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Abstract: Breast cancer is one of the major causes of deaths due to cancer, especially in women. The
crucial barrier for breast cancer treatment is resistance to radiation therapy, one of the important
local regional therapies. We previously established and characterized radio-resistant MDA-MB-231
breast cancer cells (RT-R-MDA-MB-231 cells) that harbor a high expression of cancer stem cells (CSCs)
and the EMT phenotype. In this study, we performed antibody array analysis to identify the hub
signaling mechanism for the radiation resistance of RT-R-MDA-MB-231 cells by comparing parental
MDA-MB-231 (p-MDA-MB-231) and RT-R-MDA-MB-231 cells. Antibody array analysis unveiled
that the MAPK1 protein was the most upregulated protein in RT-R-MDA-MB-231 cells compared to
in p-MDA-MB-231 cells. The pathway enrichment analysis also revealed the presence of MAPK1
in almost all enriched pathways. Thus, we used an MEK/ERK inhibitor, PD98059, to block the
MEK/ERK pathway and to identify the role of MAPK1 in the radio-resistance of RT-R-MDA-MB-231
cells. MEK/ERK inhibition induced cell death in both p-MDA-MB-231 and RT-R-MDA-MB-231 cells,
but the death mechanism for each cell was different; p-MDA-MB-231 cells underwent apoptosis,
showing cell shrinkage and PARP-1 cleavage, while RT-R-MDA-MB-231 cells underwent necroptosis,
showing mitochondrial dissipation, nuclear swelling, and an increase in the expressions of CypA
and AIF. In addition, MEK/ERK inhibition reversed the radio-resistance of RT-R-MDA-MB-231
cells and suppressed the increased expression of CSC markers (CD44 and OCT3/4) and the EMT
phenotype (β-catenin and N-cadherin/E-cadherin). Taken together, this study suggests that activated
ERK signaling is one of the major hub signals related to the radio-resistance of MDA-MB-231 breast
cancer cells.

Keywords: radiation-resistant; breast cancer; cell death; ERK; EMT; cancer stem cells (CSCs); PD98059

1. Introduction

Breast cancer is one of the major causes of death due to cancer worldwide, especially in
women [1]. For breast cancer, many therapies are available such as surgical resection, with
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or without lymph node dissection, radiation, and chemotherapy [2]. Radiation therapy is
one of the important local regional therapies for breast cancer treatment [3]. Radiotherapy is
applied for most breast cancer patients after surgical resection, but not all patients obtain the
same benefits, because some of them suffer from a loco-regional relapse. Radio-resistance
is the primary reason for this relapse [4].

Radio-resistance is a process in which the tumor cells or tissues adapt to radio therapy-
induced damage [5] and survive irradiation (IR) [6,7]. Radiation can induce a DNA
damage response (DDR), which causes cell cycle arrest and the induction of DNA repair,
even though the cells with more severe damage from the radiation are induced to undergo
apoptosis. The DDR may help the cells survive the IR-induced DNA damage, eventually
developing radio-resistance by increasing the DDR rate. In addition, repopulation, hypoxic
tumor areas, and cancer stemness are involved in radio-resistance. In DDR to IR and
cancer stemness, several signaling pathways are reportedly involved: phosphatidylinositol
3-kinase (PI3K), mitogen-activated protein kinase (MAPK), SIRT pathways, Wnt/β-catenin
signaling, IL22RA1/STAT3 signaling, and sonic Hedgehog signaling [8]. In addition to
the suggested signaling pathways, IR resistance comprises the involvement of a large
number of other proteins and their pathways [9,10]. Particularly, the radiation-induced
ERK activation allows cancer cells to overcome the G2/M phase, which is considered the
most vulnerable phase during IR, thereby causing radio-resistance [11–13].

MAPK pathways are key signaling pathways involved in the regulation of normal cell
proliferation, survival, and differentiation. Aberrant regulation of the MAPK pathways
contributes to the development of cancer; particularly, the extracellular signal-regulated
kinase (ERK) is crucially involved in cancer cell proliferation, survival, and metastasis [14].
ERK consists of the p44 ERK1 and p42 ERK2. The ERK is the only known substrate of
MEK. MEK1/2 activates ERK through dual tyrosine and threonine phosphorylation [15].
Thus, blocking the ERK pathway has proved to be an efficient mechanism to force cells
into a cell death pathway. To potentiate the anti-tumoral effects of various cytotoxic
agents, many trials of MEK1/2 pharmacological inhibitors (PD98059 [16], UO0126 [17],
and PD184352 [18]) have been used. In addition, recent studies have shown the synergetic
effect of the MEK/ERK inhibitor and radiation therapy [19].

Radio-resistant MDA-MB-231 breast cancer cells (RT-R-MDA-MB-231 cells) are re-
ported to have a high proliferation rate, metastatic activity, and adhesion to endothelial
cells compared with the parental MDA-MB-231 (p-MDA-MB-231) breast cancer cell line.
RT-R-MDA-MB-231 cells harbor increased expressions of cancer stem cell (CSC) markers
and the epithelial–mesenchymal transition (EMT) phenotype [8]. We hypothesized that
there is a key altered signaling (driving oncogenic signaling) involved in developing RT-
R-MDA-MB-231 cells. Here, we performed antibody microarray analysis to identify the
hub proteins involved in the radio-resistance of RT-R-MDA-MB 231 cells by comparing
p-MDA-MB-231 and RT-R-MDA-MB-231 cells because antibody microarray analysis is one
of the technologies used for high-throughput protein characterization and discovery [10].
Antibody array analysis is used to measure the expression level of proteins between two
different samples [9].

This study was designed to decipher the proteomic differences between p-MDA-MB-
231 and RT-R-MDA-MB-231 cells, enabling us to corroborate our findings at the molecular
level. In addition, we also aimed to investigate the importance of the key altered signaling
in the reversal of radio-resistance and the regulation of the CSC and EMT phenotypes that
are strongly associated with radio-resistance.

2. Results
2.1. Proteomic Profiling of RT-R-MDA-MB-231 Cell Lines

To determine the key altered expressions of proteins involved in the radio-resistance
of RT-R-MDA-MB 231 cells, we performed and analyzed antibody microarrays to assess the
difference in protein expressions between p-MDA-MB-231 and RT-R-MDA-MB-231 cells.
The internal normalization ratio (INR) was kept as INR > 1.0 and INR < 1.0. With respect
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to this value, we selected around 10 upregulated proteins and 16 downregulated proteins,
which are specified in Figure 1A. The highly expressed proteins included mitogen-activated
protein kinase 1 (MAPK1), which exhibited about a 2.81-fold increase compared to the
p-MDA-MB-231 cells. Next to MAPK1, the highly expressed protein was dual-specificity
protein kinase CDC-like kinases (CLK1), which exhibited a 1.32-fold increase.
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Figure 1. Antibody array analysis of radiation-resistant MDA-MB 231 breast cancer cells (RT-R-MDA-MB-231 cells).
(A) Graphical representation of differentially expressed proteins with respect to the fold change in RT-R-MDA-MB-231
cells compared to parental MDA-MB-231 (p-MDA-MB-231) cells. (B) Gene ontology enrichment analysis of differentially
expressed proteins in RT-R-MDA-MB-231 cells by KEGG analysis. GO enrichment analysis showed that MAPK1 is related
to all the suggested signaling pathways involved in the radio-resistance of RT-R-MDA-MB-231 cells (Table 1).

Among the 16 downregulated proteins, caspase 3 was the most downregulated in
the RT-R-MDA-MB-231 cells, which is suggested as one of the mechanisms for RT resis-
tance [20]. Figure 1A shows a graphical representation of the proteins concerning the fold
change. These findings suggested that the upregulation of MAPK1, CLK1, and FGF22 and
the downregulation of caspase 3 might be involved in the acquisition of radio-resistant
MDA-MB-231 cells.
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Table 1. GO enrichment analysis of differentially expressed proteins. GO enrichment analysis showed
that MAPK1 is related to all the suggested signaling pathways involved in the radio-resistance of
RT-R-MDA-MB-231 cells.

Pathways Genes Genes Involved in
the Pathways (%)

KEGG Pathway
Entry

MAPK signaling
pathway

MAPK1, CASP3, FGF22,
MAPK11, IL1A 18 map04010

NOD-like receptor
signaling pathway

MAPK1, HSP90AA1,
MAPK11 15 map04621

PI3K-Akt signaling
pathway

MAPK1, EIF4EBP1,
HSP90AA1, FGF22, F2R 15 map04151

Pathways in cancer MAPK1, CASP3,
HSP90AA1, FGF22, F2R 13 map05200

Rap1 signaling
pathway

MAPK1, FGF22,
MAPK11, F2R 13 map04015

TNF signaling
pathway

MAPK1, CASP3,
MAPK11 11 map04668

Proteoglycans in
cancer

MAPK1, CASP3,
MAPK11 8 map05205

Regulation of actin
cytoskeleton MAPK1, FGF22, F2R 7 map04810

2.2. MAPK1 Is the Most Important Signaling Pathway in Acquiring Radio-Resistant
RT-R-MDA-MB-231 Cells

Gene ontology (GO) enrichment analysis of differentially expressed proteins was
carried out with the use of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway
analysis. The KEGG pathway analysis showed that the most significant pathway involved
in the RT-R-MDA-MB-231 cells was the MAPK1 signaling pathway (Figure 1B). GO en-
richment analysis suggested that MAPK1 is the most important signaling pathway in
acquiring radio-resistant RT-R-MDA-MB-231 cells. The differentially expressed proteins
were interrogated using the STRING database for the protein–protein interaction network
analysis. String analysis of the protein–protein interaction (PPI) network generated an
interconnected protein network with a medium confidence level of 0.04, which created a
single module. The PPI network analysis of differentially expressed proteins showed a
single module with 15 proteins such as MAPK1, CASP3, FGF22, MAPK11, HSP90AA1,
and F2R. They are involved in MAPK signaling, NOD-like receptor signaling, PI3K-Akt
signaling, and Pathways in cancer. The highly increased MAPK1 is related to all the
suggested pathways. In addition, this module revealed that MAPK1 harbored a direct
protein–protein interaction with caspase 3, which is crucial in inducing programmed cell
death type 1 (apoptosis) (Figure 2). These findings support MAPK1 as being one of the
important proteins involved in the acquisition of radio-resistant MDA-MB-231 cells.

2.3. ERK Signaling Was Important in the Cell Survival of RT-R-MDA-MB-231 Cells, and the
Inhibition of MEK/ERK Signaling Reversed the Radio-Resistance of MDA-MB-231 Cells

To investigate the inhibitory effect of a MEK/ERK inhibitor, PD98059, in RT-R-MDA-
MB-231 cells, we performed cell viability assays in p-MDA-MB-231 cells and RT-R-MDA-
MB-231 cells. Morphological analysis (Figure 3A) revealed that the RT-R-MDA-MB-231
cells were highly proliferative compared to the p-MDA-MB-231 cells even in the low dose
of PD98059-treated cells (less than 20 µM). However, the proliferation rate of RT-R-MDA-
MB-231 cells was not higher when they were treated with 20 µM of PD98059. The MTT
assay showed that the anti-cancer effect of PD98059 was greater on RT-R-MDA-MB-231
cells than on p-MDA-MB-231 cells (Figure 3B). Morphological analysis (Figure 3A) also
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revealed that more cell deaths and cellular collapse were observed in RT-R-MDA-MB-231
cells than in p-MDA-MB-231 cells. In addition, there was a difference in morphology of
the cell death between p-MDA-MB-231 cells and RT-R-MDA-MB-231 cells (Figure 3A).
These findings suggested that ERK signaling should be important in the cell survival
of RT-R-MDA-MB-231 cells, and that the inhibition of ERK signaling might reverse the
radio-resistance of MDA-MB-231 cells.
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13 proteins such as MAPK1, CASP3, FGF22, MAPK11, HSP90AA1, and F2R. They are involved in
MAPK signaling, NOD-like receptor signaling, PI3K-Akt signaling, and Pathways in cancer in RT-R-
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2.4. Inhibition of ERK Signaling Reversed the Radio-Resistance of RT-R-MDA-MB-231 Cells

To explore the radio-sensitivity of both p-MDA-MB-231 and RT-R-MDA-MB-231 cells,
we performed a colony formation assay. This revealed that RT-R-MDA-MB-231 cells were
resistant to radiation (RT) until 4 Gy, whereas p-MDA-MB-231 cells were sensitive to RT
treatment (Figure 4A,B). The colony number of RT-R-MDA-MB-231 cells was higher than
that of p-MDA-MB-231 cells, which suggested that the RT-R-MDA-MB-231 cells were
highly proliferative compared to p-MDA-MB-231 cells (Figure 4A,B). To investigate the
correlation between activated ERK signaling and radio-resistance in RT-R-MDA-MB-231
cells, we performed an ERK inhibition test with a colony formation assay. As shown
in Figure 4C,D, the inhibition of MEK/ERK (at 20 µM of PD98059) reversed the radio-
resistance of RT-R-MDA-MB-231 cells. These findings support the importance of activated
ERK signaling for the radio-resistance of RT-R-MDA-MB-231 cells.

2.5. Inhibition of ERK Signaling-Induced Necroptosis of RT-R-MDA-MB-231 Cells While It
Induced the Apoptosis of p-MDA-MB-231 Cells

In Figure 3A, we found differences in the morphology between p-MDA-MB-231 cells
and RT-R-MDA-MB-231 cells after ERK inhibition. To elucidate the differences in cell
morphology between the two types of cells, we performed mitochondria staining, Mayer’s
hematoxylin staining for the cell structure, and DAPI for the nucleus. MitoTracker® Red
staining is used to show the live time status of mitochondria [21]. The staining revealed
that, with the treatment of the MEK/ERK inhibitor, mitochondrial fragmentation was
seen in RT-R-MDA-MB-231 cells at the 24 h-inhibition of ERK signaling (Figure 5A). With
the inhibition of ERK signaling, RT-R-MDA-MB-231 cells showed more fragmentation
and swollen mitochondria than p-MDA-MB-231 cells did, suggesting that ERK inhibition
contributes to the mitochondrial fission in RT-R-MDA-MB-231 cells. Mayer’s hematoxylin
staining revealed that 24 h-MEK/ERK inhibition induced the cell swelling of nuclei and
cytoplasm in RT-R-MDA-MB-231, while it induced the shrinkage of nuclei in the p-MDA-
MB-231 cell (Figure 5B). These results were also confirmed with DAPI staining. The DAPI
staining revealed a high level of nuclear swelling in RT-R-MDA-MB-231 cells treated with
the MEK/ERK inhibitor, and it revealed nuclear fragmentation in p-MDA-MB-231 cells
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(Figure 5C). These results suggest that the ERK inhibition promotes cell death in both
p-MDA-MB-231 and RT-R-MDA-MB-231 cells, but that the mechanisms for the cell death
of the two cells were different.
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2.6. ERK Inhibition Induced Caspase Activation and PARP-1 Cleavages in p-MDA-MB-231 Cells,
While It Did Increase the Expression of Cyclophilin A (CypA) and AIF in RT-R-MDA-MB-231
Cells

To molecularly confirm the difference in cell death between p-MDA-MB-231 and
RT-R-MDA-MB-231 cells, we performed Western blot analysis. Figure 6 demonstrates
that, in MDA-MB-231 cells, ERK inhibition induced the cleavage PARP-1 and caspase-3,
which is a hallmark for caspase-dependent apoptosis, but that, in the RT-R-MDA-MB-231
cells, ERK inhibition induced AIF (apoptosis-inducing factor), which positively regulates
the CypA protein, which is considered a biomarker of necroptosis [22]. These findings
support ERK inhibition inducing the apoptosis of p-MDA-MB-231 and the necroptosis of
RT-R-MDA-MB-231 cells.
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Figure 5. The difference in cell morphology between p-MDA-MB-231 and RT-R-MDA-MB-231 cells
during ERK inhibition. Cells were seeded in 12-well plates with a 1 × 105 cell/well density treated
with the indicated concentrations of the MEK/ERK inhibitor (PD98059) for 24 h. (A) Mitochondrial
morphology was analyzed with a fluorescent microscope after staining with MitoTracker (red). (B) Light
microscopy of hematoxylin-stained cells showed the whole cell morphology of the MEK/ERK inhibitor-
induced cell death. (C) Nuclear morphology analysis of the MEK/ERK inhibitor-induced cell death
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2.7. ERK Inhibition Reduced the Expression of Cancer Stem Cell (CSC) Markers (CD44 and Oct 3
4 )

and the EMT Phenotype, Which Is Closely Related to the Radio-Resistance of RT-R-MDA-MB-231
Cells

It was reported that CSC markers and EMT phenotypes were highly expressed in RT-R-
MDA-MB-231 cells compared to the p-MDA-MB-231 cells, and that their high expression was
closely related to radio-resistance [8]. Here, we assessed the effect of ERK inhibition on the
expression of CSC markers and the EMT phenotype on both MDA-MB-231 and RT-R-MDA-
MB-231 cells. As previously reported, Western blot analysis revealed that RT-R-MDA-MB-231
cells showed a higher expression of CSC markers (CD44 and Oct 3/4) and EMT markers (N-
cadherin and β-catenin) compared to the p-MDA-MB-231 cells (Figure 7A,B). ERK inhibition
significantly suppressed the expression of CSC markers and the EMT phenotype in both
p-MDA-MB-231 and RT-R-MDA-MB-231 cells (Figure 7A,B). In addition, the ERK inhibition
more prominently suppressed the EMT phenotype of RT-R-MDA-MB-231 cells than p-MDA-
MB-231 cells. These findings indicated that the ERK inhibition clearly suppressed the high
expression of CSC markers and the EMT phenotype of RT-R-MDA-MB-231 cells that are
reportedly associated with radio-resistance [5].
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Figure 6. Effects of ERK inhibition on cell death-related proteins in both p-MDA-MB-231 and RT-R-MDA-MB-231 cells. Cells were seeded with a seeding density of 5 × 104 cells and
were pretreated with the MEK/ERK inhibitor (PD98059) for 48 h. The control cells were left untreated. The whole cell protein lysate was prepared and 30 µg of proteins was resolved in
SDS-polyacrylamide gels. (A) Western blot analysis of various cell death-related proteins. (B) Densitometry analysis of the data in Western blot analysis by ImageJ software. The values
were normalized against β-actin, and they are represented as mean ± standard deviation (SD) (n = 3). ** p < 0.01; *** p < 0.005 vs. the control group.
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Western blot analysis by ImageJ software. The values were normalized against β-actin, and they are represented as mean ± standard deviation (SD) (n = 5). ** p < 0.01; *** p < 0.005 vs. the
control group.
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3. Material and Methods
3.1. Protein Array Analysis

The total proteins of p-MDA-MB-231 and RT-R-MDA-MB-231 cells were isolated with
a radioimmunoprecipitation assay (RIPA) buffer, which contained 0.1% NP-40 and 0.1%
sodium dodecyl sulfate in phosphate-buffered saline (PBS) containing a protease inhibitor
cocktail (Sigma Aldrich, St. Louis, MO, USA). The expression profiling of proteins was
analyzed by a Signaling Explorer Antibody Array (Ebiogen, Seoul, Korea).

3.2. Bioinformatics Analysis

The obtained proteins from the antibody array analysis were further submitted to
DAVID (The Database for Annotation, Visualization, and Integrated Discovery). DAVID
is an online tool that provides a biological understanding between two or more data sets
of genes, and it can also be used to determine gene ontology (GO) in terms of biological
processes and cellular processes. To determine the pathways involved in the identified
genes, KEGG (Kyoto Encyclopedia of Genes and Genomes) (https://www.genome.jp/
kegg/pathway.html, accessed on 20 October 2018) was employed. The selected genes were
investigated for potential protein–protein interactions using STRING (Search Tool for the
Retrieval of Interacting Genes) database version: 10.5 (https://string-db.org, accessed on
19 February 2021). For the display of protein interactions, selected proteins were uploaded
into the STRING database and assessed using Cytoscape Software version Cytoscape_v3.7.1
(https://www.cytoscape.org, accessed on 19 February 2021). To access the interaction of
the experimental data and to provide unambiguous comprehensive coverage, the online
tool string was used.

3.3. Cell Culture

RT-MDA-MB-231 cells were established as previously described [8]. Briefly, MDA-
MB-231 cells were fractionated with X-ray irradiation until a final dose of 50 Gy was
reached. p-MDA-MB-231 and RT-MDA-MB-231 cells were cultured in RPMI-1450 medium
supplemented with 10% heat-inactivated FBS and 1% penicillin/streptomycin. The cells
were maintained at 37 ◦C in a 5% CO2 incubator. The cells were grown with 80% confluence
and were treated with a MEK/ERK inhibitor (PD98059) dissolved in DMSO or DMSO
alone.

3.4. Cell Viability Assay

We used a calorimetric assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide), to analyze the cell viability. The cells were seeded in 24-well plates with a
confluence of 1 × 105 cells/well, they were treated with the MEK/ERK inhibitor, and
they were maintained for 24 and 48 h at 37 ◦C in a 5% CO2 incubator. After incubation,
50 µL of MTT (0.5 mg in 1× PBS) was added to each well and incubated for about 2 h
at 37 ◦C in a 5% CO2 incubator. The media were removed and the formazan crystals
that formed in the live cells were dissolved with the 500 µL of DMSO. The solubilized
formazan crystals were transferred to 96-well plates and the absorbance was read by an
enzyme-linked immunosorbent assay (ELISA) reader at 540 nm. The cell viability was
quantified in percentage, while vehicle-treated control cells were set at 100%.

3.5. Colony Formation Assay

P-MDA-MB-231 or RT-R MDA-MB-231 cells (1 × 103 cells/well) were seeded in six-
well plates, treated with the indicated doses of the MEK/ERK inhibitor, and maintained at
37 ◦C in a 5% CO2 incubator. The cells were irradiated with a given concentration, and the
media were discarded after 24 h and replaced with fresh complete media every 2–3 days.
After 14 days, the medium was discarded and the cells were washed with 1× PBS thrice.
The colonies were fixed with absolute methanol for 10 min, stained with Giemsa staining
solution, and then maintained at room temperature. The number of colonies was counted
using ImageJ software.

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://string-db.org
https://www.cytoscape.org
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3.6. Cytochemical Staining Methods
3.6.1. Mitotracker Red Analysis

For mitochondrial morphology analysis, Mitotracker Red dye was used. The cells
were seeded with a confluence of 1 × 105 cell/well in 12-well plates, they were treated
with the MEK/ERK inhibitor for 24 h, and they were washed with 1× PBS and then
stained with 0.5 µL of Mitrotracker red in 500 µL of 1× PBS. The cells were incubated for
30 min in a 5% CO2 incubator at 37 ◦C. After incubation, the cells were viewed under a
fluorescent microscope for the analysis of the live mitochondrial status after the treatment
of a MEK/ERK inhibitor.

3.6.2. Hematoxylin Staining

The cells were seeded in 12-well plates with a confluence of 1 × 105 cells/well and
were grown for 24 h with the MEK/ERK inhibitor at 37 ◦C in a CO2 incubator. After
incubation, the cells were washed with 1× PBS and then fixed with 4% para-formaldehyde
overnight. The fixed cells were washed thrice with 1× PBS for about 5 min per wash,
they were stained with 200 µL of Mayer’s hematoxylin staining solution, and they were
incubated for 20 min in the dark at room temperature. Then, the cells were washed
thoroughly with 1× PBS, followed by 1 mL of 90% glycerol, and they were observed under
a phase-contrast microscope.

3.6.3. DAPI (4′,6-diamidino-2-phenylindole) Staining

For the nuclear morphological changes, DAPI staining was performed. The cells
were seeded in 12-well plates at a density of 1 × 105 cells/well with the treatment of the
MEK/ERK inhibitor for about 24 h, they were washed with 1× PBS, and they were fixed
overnight with 4% formaldehyde. After fixation, the cells were washed with 1× PBS thrice
for about 5 min per wash. DAPI solution (0.5 µL) was added to the 500 µL of 1× PBS,
which was incubated for 30 min at 37 ◦C with a 5% CO2 incubator. After incubation, the
cells were washed with 1× PBS and were fixed with 90% glycerol in 1× PBS. The cells were
viewed under a fluorescent microscope (Leica Microsystems GmbH, Wetzlar, Germany).

3.7. Western Blot Analysis

P-MDA-MB-231 and RT-MDA-MB-231 cells were seeded in 100 mm plates with a
cell density of 2 × 106 cells/plate. The cells were treated with the MEK/ERK inhibitor or
DMSO as a vehicle control and were maintained for 48 h at 37 ◦C with a 5% CO2 incubator.
After 48 h, the cells were harvested and transferred to 15 mL falcon tubes, and they were
centrifuged for 5 min at 2000 rpm. The supernatant was discarded, and the tubes were
centrifuged again to remove the residual supernatant. After complete removal of the
supernatant, 500 µL of the 2X sample buffer containing 100 mM of Tris-Cl (pH 6.8), 4%
(w/v) sodium dodecyl sulphate (SDS), 0.2% (w/v) bromophenol blue, and 200 mM of
dithiothreitol was added. The protein lysates were collected in 1.5 mL Eppendorf tubes and
kept at 100 ◦C for 10 min. The protein concentration was determined by the Bradford assay.
In addition, 30 µg of the proteins was resolved in 8–12% SDS-PAGE and was transferred to
a polyvinylidene difluoride membrane. After transfer, the membranes were blocked with
3% skimmed milk in Tris-buffered saline containing 1% Tween 20 (TBST) buffer for 30 min
at room temperature, and they were incubated at 4 ◦C overnight with antibodies against
actin (A5441, 1:10,000, Sigma-Aldrich, St. Louis, MO, USA), ERK (SC-94, 1:2000, Santa Cruz
Biotechnology, Dallas, TX, USA), p-ERK (SC-7383, 1:2000, Santa Cruz Biotechnology), CypA
(SC-134310, 1:2000, Santa Cruz Biotechnology), pro-caspase 9 (SC-56076, 1:2000, Santa Cruz
Biotechnology), pro-caspase 3 (SC-7272, 1:2000, Santa Cruz Biotechnology), AIF (SC-55519,
1:1000, Santa Cruz Biotechnology), PARP-1 (SC-8007, 1:2000, Santa Cruz Biotechnology),
CD44 (ab51037, 1:2000, Abcam, Cambridge, UK), β-catenin (SC-7199, 1:2000, Santa Cruz
Biotechnology), Oct 3/4 (SC-5279, 1:2000, Santa Cruz Biotechnology), E-cadherin (ab1416,
1:2000, Abcam), and N-cadherin (ab76011, 1:2000, Abcam). After overnight incubation
in primary antibodies, the membranes were washed with TBST buffer thrice for about
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10 min per wash. Then, the membranes were incubated in horseradish peroxidase (HRP)-
conjugated secondary antibody for 2 h at room temperature with 1:2000 dilution. The
membranes were later washed with TBST buffer three times (10 min/wash) and were
developed with ECL (electrochemiluminescence) solutions (Bio-Rad Laboratory, Hercules,
CA, USA).

3.8. Statistical Analysis

All experiments were performed at least in triplicate, and all analyses were performed
with the use of GraphPad Prism 7 software (GraphPad Software, San Diego, CA, USA).
One-way ANOVA followed by the Newman–Keuls post hoc test was performed to compare
various treatment groups. The data were presented as mean ± standard deviation (SD).
A p-value <0.05 was considered statistically significant.

4. Discussion

Radiation therapy is one of the common and essential parts of breast cancer treatment.
Around half of the cancer patients go through radiation therapy at some point in their
treatment [23]. Ionizing radiation (IR) induces DNA damage through oxidative stress.
The free OH radicals are capable of promoting single-stranded and double-stranded DNA
breaks (SSB and DSB, respectively), which, in turn, triggers cell death [24]. Thus, cells
develop IR resistance by counteracting the four ‘R’s,’ which is DNA damage by DNA
repair, redistribution, repopulation, and reoxygenation through the activation of various
pathways [25]. Several studies have described the role of irradiation in breast cancer
pathways and the involvement of several proteins in the development of resistance against
radiation, which we have listed in Table 2. Only a small number of studies have investigated
mechanisms of acquired radio-resistance through the generation of radio-resistant cell lines,
which tend to focus on a single specific pathway. Thus, it is paramount to focus on the
signaling mechanism through the generation of the radio-resistant breast cancer cell line.

This study was designed to find the hub signaling involved in the RT resistance of
RT-R-MDA-MB-231 cells and to investigate the importance of the hub signaling in the
reversal of radio-resistance and the regulation of the CSC and EMT phenotype that is
highly associated with radio-resistance. We found that ERK signaling was highly activated
in RT-R-MDA-MB-231 cells compared to in p-MDA-MB-231 cells and that ERK signaling
was essential for the survival of both p-MDA-MB-231 and RT-R-MDA-MB-231 cells. In
addition, the RT resistance of RT-R-MDA-MB-231 cells was reversed by the inhibition of
ERK signaling (Figure 4). Furthermore, we demonstrated that the activated ERK signaling
was associated with cancer stemness and EMT phenotype (Figure 7). Considering all these
findings, we can conclude that activated ERK signaling is one of the major hub signaling
related to the acquisition of radio-resistant MDA-MB-231 cells.
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Table 2. List of studies involving radiation resistance and sensitivity in MDA-MB-231 cells or TNBC, and their possible
mechanisms behind it. The reports were mainly categorized into three parts as follows: (i) specific signaling pathways
involved in radio-resistant breast cancer cells, (ii) signaling pathways involved in radio-sensitivity, (iii) altered expression
of gene/proteins involved in radio-resistant breast cancer cells. (iv) Studies that did not fall into any of the three above
categories. Abbreviations: IFIT2—interferon-induced protein with tetratricopeptide repeats 2, TRIB3—tribbles homolog 3,
ESM-1—endothelial cell-specific molecule-1, DLX2—vertebrate distal-less homeobox 2.

No. Author Key Findings Year References

(i) Specific signaling pathways involved in radio-resistant breast cancer cells

1. Gray et al.

The radiation-resistant ER+ breast cancer cell line (MCF-7,
ZR-751) showed increased migration and invasion compared

to the radiation-resistant ER- breast cancer cell line
(MDA-MB-231). ER+ cells also showed a shift from ER to

EGFR signaling pathways with increased MAPK and
PI3K activity.

2019 [26]

2. Ediriweera et al.
A phenolic lipid, 10-Gingerol, promotes apoptosis in

radiation-resistant MDA-MB-231 cells through the PI3K/Akt
signaling pathway.

2020 [27]

3. Jin et al.

The overexpression of ESM-1 plays a critical role in
radiation-resistant MDA-MB-231 cells through the regulation

of PDK, PKC, and ERK1/2 pathways, and the subsequent
activation of transcription factors HIF-1α, NF-κB, and STAT-3

to regulate adhesion molecules, MMPs, and VEGF.

2020 [28]

4. lu et al.

The Wnt/β-catenin signaling pathway plays an important role
in the development of radioresistance and Niclosamide, an

FDA-approved anthelmintic drug that induces radiosensitivity
in radiation-resistant MDA-MB-231 via inhibiting STAT3

and Bcl-2.

2018 [29]

5. Bravatà et al.
Gene expression profiles of the MDA-MB-231 radiation cell

fraction show increased TNF signaling, Phagosome, NF-kappa
B signaling, Jak-STAT signaling, and PI3K-Akt signaling.

2019 [30]

6. Choi et al.
DLX2 expression with irradiation incidence causes the

increase in the EMT process and CSCs population through the
Smad2/3 signaling pathway in MDA-MB-231 and A549 cells.

2016 [31]

(ii) Signaling pathways involved in radio sensitivity of MDA-MB-231 cells

7. Yin et al.

Niclosamide, an antihelminthic drug, inhibited the
Wnt/β-catenin signaling pathway and increased the radiation

sensitivity to triple-negative breast cancer (TNBC) cells
(MDA-MB-231, MDA-MB-468, and Hs578T cells).

2016 [32]

8. Lin et al.
COX-2 upregulation promotes radioresistance in

MDA-MB-231 cells through the p38/MAPK-mediated
alteration of apoptosis and metastasis.

2013 [33]

9. KO et al.
Radiation-resistant MDA-MB-231 cells showed an increased
cell proliferation, cell adhesion, EMT process, and increased

stem cell population.
2018 [8]

10. Koh et al.
Baicalein reduced the stem cell-like properties and metastasis

in radiation-resistant MDA-MB-231 cells through the
upregulation of IFIT2.

2019 [34]
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Table 2. Cont.

No. Author Key Findings Year References

(iii) Altered expression of gene/proteins involved in radio-resistant MDA-MB-231 cells.

11. Lammering et al. Irradiation increased the expression of the EGFR protein in
MDA-MB-231 xenograft tumors. 2004 [35]

12 Kim et al.

Proteomic analysis revealed single and the fraction of
radiation increased cathepsin D (CTSD), gelsolin (GSN),

argininosuccinate synthase 1 (ASS1), and C-type mannose
receptor 2 (MRC2) in MDA-MB-231 cells.

2015 [36]

13. Miao et al.

Radiation-resistant MDA-MB-231 and MCF-7 cells showed an
altered expression of several members of the HSP70 and

HSP40, subfamilies of HSPs, and an increased level of HSPB8,
a target of NF-κB that could be responsible for the

development of radioresistance.

2019 [37]

14. Lee et al.
Increased expression of TRIB3 in radiation-resistant

MDA-MB-231 cells causes the resistance and knockdown of
TRIB3 sensitized toward radiation.

2019 [38]

15. HOU et al. Microarray analysis of radiation-resistant MDA-MB-231 cells
showed increased cell adhesion and EMT factors. 2019 [39]

16. Yang et al.
Overexpression of a small RNA molecule miR-634 decreases

the survival rate of radiation-resistant MCF-7 and
MDA-MB-231 cells by direct interaction with STAT3.

2020 [40]

(iv) Studies that did not fall into any of the three above categories.

17. Li et al. A small molecule, ABT-787, induces radiosensitivity in
radiation-resistant MDA-MB-231 by targeting Bcl-2 and Bcl-xL. 2012 [41]

18. Nguyen et al.

A phytochemical phenethyl isothiocyanate reduces the CSC
population in radiation-resistant MDA-MB-231 cells through

upregulating ROS levels and targeting Metadherin at the
post-transcriptional levels.

2020 [42]

19. Oommen and Prise
A novel benzylidene lactam compound, KNK437, inhibits

HIF-1α, HSF1, and AKT in hypoxia-induced MDA-MB-231
and T98G cells, which, in turn, induces radiosensitivity.

2012 [43]

20. Kuger et al. PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic
effect with irradiation (IR) in MCF-7 and MDA-MB-231 cells. 2014 [44]

21. Holler et al.

The molecular targeting of Akt by Akt inhibitor MK2206 or the
knockdown of Akt1 led to a rapamycin-induced

radiosensitization of SK-MES-1, HTB-182, or MDA-MB-231
cells by increasing DNA-double-stranded breaks.

2016 [45]

22. Chen et al. The estrogen receptor mediates the radiosensitivity of
TNBC cells. 2017 [46]

23. Liu et al.
Hypoxia due to a high cell density downregulated the EGFR
expression and increased the sensitivity to ionizing radiation

in MCF-7 and MDA-MB-231 cells.
2018 [47]

24. Arnold et al. STAT3 inhibition combined with radiation reduces the cellular
plasticity in MDA-MB-231 and SUM159PT cells. 2019 [48]

Before concluding, we should discuss some questions. The first question would be
whether activated ERK signaling is the main mechanism for the radio-resistance of MDA-
MB-231 cells. In Figures 4 and 7, the MEK/ERK inhibition test revealed that MEK/ERK
inhibition induced cell death and suppressed the expression of CSC markers and the EMT
phenotypes of both p-MDA-MB-231 cells and RT-R-MDA-MB-231 cells. This finding also
suggested that ERK signaling is essential for the survival of MDA-MB-231 cells and that it
may not be related to RT resistance per se. We also agree with the point. In addition, it was
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reported that other signaling pathways such as PI3K/Akt, and STAT or other anti-apoptotic
proteins are important in the radio-resistance or radio-sensitivity of MDA-MB 231 cells
(Table 2). However, there is some evidence to support that the ERK signaling is related
to the RT-resistance of RT-R-MDA-MB-231 cells. Recent studies have depicted that the
ERK1/2 activation prevails over the cell cycle arrest in the G2/M phase where cancer cells
are susceptible to IR, thus inducing radio-resistance [5]. Another is that MDA-MB-231 cells
are a triple-negative breast cancer cell line, which is known to have high CSC properties [49].
The third is that in our previous report, RT-R-MDA-MB-231 cells also showed an increased
STAT 3 activity, which was reported to be related to cancer stemness and EMT, but that
the inhibition of STAT 3 activity by the JNK inhibitor or Janus-activated kinase 2 (JAK2)
inhibitor could not suppress the increased expression of CSC markers [50]. To solve this
question, we carried out this study with antibody microarray analysis, which revealed
that highly increased MAPK1 was enriched in all of the upregulated pathways of RT-R-
MDA-MB-231 cells (MAPK signaling, NOD-like receptor signaling, PI3K-Akt signaling,
and Pathways in cancer). In addition, the KEGG pathway enrichment analysis showed
that all enriched pathways include MAPK1, and the PPI network analysis of differentially
expressed proteins showed that MAPK1 could be related to the resistance of cell death.
The third is that the inhibition of ERK signaling reversed RT resistance (Figure 4). The
inhibition of ERK signaling was reported to increase the anti-cancer efficacy of RT [51,52].
This finding could support the reversal of RT resistance caused by the inhibition of ERK
signaling. With all of these findings, we can say that activated ERK signaling is one of the
main mechanisms for the radio-resistance of MDA-MB-231 cells.

The second point to discuss would be the relationship between ERK signaling and
EMT, as well as the CSC phenotype of RT-R-MDA-MB-231 cells, because it is mentioned that
several other signaling pathways such as JAK/STAT, Hedgehog, Wnt, Notch, PI3K/PTEN,
and nuclear factor-κB (NF-κB) signaling pathways, compared to ERK signaling, are closely
related to CSC properties [53–55], and the blocking of these pathways involved might be
an effective way to target CSCs [55]. Even though it is not common, PRMT6-dependent
CRAF/ERK signaling was reported to regulate CSC plasticity [56]. In addition, it was
reported that the CSC properties-related signal is frequently complexed, and there is
cross-talk between and among the mentioned various pathways [57]. In addition, the
influence of ERK activity in regulating the CSC phenotype is also reported in gemcitabine-
resistant pancreatic cells [58], cisplatin-resistant non-small cell lung cancer cells [59], and
docetaxel and carboplatin-resistant ovarian cancer cells [60]. To determine the real cause
of the activated ERK signaling of RT-R-MDA-MB-231 cells, we performed whole genome
sequencing. In the study, we could not find any mutations on the linear line for the
activation of ERK signaling (data not shown), such as EGFR, SOS, B-raf, Ras, or MEK.
Regarding this question, we could not give the audience clear evidence. Therefore, further
studies are required.

The third point to discuss is why the phenotype of cell death induced by ERK inhi-
bition differed between p-MDA-MB-231 cells and RT-R-MDA-MB-231 cells, while ERK
inhibition induced cell death and suppressed the increased expression of CSC markers
and the EMT phenotype of both p-MDA-MB-231 cells and RT-R-MDA-MB-231 cells. We
speculate that the reason could be that RT-R-MDA-MB-231 cells exhibit a decreased activity
of caspase. It has been reported that the cancer cells harboring caspase defects frequently
undergo necroptosis or necrosis instead of apoptosis when the death signal appears [61].
Initially, we thought that the defects in caspase 3 activity were the main cause that was
associated with increased ERK signaling, which was revealed by string analysis of the PPI
network. By whole genome sequencing, we also found that RT-R-MDA-MB-231 cells har-
bor a nonsynonymous single nucleotide mutation in CASP9 (Arg173His; rs2308950), which
is known to be involved in the pathogenesis of various cancers (data not shown) [62,63].
We speculate that this mutation is also responsible for RT-R-MDA-MB-231 cells undergoing
necroptosis during the inhibition of ERK signaling.
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The fourth point to discuss would be the role of the other upregulated and downregu-
lated proteins in RT-R-MDA-MB-231 cells. Although we could not discuss here all of the
26 proteins, recent studies have suggested that the inhibition of CLK1 also decreases cell
proliferation [64]. CLK1 and FGF22 are oncogenes in cancer and their inhibition leads to
the inhibition of breast cancer growth in cell culture and xenograft models [65,66]. This
supports the possible contribution of upregulated CLK1 to the rapid growth of RT-R-MDA-
MB-231 cells. The most downregulated protein, caspase 3, may also contribute to the
radio-resistance of RT-R-MDA-MB-231 cells, by avoiding IR-induced apoptosis [67]. All
of these findings suggest that the changes in the expression of proteins may be involved
in the biological phenotype of RT-R-MDA-MB-231 cells. Regarding these points, further
studies are warranted.

The fifth point to discuss would be the mechanisms driving the upregulation of ERK
signaling in RT-R-MDA-MB-231 cells. As we know that radiotherapy works by damaging
the DNA of cancer cells, our first thought was that the upregulation of ERK signaling
would be related to some of the mutations in the Ras-Raf-MEK-ERK pathway. Therefore,
we performed whole genome sequencing, but there was no additional mutation of ERFR,
PI3K/Akt, Ras, Raf, MEK, or ERK molecules of MDA-MB-231 cells (data not shown).
In this paper, we inhibited ERK signaling with PD98059, a non-adenosine triphosphate
competitive MAPK (MEK) inhibitor [68]. Therefore, we can speculate that the upregulation
of ERK signaling would be caused by some hidden mutations in the upstream of the
Ras-Raf-MEK-ERK pathway.

The weakness of this study is that we performed the experiment with only one cell line.
It is in question whether the main mechanism of the radio-resistance of RT-R-MDA-MB-231
cells can be applied to all radiation-resistant breast cancer cell lines or can be generalized
to triple-negative breast cancer cells. In addition, even regarding the radio-resistance of
RT-R-MDA-MB 231 cells, other signaling pathways are also suggested as a key signaling
pathway involved in the resistance. Similar to the signaling involved in CSC, the signaling
involved in the radio-resistance of RT-R-MDA-MB 231 cells could also be complexed.
However, aberrantly upregulated ERK signaling contributes to cancer cell proliferation,
survival, and metastasis [14], and many other reports have suggested that ERK signaling is
an important signaling pathway in radio-resistance [5,15,52]. Therefore, further research is
also warranted regarding ERK signaling on the radio-resistance of breast cancer, especially
on TNBC.

5. Conclusions

In summary, we found that ERK signaling was highly activated in RT-R-MDA-MB-
231 cells compared to p-MDA-MB-231 cells. The activated ERK signaling was associated
with an increased cancer stemness and EMT phenotype. In addition, the RT resistance of
RT-R-MDA-MB-231 cells was reversed by the inhibition of ERK signaling. Furthermore,
the inhibition of ERK suppressed the CSC marker proteins. With all of these findings,
we conclude that activated ERK signaling is one of the major hub signals related to the
acquisition of radio-resistant MDA-MB-231 cells. This study suggests a distinct and advan-
tageous therapeutic value of the targeting of the ERK signaling pathway in MDA-MB-231
cells. Further research is also warranted regarding ERK signaling on the radio-resistance of
breast cancer, especially on TNBC.
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Abbreviations

CSCs Cancer stem cells
CypA Cyclophilin A
AIF Apoptosis-inducing factor
EMT Epithelial-to-mesenchymal transition
ERK Extracellular-signal-regulated kinase
DDR Damage response
IR Irradiation
PI3K Phosphatidylinositol 3-kinase
MAPK Mitogen-activated protein kinase
Wnt Wingless-related integration site
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
STRING Search Tool for the Retrieval of Interacting Genes
DMSO Dimethyl sulfoxide is an organosulfur
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PBS Phosphate-buffered saline
DAPI 4′,6-diamidino-2-phenylindole
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SDS Sodium dodecyl sulphate
RT Radiotherapy
RT-R Radiotherapy-resistant
SD Standard deviation
CLK1 CDC-like kinases
FGF22 Fibroblast growth factor 22
F2R Coagulation factor II (thrombin) receptor
Gy Gray
CCD Charge-coupled device
JAK2 Janus-activated kinase 2
PI3K-Akt Phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)
STAT Signal transducer and activator of transcription
NF-κB Nuclear factor-κB
EGFR Epidermal growth factor receptor
SOS Son of Sevenless
B-raf B-Rapidly Accelerated Fibrosarcoma
Ras Rat sarcoma
MEK Mitogen-activated protein kinase kinase
CASP9 Caspase 9
IFIT2 interferon-induced protein with tetratricopeptide repeats 2
TRIB3 Tribbles homolog 3
ESM-1 Endothelial cell-specific molecule-1
DLX2 Vertebrate distal-less homeobox 2
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