and used this as the root. We call this dataset the eukaryotes dataset.

From the eukaryotes we extracted fourteen trees, each tree having 5,000k + 1181 tips with
ke{1,2,..., 14}. These subtrees were produced by successively pruning chunks of 5,000 leaves
from the eukaryotes tree. We represent the set of these trees by EK. Therefore, for any two
trees 7,7 € EK we have that either 7 is a subtree of 7, or vice versa. For each tree 7 € EK we
produced one hundred samples of tips with sizes s(7") /k with k ranging from one to a hundred.
We denote this set of samples by samples (7). For every 7 € EK we executed the algorithms we
implented for computing the values and the standardized indices of the CD and the CBL. For
each algorithm and for each tree 7" € EK, we measured the execution time for processing all sam-
ples in samples (7). The results of these experiments are illustrated in Fig 1. The experiments
were performed using the R version of the PhyloMeasures package on a computer with an
Intel core i5-2430M processor. This is a four-core CPU with 2.40GHz per core. The main mem-
ory of this computer is 7.8 Gigabytes. Our implementations run on a Linux Ubuntu operating
system, release 12.04. The experiments were executed using R version 3.1.2 (Pumpkin Helmet).

All of the examined implementations run very fast even for the largest trees in EK. For the
complete eukaryotes tree that consists of 71,181 tips, the algorithm that computes the
value of the CD takes 3.01 seconds to process one hundred samples, the algorithm that com-
putes the CBL value takes 1.61 seconds, and the algorithms that compute the standardized indi-
ces of the CD and the CBL take 3.12 and 54.52 seconds respectively. Note that these are the
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Fig 1. Running times of implemented algorithms computing values and standardized indices for CD and CBL. For each implementation and for each
tree size, the figures illustrate the time that it takes for the function to process a set of one hundred samples.

doi:10.1371/journal.pone.0151167.9001

running times that each program takes for computing the results for one hundred samples of
species. The program that computes the index of the CBL runs slower than the other programs,
yet we see that it is still quite efficient. It seems that, for the datasets that we used, its execution
time does not scale as a quadratic function of the tree size.

Applications

To illustrate an application of the algorithms, we used their PhyloMeasures implementa-
tion to calculate CBL and standardized CBL for mammals globally. We used range maps from
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Fig 2. Maps of phylogenetic similarity of mammal assemblages of focal cells (red dot), compared to all other locations in the world. Similarity was
calculated as Common Branch Length (CBL), or its richness-standardized version, for two different focal cells.

doi:10.1371/journal.pone.0151167.9002

the IUCN and rasterized them on a Behrmann equal area grid with a resolution of 193km (at
30N or S), corresponding roughly to two degrees. Each of the resulting grids consists of
71 x 180 cells, which means 12780 cells in total for each grid.

We combined these grids with the phylogeny of Bininda-Emonds et al [26]; this is a tree
that portrays the phylogenetic relations between all mammal species. The number of leaf nodes
in this tree is 4,510. Using this tree, for each grid that we created we then calculated CBL and
standardized CBL between a focal cell and all other cells in the world. The results are spatial
maps of the phylogenetic similarity between the focal location and all other sites. The con-
structed spatial maps are illustrated in Fig 2. In Central Asia, for example, there is evidence for
a broad longitudinal band of high similarity, with more rapid turnover along the latitudinal
gradient, while phylogenetic similarity is fairly high throughout northern South America, but
declines rapidly towards the south of the continent.

Such maps can provide a detailed picture of how phylogenetic similarity changes among
species assemblages over geographic space. However, constructing high resolution maps of this
kind is practically infeasible without efficient algorithms that compute beta-diversity values,
and especially the standardised version of these values. Using our implementations, we com-
puted the exact standardized and non-stanndardized CBL values for these maps in one and a
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half minutes in total. On the other hand, it would take several days to execute these computa-
tions with previously existing software, which would also provide these values only
approximately.

Conclusion

Phylogenetic beta diversity metrics are widely and increasingly used in ecology, but are often
quite slow to compute. In addition, the relationship between species richness of the samples
and the beta diversity metrics is often ignored. These problems are related, as computing the
dependence of a metric on species richness is even more computationally intensive using tradi-
tional approaches, than is computing a single beta diversity value. Here, we propose solutions
to these problems, providing 1) efficient algorithms for computing phylogenetic beta diversity
metrics, and 2) algorithms to efficiently and exactly calculate their moments, allowing a simple
standardization for species richness. We expect that these algorithms will significantly ease the
computational burdens of researchers and lead to wider adoption of phylogenetic beta diversity
metrics.
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