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NPY1R-targeted peptide-mediated delivery of a
dual PPARa/g agonist to adipocytes enhances
adipogenesis and prevents diabetes progression
Stefanie Wittrisch 1, Nora Klöting 2,**, Karin Mörl 1, Rima Chakaroun 2,3, Matthias Blüher 2,3,***,
Annette G. Beck-Sickinger 1,*
ABSTRACT

Objective: PPARa/g dual agonists have been in clinical development for the treatment of metabolic diseases including type 2 diabetes and
dyslipidemia. However, severe adverse side effects led to complications in clinical trials. As most of the beneficial effects rely on the compound
activity in adipocytes, the selective targeting of this cell type is a cutting-edge strategy to develop safe anti-diabetic drugs. The goal of this study
was to strengthen the adipocyte-specific uptake of the PPARa/g agonist tesaglitazar via NPY1R-mediated internalization.
Methods: NPY1R-preferring peptide tesaglitazar-[F7, P34]-NPY (tesa-NPY) was synthesized by a combination of automated SPPS and manual
couplings. Following molecular and functional analyses for proof of concept, cell culture experiments were conducted to monitor the effects on
adipogenesis. Mice treated with peptide drug conjugates or vehicle either by gavage or intraperitoneal injection were characterized phenotypically
and metabolically. Histological analysis and transcriptional profiling of the adipose tissue were performed.
Results: In vitro studies revealed that the tesaglitazar-[F7, P34]-NPY conjugate selectively activates PPARg in NPY1R-expressing cells and
enhances adipocyte differentiation and adiponectin expression in adipocyte precursor cells. In vivo studies using db/db mice demonstrated that
the anti-diabetic activity of the peptide conjugate is as efficient as that of systemically administered tesaglitazar. Additionally, tesa-NPY induces
adipocyte differentiation in vivo.
Conclusions: The use of the tesaglitazar-[F7, P34]-NPY conjugate is a promising strategy to apply the beneficial PPARa/g effects in adipocytes
while potentially omitting adverse effects in other tissues.

� 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Obesity is a global epidemic that continues to rise and consequently
results in the increased occurrence of associated metabolic disorders
such as type 2 diabetes (T2D) and cardiovascular diseases [1e3]. An
imbalance between energy expenditure and energy intake leads to an
increased storage of lipids in adipose tissue. This excess fat can either
be stored in newly differentiated adipocytes, resulting in an increased
cell number (hyperplasia), or in already existing adipocytes, causing
enlarged cells (hypertrophy) [4]. While hyperplastic adipocytes seem to
be metabolically risk-free, hypertrophy has been linked to the
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development of metabolic diseases [5,6]. The amount of adipocytes is
mainly determined during childhood and adolescence, and as a result,
hypertrophy is the preferred mechanism for the extension of adipose
tissue as the ability of de novo adipogenesis is often exceeded in obese
patients [4,7]. Peroxisome proliferator-activated receptor gamma
(PPARg) agonists are known for their outstanding anti-diabetic po-
tential as they promote adipogenesis and lead to the development of
small, metabolically healthy adipocytes [8e12]. However, these mol-
ecules further regulate a variety of processes in other cell types
[13,14]. Therefore, the clinical application of some PPARg agonists is
accompanied by side effects including congestive heart failure,
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increased cardiovascular risk, cancer, or weight gain, which lead to
complications in clinical trials and restrictions on their use (https://www.
fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communicati
on-avandia-rosiglitazone-labels-now-contain-updated-information-
about and https://www.fda.gov/drugs/drug-safety-and-availability/fda-
drug-safety-communication-updated-drug-labels-pioglitazone-containin
g-medicines) [15e19]. Experiments with lipodystrophic mice demon-
strated that organs other than adipose tissue mainly contribute to these
side effects [20]. Therefore, the selective targeting of PPARg agonists to
adipocytes represents a promising strategy for the development of safer
insulin-sensitizing drugs and is needed to further use these agents in
clinics.
Peptide ligands of G protein-coupled receptors (GPCR) are promising
targeting moieties for selective cell delivery as they bind with high
selectivity and affinity to their receptors, can easily be modified by
chemical synthesis, lack antigenicity, and induce an efficient internali-
zation in the target cell [21e23]. Peptide drug conjugates consist of
three parts: a carrier peptide that specifically binds to the GPCR
expressed on the targeted tissue, a cleavable linker that possesses
extracellular stability and is cleaved after translocation to an intracellular
compartment, and the drug molecule [24,25]. After activation of the
GPCR, the peptide-receptor complex undergoes internalization, which is
crucial for delivering the drug inside the cell. The internalized complex is
then transferred to the endosome where the linker can be cleaved [26].
This leads to a free drug that can act on either a metabolic or tran-
scriptional level to modulate cell behavior and activity. High levels of
neuropeptide Y1 receptor (NPY1R) mRNA and protein were detected in
human adipose tissue, 3T3-L1 preadipocytes, and adipocytes [27e29].
This expression was higher in obese patients [30]. In addition to adipose
tissue, NPY1R can be found in vascular smooth muscle cells and the
CNS, including the thalamus, hippocampus, and cerebral cortex [31e
33]. Peptide ligand NPY (neuropeptide Y) can cross the bloodebrain
barrier in rats. However, it is unclear whether this is also the case in
humans, as different studies demonstrated that the permeability is low
[34e36]. Thus, NPY1R is a promising target for selective targeting of
adipocytes. NPY stimulation of adipocytes leads to a mitogenic effect and
enhanced cell proliferation [37,38]. In addition, a high dose of NPY
promotes adipocyte differentiation via enhanced PPARg expression,
which might lead to additional beneficial effects and a combinatorial
therapeutic approach of the peptide carrier and drugs [39].
Thiazolidinediones are the most well-known and frequently used class of
PPARg agonists, yet these molecules do not possess functional moieties
suitable for attachment to peptides and therefore cannot be used in
peptide drug conjugates [40]. The dual PPARa/g agonist tesaglitazar
(tesa), in contrast, contains a carboxyl function suitable for synthesis.
This agonist is a promising anti-diabetic drug that was already shown to
reduce insulin resistance in mice and humans [41e43]. The clinical
investigation of tesa was discontinued in phase III because of safety
concerns regarding renal dysfunction [16,44]. As these side effects were
caused by the action of tesa on the kidney, a selective targeting of tesa
to adipocytes could be a promising strategy to continue its clinical trials
[45,46]. The advantage of dual PPARa/g agonists is, that they, in
addition to the insulin-sensitizing effects of PPARg, improve lipid pa-
rameters and reduce cardiovascular complications associated with
metabolic disorders through PPARa [16,47]. However, these effects are
mainly mediated by PPARa expressed in the kidney, liver, muscle, and
endothelial cells [16,45,48]. Therefore, we did not anticipate car-
dioprotective effects when tesa was selectively targeted to adipocytes
and focused on PPARg activity in the present study.
In this study, we aimed to transport tesa selectively into adipocytes by
targeting it to NPY1R to develop a safe anti-diabetic drug that combines
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the beneficial effects of [F7, P34]-NPY and a dual PPARa/g agonist
while omitting adverse effects in other tissues (Figure 1). Therefore, we
synthesized a peptide drug conjugate consisting of NPY1R-preferring
ligand [F7, P34]-NPY, a cleavable GFLG linker, and tesa and tested this
conjugate extensively in cell culture and db/db mice to determine its
anti-diabetic potential.

2. MATERIALS AND METHODS

2.1. Materials
To synthesize peptides, Na-9-fluorenylmethoxycarbonyl (Fmoc)- and
tert-butyloxycarbonyl (Boc)-protected amino acids were purchased
from Orpegen (Heidelberg, Germany) and Iris Biotech (Marktredwitz,
Germany). Rink amide resin, 1-hydroxybenzotriazole (HOBt), 2-cyano-
2-(hydroxyimino) acetic acid ethyl ester (Oxyma), and N,N0-diisopro-
pylcarbodiimide (DIC) were obtained from Iris Biotech. Thioanisole (TA)
and ethanedithiol (EDT) were acquired from Fluka (Buchs,
Switzerland). Acetonitrile (ACN), dichloromethane (DCM), and N,N0-
dimethylformamide (DMF) were obtained from Biosolve (Val-
kenswaard, the Netherlands). Diethyl ether and ethanol were
purchased from Scharlau (Barcelona, Spain). Hydrazine, piperidine,
and trifluoroacetic acid (TFA) were purchased from Sigma Aldrich.
For cell cultures and cell culture-related assays, DMEM High Glucose
and Ham’s F12 cell culture media, Hanks’ Balanced Salt Solution
(HBSS), Dulbecco’s Phosphate-Buffered Saline (DPBS), trypsineEDTA,
and an AdipoRed Adipogenesis Assay Kit were obtained from Lonza
(Basel, Switzerland). Fetal calf serum (FCS) was purchased from
Biochrom GmbH (Berlin, Germany). Penicillin, streptomycin, and
hygromycin B were acquired from Invivogen (Toulouse, France). Biotin,
pantothenate, dexamethasone (dex), triiodo-L-thyronine, human apo-
transferrin, hydrocortisone, dimethyl sulfoxide (DMSO), probenecid,
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (HEPES),
and Hoechst 33342 were obtained from SigmaeAldrich (Taufkirchen,
Germany). 3-isobutyl-1-methylxanthine (IBMX) was acquired from
Fluka (St. Louis, MO, USA) and human insulin was obtained from
Roche (Basel, Switzerland). Tesaglitazar, rosiglitazone, and tumor
necrosis factor a (TNFa) were purchased from Biomol (Hamburg,
Germany). Fluo2-AM and pluronic acid F-127 were acquired from
TEFLabs (Austin, TX, USA). OptiMEM was obtained from Life Tech-
nologies (Basel, Switzerland). Lipofectamine 2000 and PowerSYBR
Green were purchased from Thermo Fischer Scientific (Waltham, MA,
USA). A Cignal PPARg Reporter (luc) Kit, RNeasy Mini Kit, and Quan-
tiNova Reverse Transcription Kit were obtained from Qiagen (Hilden,
Germany) and the Dual-Luciferase System Kit from Promega (Madison,
WI, USA). Six-well plates and 96-well plates were purchased from TPP
AG (Trasadingen, Switzerland), and 8-well m-slides were obtained
from ibidi GmbH (Planegg, Germany).

2.2. Solid phase peptide synthesis (SPPS)
All the peptides were synthesized via a combination of automated solid-
phase peptide synthesis (SPPS) with a Syro I peptide synthesizer (Mul-
tiSynTech) and manual couplings using the orthogonal Fmoc/tBu strategy
onRink amide resin (15mmol scale, loading 0,7mmol/g). UnmodifiedNPY
(1), [F7, P34]-NPY (2), and Boc-[K4(Dde), F7, P34]-NPY were obtained by
robot-assisted synthesis. Coupling reactions were then carried out twice
with 8 eq Na-protected amino acids, in situ activated with equimolar
amounts of Oxyma (2 min pre-incubation on resin) and DIC in DMF for
30 min. Tert-butyl (t Bu for Tyr, Ser, Asp, Glu, and Thr), trityl (Trt for
Asn, Gln, and His), 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl
(Pbf for Arg), and 4,4-dimethyl-2,6-dioxocyclohex-1-ylidenethyl (Dde
for Lys) protection groups were used to protect the reactive side chains of
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Figure 1: Schematic illustration of adipocyte targeting by peptide drug conjugates. NPY1R expressed on the adipocyte cell surface can potentially be used for the selective
delivery of PPARg agonists into adipocytes. The carrier peptide [F7, P34]-NPY is conjugated with a cleavable linker and tesa pharmacophore and can bind NPY1R, thereby triggering
activation and subsequent internalization. The peptide-receptor complex undergoes endocytosis into the endosome, where the linker can be cleaved and tesa is released, which
activates PPARg and thus regulates transcription.
the indicated amino acids. Deprotection of Fmoc was performed auto-
matically with 40% (v/v) piperidine in DMF for 3 min and 20% (v/v)
piperidine in DMF for 10 min.
After automated synthesis, deprotection of K4(Dde) (Boc-[K4(Dde), F7,
P34]-NPY) was conducted 12 times using 2% (v/v) hydrazine in DMF for
10 min. Manual elongation of the Nε-group of K

4 with the amino acids
GFLG and the PPARg agonist tesa was performed using standard DIC/
HOBt activation (5 eq) for coupling and piperidine for Fmoc depro-
tection to obtain [K4(GFLG-tesa), F7, P34]-NPY (3).
All of the peptides were cleaved from the resin using TFA/scavenger
(9:1 (v/v)) for 3 h, with TA/EDT (7:3, v/v) as a scavenger. The peptides
were precipitated with ice cold diethyl ether, washed, and collected by
centrifugation. RP-HPLC (Shimadzu) with a Kinetex column was used
for peptide purification at a flow rate of 15 ml/min and a linear gradient
system containing 0.1% (v/v) TFA in water (eluent A) and 0.08% (v/v)
TFA in ACN (eluent B).
Pure products were characterized by analytical RP-HPLC, MALDI-ToF
(Ultraflex III, MALDI-ToF/ToF, Bruker Daltonics), and ESI-HCT (high-
capacity ion trap ESI-MS, Bruker Daltonics). For RP-HPLC, a LaChro-
meElite system (VWR) with Phenomenex Jupiter Proteo C12 90�A and
Agilent VariTide RPC columns was used with different linear gradients
of eluent B (0.08% (v/v) TFA in ACN) in eluent A (0.1% (v/v) TFA in H2O),
detection at 220 nm, and peak integration using EZ Chrome Elite
software. The peptides were dissolved in DMSO with a final concen-
tration of less than 0.1% DMSO for all of the in vitro experiments.

2.3. Cell culture
COS-7 (African green monkey kidney) cells stably expressing NPY1/2/4/5R
and chimeric G protein (D6Gaqi4-myr) were cultured in DMEM High
Glucose Medium with 10% (v/v) heat inactivated FCS, 100 units/ml
penicillin, and 100 mg/ml streptomycin. HEK293 (human embryonic
kidney) cells were grown in DMEM High Glucose Medium and Ham’s
F12 (1:1 (v/v)) supplemented with 15% (v/v) heat inactivated FCS.
HEK293 cells stably expressing NPY1/2/4/5R C-terminally fused to eYFP
were maintained in DMEM High Glucose Medium and Ham’s F12 (1:1 (v/
MOLECULAR METABOLISM 31 (2020) 163e180 � 2019 The Authors. Published by Elsevier GmbH. This i
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v)) supplemented with 15% (v/v) heat inactivated FCS and 100 mg/ml
hygromycin B. 3T3-L1 (murine fibroblast) cells were grown in DMEM
High Glucose Medium and 10% (v/v) not-heat inactivated FCS. The,3T3-
L1 cells were split every second day to avoid confluency. SGBS (human
fibroblast) cells were cultivated in DMEM High Glucose Medium and
Ham’s F12 (1:1 (v/v)) supplemented with 15% (v/v) not-heat inactivated
FCS, 8 mg/l biotin and 4 mg/l pantothenate. The SGBS cells were split
every third day to avoid confluency. All of the cell lines were maintained
under a humidified atmosphere at 37 �C and 5% CO2.

2.4. Y-receptor activation studies
Signal transduction Ca2þ-flux assays were performed as previously
described [49]. Briefly, COS-7 cells stably expressing NPY1/2/4/5R and
chimeric G protein (D6Gaqi4*myr) were seeded into black 96-well plates
and grown for 24 h. The cells were incubated with 0.01% (v/v) Pluronic
Acid F-127 and 2.4 mM Fluo2-AM in assay buffer (HBSS, 1.25 mM
Probenecid, and 20 mM HEPES) at 37 �C for 60 min. A one-addition
protocol of FlexStation 3 (Molecular Devices, San Jose, CA, USA) was
used to perform fluorescent detection (excitation: 485 nm, emission:
525 nm). Indicated concentrations of peptides were added after a 20 s
baseline recording, followed by 80 s detection of Ca2þ efflux. The signal
response was quantified as x-fold over basal and normalized to the
maximum response of the native ligand NPY (NPY1/2/5R) or hPP (NPY4R)
set to 100%. The values were calculated using GraphPad Prism 5.0 via
non-linear regression and represented the total mean � SEM of the
EC50 determined in n � 2 independent experiments each performed in
duplicate. The pEC50 � SEM values corresponded to the negative
decadic logarithm of the EC50 value.

2.5. Live cell microscopy
Y-receptor internalization was investigated as previously described
[50]. Briefly, HEK293 cells stably expressing NPY1/2/4/5R C-termi-
nally fused to eYFP were seeded into 8-well m-slides and allowed to
attach for 24 h. The cells were starved in Opti-MEM reduced serum
medium (containing 100 mg/ml CHX and 6 mg/ml BFA)
s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 165
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supplemented with Hoechst 33342 nuclear stain (0.5 mg/ml) at
37 �C for 30 min. The cells were then stimulated with 100 nM of
peptide at 37 �C for 60 min and washed with acidic wash solution
and HBSS. To visualize the peptide uptake, the cells were incubated
with 100 nM TAMRA labeled [K4(GFLG-TAMRA), F7, P34]-NPY for
10 min, followed by an acidic wash (50 mM glycine, 180 mM NaCl,
and pH 3.1) to remove the excess labeled peptide, washed in HBSS,
and returned to the Opti-MEM. Microscopy images were taken using
an Axio Observer microscope equipped with an ApoTome imaging
system and a Heating Insert P Lab-Tek S1 unit (Zeiss, Oberkochen,
Germany). Image editing was performed with AxioVision software
version 4.6. The assays were performed in at least two independent
experiments.

2.6. PPAR reporter gene assay
HEK293 cells stably expressing NPY1R C-terminally fused to eYFP were
seeded into white 96-well plates, grown to 70e80% confluence, and
transfected using Lipofectamine 2000 transfection reagent according
to the manufacturer’s protocol. For luciferase reporter gene assays,
250 ng reporter plasmid, positive control plasmid or negative control
plasmid (Cignal PPAR Reporter (luc) Kit), 250 ng PPARg expression
vector, and 250 ng RXRa expression vector were applied in addition to
0.75 ml of Lipofectamine 2000 transfection reagent per well. For
selectivity assays, HEK293 cells without stable NPY1R-eYFP trans-
fection and HEK293 NPY1R-eYFP cells without PPARg transfection
were used. After 24 h of transfection, the cells were treated with tesa
or peptides for an additional 24 h. For competition assays, the cells
were treated with a 20-fold concentration of NPY simultaneous to
peptide stimulation. Luciferase assays were performed using the Dual-
Luciferase System Kit according to the manufacturer’s instructions.
The relative firefly luciferase activity was normalized by the corre-
sponding Renilla luciferase activity, the luciferase activity of the cells
transfected with the negative control plasmid, and the DMSO vehicle
control. The assays were performed in at least three independent
experiments.

2.7. Differentiation and AdipoRed assay of 3T3-L1 and SGBS cells
3T3-L1 or SGBS cells were seeded into 96-well plates and grown to
complete confluency (set as day 0). On day 2 of confluence, the 3T3-L1
cells were differentiated by DMEM High Glucose Medium supple-
mented with 10% (v/v) not-heat inactivated FCS, 0.5 mM IBMX,
167 nM human insulin, and 1 mM dexamethasone (differentiation
medium). On day 4, the medium was replaced by insulin medium
(DMEM High Glucose Medium, 10% not-heat inactivated FCS, and
167 nM human insulin). On day 6, the medium was changed to
standard culture medium and changed every other day until full dif-
ferentiation was achieved (on day 8). The SGBS cells were differen-
tiated as previously described [51]. Briefly, DMEM High Glucose
Medium and Hams F12 (1:1 (v/v)) without FCS, supplemented with
0.01 mg human apo-transferrin, 20 nM human insulin, triiodo-L-thy-
ronine, 100 nM hydrocortisone, 25 nM dexamethasone, 0.5 mM IBMX,
and 2 mM rosiglitazone (quick differentiation medium, QD) was added
on day 0. On day 4, the medium was replaced by 3FC medium (DMEM
High Glucose Medium and Hams F12 (1:1 (v/v))) without FCS and
supplemented with 0.01 mg human apo-transferrin, 20 nM human
insulin, triiodo-L-thyronine, and 100 nM hydrocortisone. The medium
was changed every second day until full differentiation was achieved
(day 10).
On day 2 of the 3T3-L1 or SGBS differentiation process, tesa or
peptides were added to the differentiation or QD medium at the indi-
cated concentrations. For the SGBS, QD medium without rosiglitazone
166
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was used. After 24 h, differentiation was continued as previously
described. To determine the intracellular triglyceride content as an
indicator of adipocyte differentiation, the AdipoRed Adipogenesis Assay
was performed according to the manufacturer’s protocol. Fluorescence
(excitation: 485 nm, emission: 572 nm) was measured with an Infinite
200 microplate reader (Tecan Group, Männedorf, Switzerland). For
normalization, the relative differentiation was calculated as the DMSO
vehicle control was set to 100%. Three independent experiments with
four replicates were conducted.

2.8. qRT-PCR
The 3T3-L1 or SGBS cells were seeded into 6-well plates and
differentiated as previously described. Tesa or peptides were added
to the differentiation medium at a concentration of 100 mM on day 2,
followed by 12 h or 24 h incubation. On day 4, the cells were washed
two times with PBS, harvested by trypsinization, and stored
at �70 �C until RNA isolation was performed. RNA extraction was
performed using the RNeasy Mini Kit or TRIzol (Life Technologies,
Grand Island, NY, USA), followed by reverse transcription with stan-
dard reagents (Life Technologies, Grand Island, NY, USA) or the
QuantiNova Reverse Transcription Kit. qRT-PCR was performed with
QuantiTect Primer Assays (Quiagen, Hilden, Germany) or TaqMan
Gene Expression Assays (Thermo Fischer Scientific, Waltham, MA,
USA: 36B4 #MM00725448, 18sRNA #Hs99999901, Fabp4
#MM00445878, adiponectin #MM00456425, and PPAR-gamma
#MM00440940) using a Power SYBR Green or Brilliant SYBR Green
QPCR Core Reagent Kit from Stratagene (La Jolla, CA, USA) according
to the manufacturer’s instructions on an Applied Biosystems 7500
Real-Time PCR or comparable system (Applied Biosystems, Foster
City, CA, USA). N � 3 independent experiments with two replicates
were performed. For the cell culture experiments, the data were
analyzed according to the 2�DDCt method using 36B4 or GAPDH as
housekeeping genes and DMSO treatment as a control. Liver mRNA
expression was calculated relative to 18sRNA, which was used as an
internal control due to its resistance to glucose-dependent regulation
[52]. The mRNA levels were quantified using the standard curve
method of QuantStudio 6 Flex software (Applied Biosystems, Foster
City, CA, USA), determining the crossing points of the individual
samples using an algorithm that identifies the first turning point of the
fluorescence curve. Amplification of the specific transcripts was
confirmed by the melting curve profiles (cooling the sample to 68 �C
and heating slowly to 95 �C while measuring the fluorescence) at the
end of each PCR [53].

2.9. Animal studies
All of the experiments were performed according to the animal ethical
laws of the state Saxony, Germany, and were approved by the local
animal ethics review board (Landesdirektion Sachsen, Leipzig, Ger-
many). Female db/db mice 12e15 weeks of age were purchased
from Taconic (Denmark) and housed in groups of 5 in temperature-
and humidity-controlled facilities in a 12 h:12 h lightedark cycle and
had free access to tap water and food (regular chow, Sniff, Soest,
Germany). Three out of seven groups served as controls (N ¼ 15, see
Table 1). The 5 db/db mice were untreated and 10 db/db mice were
vehicle treated either orally or intraperitoneally (i.p.). One additional
group (n ¼ 5) of lean C57BL/6NTac mice was used as a metabolically
healthy control group. Groups 1 to 5 were treated daily with
2.5 mmol/kg body weight tesa, peptides or vehicle (1% (v/v) DMSO in
PBS) either by gavage or intraperitoneal injection for 8 days according
to Table 1. The control mice were gavaged with an equal volume of
vehicle.
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Table 1 e Groups of mice that were used for the in vivo Tesa-NPY studies.

Group Mice Treatment Administration

1 (n ¼ 5) db/db Tesa Oral
2 (n ¼ 5) db/db Tesa-NPY (3) Intraperitoneal
3 (n ¼ 5) db/db [F7, P34]-NPY (2) Intraperitoneal
4 (n ¼ 5) db/db Vehicle control Oral
5 (n ¼ 5) db/db Vehicle control Intraperitoneal
6 (n ¼ 5) db/db Untreated control e

7 (n ¼ 5) C57BL/6N Untreated healthy e
2.10. Phenotypical characterization
All of the mice were monitored for 9 days during the treatment period.
Body weight, food intake, and water uptake were recorded daily and
body composition (lean body mass and whole body fat mass) was
recorded at the beginning, middle, and end of the study in the
conscious mice using an EchoMRI system (Echo Medical Systems,
Houston, TX, USA). At the beginning and end of the treatment period,
the HbA1c levels were determined from 5 ml of whole venous blood
samples using an automated chemical analyzer at the Institute of
Laboratory Medicine and Clinical Chemistry and beta-ketone using an
automated glucose monitor (FreeStyle Precision H, Abbott GmbH,
Ludwigshafen, Germany). Rectal body temperature was measured
once on day 9 using Thermalert (TH-5, Physitemp, Clifton, NJ, USA).
The mice were sacrificed on day 9 via an overdose of anesthetic
(isoflurane, Baxter, Unterschleibheim, Germany). Subcutaneous (sc)
and epigonadal (epi) adipose tissue (AT) was immediately removed and
frozen in liquid nitrogen. Serum was collected for measurements of
triglycerides (TG), free fatty acidy (FFA), cholesterol, insulin, adipo-
nectin, leptin, and monocyte chemotactic protein (Mcp-1).

2.11. Serum parameter analysis
Serum insulin (mouse insulin ELISA, Mercodia, Uppsala, Sweden),
adiponectin (mouse adiponectin ELISA, AdipoGen, San Diego, CA,
USA), leptin (mouse leptin ELISA, Crystal Chem, Downers Grove, IL,
USA), and Mcp-1 (mouse/rat CCL2/JE/Mcp-1 Quantikine ELISA, R&D
Systems, Minneapolis, MN, USA) levels were analyzed via ELISA ac-
cording to the manufacturer’s instructions. Serum concentrations of
TG, FFA, and cholesterol were measured by an automatic chemical
analyzer at the Institute of Laboratory Medicine and Clinical Chemistry.

2.12. Histology and adipocyte size measurements
Subcutaneous AT and epigonadal AT were fixed, paraffin embedded,
sectioned (5 mm), and H&E stained as previously described [54]. Mi-
croscopy images were taken using an Axio Observer microscope
(Zeiss, Oberkochen, Germany). The adipocyte size was analyzed from
at least 50 cells per slice using AxioVision software version 4.6.

2.13. Microarray experiments and analyses
Transcriptome profiling was performed in epigonadal samples from 3
mice from each experimental group using a mouse Clariom S Assay
from Affymetrix. The RNA integrity and concentration, RNA hybridiza-
tion, scanning procedures, and post-processing were performed ac-
cording to Affymetrix’s protocol at our genetic technologies core unit.
An expression matrix from the Affymetrix data was created using the
robust multi-array average algorithm (RMA) in RMAExpress [55].
Briefly, the raw intensity values were background corrected, log2
transformed, and then quantile normalized. A linear model was then fit
to the normalized data to obtain the expression measurements for each
probe set on each array. Mapping of the manufacturer’s Probe ID to
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data from public repositories (ENTREZ gene identifiers and ENSEMBL
accession numbers) was performed using annotation packages
available from Bioconductor version 3.7 (MacDonald JW (2017) clar-
iomsmousetranscriptcluster.db: Affymetrix clariomsmouse annotation
data (chip clariomsmousetranscriptcluster) using R package version
8.7.0). Gene expression data were analyzed using the R statistical
environment (R Core Team (2017), R Foundation for Statistical
Computing, Vienna, Austria, https://www.R-project.org). Log2-
transformed values were analyzed using the Bayesian moderated t-
statistic implemented in the limma package version 3.32.10 [56]. The
linear model was fit to a design matrix including treatment as a factor
variable with 2 levels and a “toptable” was produced with information
on the fold changes in the gene expression according to the treatment,
corresponding p-values, and multiple testing adjusted p-values ac-
cording to the Benjamini-Hochberg procedure.
Gene ontology enrichment analysis for processes, functions, and
components was performed using the Gene Ontology enRIchment
anaLysis and visuaLizAtion tool (GOrilla) [57]. KEGG pathways and
gene ontology (GO) gene sets were generated using kegg.gsets,
go.gsets, and gageData. KEGG pathways were plotted using the
Pathview package [58]. The figures were produced using the ggplot2
package [59], Pheatmap (Raivo Kolde (2016), Pheatmap: Pretty
Heatmaps, R package version 1.0.9.), and REVIGO [60].

2.14. Statistical analysis
Statistical analysis was performed using GraphPad Prism 5.03
(GraphPad Software, Inc., San Diego, CA, USA). Statistical signifi-
cance was determined via one-way analysis of variance (ANOVA)
followed by Dunnett’s multiple comparison test for the cell culture
studies and the non-parametric ManneWhitney U-test for the animal
studies. Statistical analyses for microarray data were previously
described.

3. RESULTS

3.1. Peptide synthesis of Tesa-NPY
Unmodified NPY (1) and NPY1R-preferring ligands [F7, P34]-NPY (2)
were synthesized by automated solid phase peptide synthesis (SPPS)
using the orthogonal Fmoc/tBu strategy [61]. For [K4(GFLG-tesa), F7,
P34]-NPY (tesa-NPY) (3), a combination of automated SPPS and manual
couplings was used. Tesa was then linked to [F7, P34]-NPY (2) by an
enzymatically cleavable GFLG linker (Figure 2).
Previous studies demonstrated that modifications at position 4 of NPY
do not change the peptide’s activation and internalization behavior
[62e64]. Modification of the Nε group of Lys4 was achieved by the
selective hydrazine-induced removal of the orthogonal Dde protecting
group and the subsequent attachment of the GFLG linker and tesa via
standard DIC/HOBt coupling. After cleavage from the Rink amide resin,
all of the peptides were purified by RP-HPLC to a purity of >95%. The
identity and purity of the peptides were confirmed by MALDI-ToF, ESI-
HCT mass spectrometry, and analytical RP-HPLC (Table 2). The
analytical data for tesa-NPY (3) are shown in Figure 3.

3.2. Tesa-NPY is a potent NPY1R agonist and induces NPY1R
internalization
The receptor activation, selectivity, and internalization were investi-
gated to ensure that the attachment of the cleavable linker and tesa did
not alter the behavior of NPY1R-preferring carrier peptide [F7, P34]-
NPY. The activation of the human Y-receptors was tested using Ca2þ-
flux assays in COS-7 cells stably expressing one specific Y-receptor
subtype (NPY1/2/4/5R) and chimeric G protein (D6Gaqi4-myr), opening
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Figure 2: Sequences and structures of peptides. Peptide sequences of NPY (1), [F7, P34]-NPY (2), and [K4(GFLG-tesa), F7, P34]-NPY (3). Chemical structures of the PPARa/g
agonist tesa and the cleavable GFLG linker used to attach tesa to the peptide.

Table 2 e Analytical characterization of the synthesized peptides.

No. Compound MALDI-ToF MS ESI RP-HPLC retention time (min) Purity (%)

Mcalc. (Da) Mobs. (M þ H)þ Mobs. (z) (Da) Column A Column B

(1) NPY 4251.1 4252.0 1064.3 (4þ)
851.6 (5þ)
709.8 (6þ)
608.5 (7þ)

22.0 (20-60-40) 18.7 (20-60-40) >95

(2) [F7, P34]-NPY 4253.1 4254.0 1064.9 (4þ)
852.0 (5þ)
710.9 (6þ)
609.0 (7þ)

23.3 (20-60-40) 19.8 (20-60-40) >95

(3) [K4(GFLG-tesa), F7, P34]-NPY 5017.5 5018.5 1256.1 (4þ)
1005.0 (5þ)
837.7 (6þ)
718.1 (7þ)

20.5 (30-60-30) 19.5 (30-60-30) >95
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the Ca2þ channels upon receptor activation (Figure 4A-D, Table 3)
[49,65].
Tesa-NPY (3) is a potent NPY1R agonist as indicated by EC50 values
comparable to that of carrier peptide [F7, P34]-NPY (2) and native ligand
NPY (1). At NPY2R, a 400-fold loss in the tesa-NPY (3) activity was
observed compared to NPY (1), which was even higher than the 160-
fold loss of NPY1R-preferring [F7, P34]-NPY (2). These data demon-
strate the strong NPY1R selectivity of the peptide-drug conjugate
toward NPY2R. The activity of [F7, P34]-NPY (2) at NPY4R and NPY5R
was comparable to the activity of the native ligands hPP (NPY4R) and
NPY (NPY5R) (1). This limited selectivity of [F

7, P34]-NPY toward NPY4R
and NPY5R was previously detected during its development [54,58].
However, the modification of [F7, P34]-NPY with tesa led to a strong
loss of activity (25-fold) at the NPY4R subtype and a slight loss of
activity at NPY5R. These results demonstrate that the tesa-modified
[F7, P34]-NPY (3) was more NPY1R selective than the unmodified [F7,
P34]-NPY (2), especially with respect to the effects at NPY4R.
The selectivity of tesa-NPY (3) was further investigated by live cell
imaging of ligand-induced Y-receptor internalization using a HEK293
cell line that stably expresses NPY1/2/4/5R-eYFP fusion protein
(Figure4E). The receptors (yellow) were mainly present in the mem-
brane prior to stimulation and only minor fluorescence was detected in
the intracellular compartments, which was caused by overexpression
in the stable cell lines and due to the accumulation of receptor proteins
in the endoplasmic reticulum and Golgi apparatus [62,66,67]. Because
we observed continuous replenishment of membrane-localized NPY1R
and NPY4R receptors during internalization, we added translation in-
hibitor CHX and ER-Golgi transport inhibitor BFA to the medium to
facilitate the detection of reduced receptor localization to the
168
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membrane upon internalization. The native ligand NPY (1) and peptide
conjugate tesa-NPY (3) induced NPY1R internalization as indicated by
an increase in the yellow fluorescence in the intracellular vesicles and
a decrease in the membrane fluorescence. For NPY2R and NPY4R, only
the native ligands NPY (NPY2R)/hPP (NPY4R) induced an internalization,
whereas stimulation with tesa-NPY (3) led to only minor endocytosis.
For NPY5R, it was previously described that internalization occurs
much slower and in a lower amount than for the other Y-receptor
subtypes, which was also detected in the present study [68]. To
confirm these findings, we incubated the cells with fluorescently
labeled [K4(GFLG-TAMRA), F7, P34]-NPY and monitored the uptake of
red fluorescent linker peptide used to shuttle tesa preferably to NPY1R-
expressing cells.
These results demonstrated that NPY1R activity and the preference of
tesa-NPY (2) over NPY2R and NPY4R was even higher than that of
unmodified [F7, P34]-NPY (3). Selectivity toward NPY5R can be ensured
as this receptor undergoes only minor endocytosis.

3.3. Tesa-NPY induces PPARg transcriptional activity in cells
expressing NPY1R and PPARg
To examine whether the tesa-NPY conjugate (3) was able to activate
the PPARg nuclear receptor, HEK293 cells stably expressing NPY1R
were transfected with a plasmid-expressing luciferase under the
control of the PPAR-responsive element PPRE. Furthermore, plasmids
coding for PPARg and RXRa were transfected. Because PPARg binds
as a heterodimer with RXRa to PPRE-responsive elements, RXRa is
needed for PPARg activity [40]. After transfection, the cells were
treated with free tesa, carrier peptide [F7, P34]-NPY (2), or the tesa-NPY
conjugate (3) and the luciferase activity was measured (Figure 5).
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Figure 3: Analytical data of [K4(GFLG-tesa), F7, P34]-NPY (3). (A) Analytical RP-HPLC using a Phenomenex Jupiter Proteo C12 90�A column and (B) an Agilent VariTide RPC
column with a linear gradient of 30e60% (v/v) ACN/H2O in 30 min. (C) MALDI-ToF mass spectrum showing the single- and double-loaded molecule ion signals
(Mcalc. ¼ 5017.5 Da). (D) ESI mass spectrum displaying the four-, five-, six-, and seven-fold charged molecule ions. tR ¼ retention time, AU ¼ absorption units, a.u. ¼ arbitrary
units.
Concentration-dependent luciferase activity was detected in the tesa
and tesa-NPY (3) treated cells (Figure5A). [F7, P34]-NPY (2), in contrast,
did not contain a PPARg agonist and was thus unable to induce
transcriptional activity. However, the free tesa demonstrated a satu-
ration curve, whereas saturation was not achieved for the tesa-NPY (3).
Most likely, higher concentrations of the drug are needed for com-
parable effects. However, with respect to higher concentrations, the
assay is technically limited due to the peptide’s solubility. The pep-
tide’s lower potency was likely due to the selective transport and
release of the peptide conjugate. Whereas free tesa is taken up by the
cells through passive diffusion, peptide conjugate needs to be taken up
by endocytosis and the drug has to be released. This process is further
limited by the receptor expression level on the cell surface. Thus,
higher concentrations of peptide conjugate are needed to reach the
same concentration inside the cell, as was previously shown for
cytotoxic NPY conjugates with comparable size and polarity [63,66].
To confirm that the PPARg activity of the tesa-NPY (3) was induced by
NPY1R-mediated internalization, the effect of the conjugate was
investigated in the presence of an excess of unmodified NPY1R agonist
(NPY) (Figure5B). Incubation with NPY alone did not lead to any tran-
scriptional activity, whereas tesa-NPY induced it. Indeed, unlabeled
NPY competed with tesa-NPY (3) for binding to NPY1R and therefore its
transcriptional activity, confirming the receptor-mediated mechanism
of PPARg activation by the peptide-drug conjugate. Further verification
of the peptide conjugate specificity was performed using cells that do
not express either NPY1R or PPARg (Figure5C). The activity of the free
tesa, taken up by passive diffusion, was not influenced by NPY1R
expression, whereas the absence of PPARg led to a complete loss of
transcriptional activity (left). In contrast, for the tesa-NPY conjugate (3),
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the presence of both the receptor and PPARg was mandatory to exert
its effects, as expected for receptor-mediated uptake of the compound.
In the absence of NPY1R, the levels dropped to basal levels comparable
to unstimulated PPARg expressing cells. In the absence of PPARg,
even the basal levels of transcriptional activity were lost, leading to
negative values in the assay. Apparently HEK cells do not express
detectable levels of endogenous PPAR proteins that can be activated in
the assay.
These results demonstrated that tesa was selectively internalized
through [F7, P34]-NPY and activated PPARg in the cells stably
expressing NPY1R. Next, the activity of tesa-NPY in cells with native
NPY1R expression is addressed.

3.4. Tesa-NPY enhances adipogenesis and the expression of
adipocyte-marker genes in 3T3-L1 and SGBS cells
The activation of PPARg is sufficient and necessary for adipogenesis
[69]. Thus, the tesa-NPY conjugate (3) was analyzed for its ability to
stimulate murine 3T3-L1 and human SGBS preadipocyte differentiation
into mature adipocytes. This was assessed via quantification of the
intracellular triglyceride (TG) content, as adipocytes accumulate TG in
response to cell differentiation (Figure 6A-D) [70]. The 3T3-L1 and
SGBS cells were differentiated as illustrated in Figure 6A/B. Treatment
with 10/25/100 mM of free tesa and 100 mM of tesa-NPY (3) enhanced
adipogenesis in both cell lines (Figure 6C/D). In contrast, [F7, P34]-NPY
(2) had no influence on adipocyte differentiation. As previously dis-
cussed for the reporter gene assay in HEK cells (Figure 5), higher
concentrations (unfeasible due to solubility issues) or longer constant
treatment with tesa-NPY (3) is needed to obtain comparable effects as
observed for free tesa.
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Figure 4: Receptor activation and internalization of peptides. (AeD) Ca2þ-flux assays in stably transfected COS-7 cells to measure the activity of NPY (1) or hPP, [F7, P34]-NPY
(2), and tesa-NPY (3) on the respective human Y-receptor subtype NPY1R (A), NPY2R (B), NPY4R (C), NPY5R (D). The depicted values represent the mean � SEM from n � 2
independent experiments. Data were normalized to maximum NPY (NPY1/2/5R) or hPP (NPY4R) response. (E) Receptor internalization of (1) and (3) studied in HEK293 cells stably
expressing the respective human Y-receptor subtype fused to eYFP (yellow). Cells were stimulated with 100 nM of peptides for 1 h. Uptake of the fluorescent-labelled linker peptide
[K4(GFLG-TAMRA), F7, P34]-NPY (red) was monitored after incubation for 10 min Hoechst33342 was used for nuclear staining (blue). Representative pictures from two independent
experiments. Scale ¼ 10 mm.
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Moreover, PPARg activation leads to the expression of several adi-
pogenic markers, such as adiponectin, fatty acid binding protein 4
(Fabp4), and cell death-inducing DEFA-like effector c (Cidec). The
expression of these genes in response to tesa-NPY (3) was assessed
via qPCR (Figure 6E/F) [71e74]. The 3T3-L1 and SGBS cells were
differentiated as previously described, harvested on day 3 or 4, and
used for qPCR. The expression of adiponectin in the 3T3-L1 cells was
upregulated by the free tesa and peptide conjugate (3), but not for [F7,
P34]-NPY (2). The expression of Fabp4 and Cidec in the 3T3-L1 cells
was enhanced by free tesa, but no significant effect of tesa-NPY (3)
and [F7, P34]-NPY (2) was visible. In the SGBS cells, tesa and tesa-NPY
(3) enhanced the expression of adiponectin, Fabp4, and Cidec. How-
ever, only Fabp4 induction by tesa reached significant differences. [F7,
P34]-NPY (2) showed no effect.
These data point to successful internalization, release, and activity of
tesa-NPY (3) in cells natively expressing NPY1R. Finally, we tested
whether the peptide conjugate was active and able to induce anti-
diabetic effects in vivo.
Table 3 e Receptor activation of peptides determined via Ca2þ-flux assay.

No. Peptide EC50 (nM) (pEC50 � SEM)

NPY1R NPY2R NPY4R NPY5R

(1) NPY/hPP 0.4 (9.4 � 0.2) 0.2 (9.8 � 0.1) 0.2 (9.6 � 0.4) 9.9 (8.0 � 0.1)
(2) [F7, P34]-NPY 0.3 (9.5 � 0.1) 32 (7.5 � 0.1) 0.3 (9.5 � 0.1) 8.5 (8.0 � 0.1)
(3) tesa-NPY 0.4 (9.4 � 0.1) 96 (7.0 � 0.1) 5.0 (8.3 � 0.1) 25 (7.6 � 0.1)
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3.5. Tesa-NPY influences body weight and adipose tissue
morphology in db/db mice
The db/dbmice were treated with 2.5 mM/kg/day tesa, tesa-NPY (3), or
[F7, P34]-NPY (2) over 8 days. The controls represent the untreated db/
db mice and the db/db mice treated with vehicle (1% (v/v) DMSO in
PBS). Changes in body weight during the treatment were measured.
The mice treated with tesa and tesa-NPY (3) did not change signifi-
cantly, whereas their littermates treated with [F7, P34]-NPY (2) or
vehicle/untreated lost approximately 3% of their body weight
(Figure 7A). However, no significant differences between the body
composition of the mice (lean mass and fat mass determined by
EchoMRI) were detected (Figure 7B/C).
To investigate whether treatment with tesa, tesa-NPY (3), or [F7, P34]-
NPY (2) affected the adipocyte morphology, the adipose tissue his-
tology was analyzed and the adipocyte size distribution was measured.
H&E staining of the subcutaneous and epigonadal adipose tissue de-
pots showed a trend toward smaller epigonadal and subcutaneous cell
size in the mice treated with tesa-NPY (3), whereas the mean adipo-
cyte diameter for all of the other mice was comparable (Figure 7D).

3.6. Tesa-NPY influences metabolic parameters in db/db mice
In addition to the body weight and body composition, several metabolic
parameters were measured after treatment with tesa, tesa-NPY (3),
[F7, P34]-NPY (2), or vehicle/untreated. The vehicle/untreated db/db
mice had elevated plasma levels of HbA1C (data not shown), ketone
bodies, insulin, and Mcp-1 and reduced plasma levels of adiponectin
compared to the lean mice (Figure 8), which is characteristic of these
mice. The treatment significantly delayed rapid diabetes progression,
which is prototypical for db/db mice. Whereas in the vehicle/untreated
MOLECULAR METABOLISM 31 (2020) 163e180
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Figure 5: Transcriptional activity of the PPAR reporter gene. (A) Relative transcriptional activity following tesa, [F7, P34]-NPY (2), or tesa-NPY (3) treatment in HEK293 cells
stably expressing NPY1R, transiently transfected with PPAR reporter gene, PPARg, and RXRa plasmids. (B) Relative transcriptional activity following treatment with 100 mM of tesa-
NPY (3) in the presence or absence of 20-fold NPY (1) using HEK293 cells stably expressing the NPY1R, transiently transfected with the PPAR reporter gene, PPARg and RXRa
plasmids. Treatment with NPY (1) alone served as a negative control. (C) Relative transcriptional activity following treatment with 100 mM tesa or tesa-NPY (3) in HEK293 cells
expressing either NPY1R or PPARg or both (in the presence of PPAR reporter gene- and RXRa expression plasmids). The depicted values represent mean � SEM from n � 3
independent experiments. All measurements were normalized to the transcriptional activity of DMSO-treated cells expressing all factors (set to 0). Statistical significance was
determined by one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test, *�0.05, **p � 0.01, ***p � 0.001.
mice, the HbA1C values increased by approximately 2%, a graduated
reduced increase was seen for [F7, P34]-NPY (2), peptide conjugate (3),
and tesa (Figure 8A). Body temperature, which decreased to 35 �C in
Figure 6: Influence of tesa-NPY (3) on adipogenesis. (A, B) Cells were differentiated an
Lipid accumulation was measured by TG staining in differentiated 3T3-L1 (C) or SGBS (D) a
tesa-NPY (3). Bars represent mean � SEM from n ¼ 3 independent experiments performe
(set to 100%). Statistical significances refer to vehicle-treated cells. (E,F) Expression of ad
represent mean � SEM from n � 3 independent experiments performed in duplicates. M
housekeeping genes and DMSO-treated cells as control (set to 1). Statistical significance
(ANOVA) followed by Dunnett’s multiple comparison test, *�0.05, **p � 0.01, ***p � 0.
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the vehicle/untreated db/db controls, was normalized to 36 �C in all of
the treated mice including the mice treated with [F7, P34]-NPY (2)
(Figure 8B). Treatment with tesa and tesa-NPY (3) led to normalization
d stimulated according to the protocol depicted for 3T3-L1 (A) and for SGBS (B). (C, D)
dipocytes following treatment with indicated concentrations of tesa, [F7, P34]-NPY (2), or
d in quadruplicates. Measurements were normalized using DMSO (vehicle)-treated cells
ipocyte-enriched genes in 3T3-L1 (E) or SGBS (F) adipocytes analyzed by qPCR. Values
easurements were normalized according to the 2�DDCt method to 36B4 or GAPDH as
s refer to DMSO-treated cells and were determined by one-way analysis of variance
001.
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Figure 7: Effects of tesa-NPY (3) on body weight, body composition and adipose tissue morphology in db/db mice. (A) Percentage of body weight change over 9 days of
mice treated with 2.5 mM/kg/day tesa, [F7, P34]-NPY (2), or tesa-NPY (3) (n ¼ 5). (B, C) The percentage of fat (B) mass and lean (C) mass change determined by EchoMRI over 9
days of mice treated with tesa (2) or tesa-NPY(3) (n ¼ 5). Bars represent mean � SEM; * �0.05, **p � 0.01, ***p � 0.001 determined by one-way analysis of variance (ANOVA)
followed by Dunnett’s multiple comparison test. D) Adipose tissue morphology determined by H&E staining of epigonadal (epi) and subcutaneous (sc) adipose tissue (AT) of mice
treated with tesa, (2), (3) or vehicle. Controls represent untreated mice and mice treated with vehicle (oral or intraperitoneal) (n ¼ 15). Scale bar ¼ 100 mM. Mean epi and sc
adipocyte diameters were analyzed using the AxioVision software release 4.8.
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of the plasma concentration of ketone bodies and adiponectin,
whereas [F7, P34]-NPY (2) and vehicle/untreated showed no effect
(Figure 8C/E). Treatment had no major influence on the insulin and
Mcp-1 levels (Figure 8D/G). The serum leptin concentration was
reduced in the mice treated with tesa, whereas no reduction was
detectable in all of the other treated mice (Figure 8F). Only tesaglitazar
significantly enhanced the expression of PPARg in the liver (Figure 8H).
The influence of tesa, tesa-NPY (3), and [F7, P34]-NPY (2) on the
plasma lipids was also analyzed (Figure 9). The vehicle/untreated db/
db mice showed elevated levels of triglycerides and free fatty acids
(FFA) compared to the lean C57BL/6N mice. Treatment with tesa and
tesa-NPY (3) led to a normalization of the triglycerides, FFA, whereas
[F7, P34]-NPY (2) and vehicle/untreated had no influence on the lipid
metabolism (Figure 9A/B). The cholesterol levels were unchanged by
any treatment as these levels were also comparable in the untreated
db/db mice compared to the lean mice (Figure 9C).

3.7. Microarray data analyses demonstrates differential expression
of genes highly relevant to glucose metabolism and adipogenesis
To identify the regulated novel genes and pathways, we measured the
mRNA expression in the adipose tissue of the treated and control mice
using a microarray approach. In line with morphological changes
observed in adipose tissue and metabolism under tesa-NPY, microarray
data analyses revealed differential increases and decreases of genes
highly relevant to glucose metabolism and adipogenesis (Table S1, S2,
Figure 10). The gene expression comparison of the animals treated with
tesa-NPY compared to [F7, P34]-NPY identified ras homolog family
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member B (RhoB) (logFC ¼ �1.23, p-value ¼ 0.00033), lens intrinsic
membrane protein 2 (Lims2) (logFC¼ - 0.87, p¼ 0.000209), fibroblast
growth factor receptor-like 1 (Fgfrl1) (log2FC ¼ - 0.9, p-
value ¼ 0.000820), C-X-C motif chemokine ligand 13 (Cxcl13)
(logFC¼ 3.008, p-value¼ 0.00057), and the genes involved in antigen
recognition s.a. Ighv2-6-8 and Ighv2-9-1 (Table S1 and S2) as highly
regulated genes (Figure 10). The most significant enriched pathway of
differentially expressed genes was related to lipid metabolism (fatty acid
degradation and increased arachidonic and linoleic acid metabolism), the
PPAR signaling pathway, drug metabolism in tesa-NPY treatment
compared with FP-NPY, and insulin signaling (Table S3). Depleted
pathways under tesa-NPY included cell cycle, cell turnover, apoptosis,
and oxidative phosphorylation. Interestingly, the KEGG pathway for insulin
signaling was downregulated although the gene ontology analyses of the
biological processes and cell components showed enrichment of the gene
sets involved in the positive regulation of glucose import and the negative
regulation of the sequestering of triglycerides (Table S3).

4. DISCUSSION

Because of its beneficial effects on glucose and lipid abnormalities in
patients with type 2 diabetes, PPARa/g agonist tesaglitazar is a
promising candidate for clinical applications. However, severe side
effects related to the essential role of PPAR in the regulation of
numerous processes in a variety of cell types and tissues limit its
therapeutic value. In this report, we describe the development of a
system for the cell type-specific delivery of dual PPARa/g agonist tesa
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into adipocytes. This strategy allows the use of PPARa/g agonists to
selectively drive adipocyte differentiation and avoid their adverse ef-
fects in other tissues that has hindered the clinical development of
these compounds. Peptide-drug conjugates, prodrugs synthesized by
covalent coupling of a peptide to a drug via a specific cleavable linker,
enter the cells by specific receptor-mediated binding and internaliza-
tion in the receptor-expressing cells. Subsequent endosomal cleavage
of the linker releases the drug to freely diffuse in the cells and exert its
effects. Peptide-drug conjugates were investigated as a promising
approach for the selective delivery of cytotoxic agents to tumors in
cancer therapy and the first compounds are currently being evaluated
in clinical trials [75]. Initial attempts to use this principle for the
treatment of T2D have been achieved by targeting estrogen to GLP-1R-
expressing tissues such as the pancreas [76].

4.1. Design of drug-peptide conjugates
We utilized NPY1R as the cell surface receptor to selectively target adi-
pocytes, as this GPCR was shown to be highly expressed in adipocytes
and overexpressed in the adipose tissue of obese patients [27e30].
NPY1R belongs to a multi-receptor multi-ligand family consisting of four
receptor subtypes in humans (NPY1R, NPY2R, NPY4R, and NPY5R) that can
be activated by NPY. Therefore, NPY1R subtype selectivity of the carrier
peptide is of high importance and has to be ensured [77,78]. This can be
achievedby using [F7, P34]-NPY, aNPY1R-preferringpeptide ligand,which
was already successfully used to target NPY1R-positive breast cancer
cells [61e63,66,79,80]. We synthesized tesa-NPY (3), a conjugate
consisting of PPARa/g agonist tesa attached to [F7, P34]-NPY through a
cleavable GFLG linker introduced at position K4. Tesa-NPY activates high-
activity NPY1R and robustly induces an internalization of the receptor.
Furthermore, the investigation of the peptide conjugate among other
human Y receptors demonstrated that tesa-NPY has very low activity at
NPY2R and NPY4R. Interestingly, the modifications in the peptide conju-
gate led to a further reduction in activity at NPY2R and NPY4R compared to
unmodified [F7, P34]-NPY. This might be crucial especially with respect to
NPY4R, as this receptor is highly expressed in the gastrointestinal tract,
pancreas, and prostate [81,82]. Selectivity toward cells expressing NPY5R
can also be ensured, as these receptors showed onlyminor internalization
174
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and were mainly expressed in the CNS; thus, the effects at this receptor
will be limited by the bloodebrain barrier [34e36,80,83].

4.2. Successful specific peptide-mediated shuttling of tesa to
NPY1R-expressing cells
To prove NPY1R-mediated PPARg activation by tesa-NPY, a PPARg
reporter gene assay in NPY1R-expressing HEK293 cells was per-
formed. These assays demonstrated that tesa-NPY activated PPARg,
proving that it was successfully internalized and released. The specific
receptor-mediated internalization of the peptide conjugate was
confirmed by testing cells lacking NPY1R and by competition experi-
ments using an excess of unlabeled NPY. Furthermore, cells that do not
express PPARg did not respond to tesa-NPY. Thus, the potency of the
conjugate is focused on cells expressing NPY1R, enhancing PPARg and
possibly also PPARa activities, which we did not assess in our cell
culture experiments. PPARa also expressed in the adipose tissue has
been shown to attenuate adiposity by promoting adipocyte differenti-
ation and suppressing adipocyte hypertrophy [45]. Therefore, its
additional activation by tesaglitazar shuttled to adipocytes would
additionally enhance the beneficial effects. In addition to adipocytes,
neurons and vascular smooth muscle cells are the only known other
cell types that express both NPY1R and PPARg and thus might also be
targeted by the peptide conjugate. The transport of PPARg agonists to
the CNS is hindered by the low NPY peptide permeability of the bloode
brain barrier [34e36]. However, it can be expected that uptake might
also occur in the vascular smooth muscle cells. The activation of
PPARg in vascular smooth muscle cells resulted in improved inflam-
mation, coronary insulin resistance, and upregulation of adiponectin
receptor expression and might even improve the health of patients with
T2D [84,85]. In addition to the co-expression of NPY1R and PPARa in
the adipocytes, both proteins are mainly co-expressed in the kidney
(https://www.proteinatlas.org). The Y1 receptor is primarily a renal
vascular receptor [86], and PPARa acts as an antiatherogenic factor by
modulating local and systemic inflammatory responses. PPARa li-
gands have beneficial effects on diabetic nephropathy and have been
shown to be protective in chronic kidney diseases [87]. Thus, targeting
of vascular smooth muscle cells in addition to adipocytes should not
lead to side effects.
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4.3. Tesa-NPY enhances adipogenesis and is a suitable candidate
for in vivo studies
After the initial proof of concept studies, further investigations revealed
that tesa-NPY enhanced adipogenesis in murine 3T3-L1 cells,
demonstrating that it was successfully internalized and released in
cells natively expressing NPY1R. To strengthen this finding, we
examined the expression of the PPARg-responsive genes adiponectin,
Fabp4, and Cidec [71e74,88e91]. Adiponectin may mediate the
beneficial effects of PPARg agonists for the treatment of diabetes, as it
is an insulin-sensitizing adipokine that affects hepatic glucose output
and decreases triglyceride content in the liver and muscle [92]. Cha
et al. showed that tesa induces increased adiponectin mRNA
expression and plasma levels in db/db mice, which improves insulin
resistance [93]. Fabp4 is needed to transport fatty acids through the
cytoplasm, and Cidec is involved in lipid droplet formation, so both
regulate lipid metabolism and are thus highly expressed in mature
adipocytes [72,88]. Tesa and tesa-NPY enhanced the expression of
adiponectin and shifted it to earlier time points in the differentiation
procedure. Fabp4 and Cidec were only significantly induced by tesa
treatment at the time points studied. Because the peptides were added
simultaneously with highly optimized differentiation medium, the effect
of treatment with tesa or peptides was overlaid by additional enhancing
factors. This was reflected by a very strong increase in the adiponectin,
Fabp4, and Cidec expression between days 3 and 4 even in the control
DMSO treatment (for example,> 100 fold for adiponectin on day 4/day
3 and even higher for the other genes; data not shown). Furthermore, it
was also underlined by the shift in the observed effects to earlier time
points, which especially for tesa-NPY were hardly detectable on day 4
as opposed to day 3. The effects were easier to detect for tesa taken up
by passive diffusion in substantial amounts than tesa-NPY, which was
dependent on the receptor internalization. This was observed in the
previously discussed PPAR reporter assays. To obtain more significant
results, it would be necessary to optimize the relationship of the
peptide treatment duration, enhancing the effect and minimizing the
side effects in the differentiation protocol, already optimized to reach
high differentiation rates in vitro. Nevertheless, significant results were
obtained for 3T3 differentiation and the induction of adiponectin
expression on day 3 and a similar trend was also observed in the SGBS
cells, although it did not reach significant differences for tesa-NPY.
These results illustrate that tesa-NPY can induce established PPARg
effects, such as induction of adipogenesis and adiponectin expression,
which are beneficial for the treatment of diabetes as they lead to in-
sulin sensitization. Thus, tesa-NPY possessed optimal requirements for
in vivo studies.

4.4. In vivo studies demonstrate the anti-diabetic activity of the
peptide-drug conjugate
Previous in vivo studies demonstrated that free systemically administered
tesa can reduce hypertriglyceridemia, hyperinsulinemia, and hypergly-
cemia in ob/ob mice and restore insulin sensitivity in obese Zucker rats
[43]. It also reduces atherosclerosis in LDL receptor-deficientmice [94]. In
the present study, we used db/db mice to evaluate the anti-diabetic po-
tency of the peptide conjugate, as thesemice are known to develop severe
insulin resistance and hypertriglyceridemia [95,96]. Phenotypical char-
acterization revealed that the animals that did not receive tesa or tesa-NPY
lost 3% of their bodyweight during the treatment period. During this time,
all of the mice were 12e16 weeks old; db/db mice are known to suffer
from severe disease syndromes such as progressive hyperglycemia and
glucosuria, which lead to the loss of calories and thus body weight [97e
99]. Treatment with tesa and tesa-NPY can prevent this weight loss,
indicating a prevention of calorie loss through glucosuria by improved
MOLECULAR METABOLISM 31 (2020) 163e180 � 2019 The Authors. Published by Elsevier GmbH. This i
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glycemic control as previously shown for other PPARg agonists in diabetic
ZDF rats [97,100]. Ljung et al. showed that tesa treatment does not lead to
weight gain in treated animals, which is usually seen in traditional PPARg
agonists such as rosiglitazone [74]. In the present study, no body weight
gain was detected and no major differences between the treated and
untreated animals regarding body composition could be measured, as all
of the groups lost fat and gained lean mass.
In contradiction to previous tesa in vivo studies, no major improve-
ments in hyperglycemia (serum HbA1C) and serum insulin levels were
detected in the treated mice compared to the untreated animals [43].
However, treatment with tesa or tesa-NPY did result in a deceleration
of disease progression, which is characterized by increasing blood
glucose values that could have been prevented by tesa and tesa-NPY in
the present study. No major changes in the total serum glucose
occurred and the insulin levels remained unchanged as the mice
adapted to the amount of glucose in their blood. An additional reason
for the constant insulin values might be the age of the animals, which
was not comparable between the study of Ljung et al. who used 6-
week-old mice, and the present study, which utilized 12- to 16-
week-old mice [43]. Ob/ob and db/db mice up to three months old
are characterized by strongly elevated serum insulin levels that are
supposed to compensate for rising blood sugar concentrations. Af-
terward, disease progression results in a decline in serum insulin and
decreased levels due to the destruction of pancreatic islets and the loss
of b-cells [98]. At this stage, the destruction of b-cells might be too
advanced to be restored by tesa treatment for only one week. Longer
treatment periods might lead to better control of the glucose and in-
sulin levels, which was previously shown for the PPARa/g agonist
muraglitazar in 12-week-old db/db mice, whereas treatment for one
week did not lead to significant effects, whereas treatment for 2e4
weeks did [100].
Metabolomic studies of mice and humans have identified many plasma
metabolite signatures in addition to HbA1C and insulin that are
associated with the development and progression of T2D, such as high
serum concentrations of FFAs, triglycerides, ketone bodies, leptin, and
pro-inflammatory cytokines such as Mcp-1 and a low serum con-
centration of adiponectin [101e107]. All of these factors promote the
manifestation of T2D. Increased concentrations of circulating FFAs, for
example, are major factors eliciting systemic insulin resistance [108].
High plasma concentrations of FFAs, triglycerides, and ketone bodies
and low levels of circulating adiponectin were normalized by tesa and
tesa-NPY treatment, but no significant effect on leptin and Mcp-1 was
detected. In summary, the tesa-NPY conjugate revealed promising
anti-diabetic effects, as the present study demonstrated that it
improved most of the aforementioned metabolic parameters and
corrected hypertriglyceridemia.
As tesa-NPY, selectively transported to NPY1R-expressing cells, per-
formed as well as systemically administered tesa, adipocyte-specific
PPARg activation is obviously sufficient for reversing metabolic pa-
rameters to a similar degree as systemic PPARg activation. This was
demonstrated by Sugii et al. who used PPARg agonists to restore the
whole body insulin resistance of HFD mice that expressed PPARg in an
adipocyte-specific manner as efficiently as mice that expressed
PPARg systemically [109]. Thus, the observed anti-diabetic effects are
assumed to result from adipocyte-specific PPARg-mediated mecha-
nisms. These include the release of insulin-sensitizing and anti-
inflammatory adipokines such as adiponectin, and the lowering of
plasma FFA and TG levels by uptake into newly differentiated adipo-
cytes [9,110]. Both these effects were detected in the present study.
Adipose tissue histology confirmed smaller adipocyte size and thus
adipogenesis only in the mice treated with tesa-NPY. Tesaglitazar is an
s an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 175
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orally active agent on a whole body level [43], whereas tesa-NPY acts
selectively on NPY-expressing tissues such as adipose tissue and must
be administered intraperitoneally. Both tesa and tesa-NPY improve the
metabolic state but tesa-NPY selectively acts on adipose tissue.
Studies of volunteers demonstrated that tesaglitazar is rapidly and
completely absorbed after oral dosing and has linear pharmacokinetic
properties, with an elimination half-life of between 38 and 59 h [111].
Therefore, only tesa-NPY can exert marked effects on adipose tissue.
In agreement with this phenotype, the KEGG pathways showed
increased fatty acid transport through Fabp4, although the LPL
pathway was downregulated. Furthermore, perilipin decreased blunt-
ing access to the TGs and therefore reduced sequestration by active
lipases. The fatty acid and beta oxidation pathways were significantly
enriched. These mechanisms warrant the potential of tesa-NPY for
metabolic disease improvement.
In line with the morphological changes in the adipose tissue and
metabolism under tesa-NPY, the microarray data analyses demon-
strated differential increases and decreases in the genes highly
relevant to glucose metabolism and adipogenesis. The loss of RhoB, a
downregulated gene in animals treated with tesa-NPY compared to
[F7, P34]-NPY, has been shown to prevent streptozotocin-induced
diabetes and ameliorate diabetic complications in mice, which
could indicate the positive effects of tesa-NPY in the absence of
HbA1c differences between the delay in disease progression in ani-
mals under treatment [112]. Lims2 was downregulated in tesa-NPY
treatment. In the literature, lims2 is described as interacting with
GP17, whose deletion has been shown to increase body weight
without changing food intake although lims2 deficient mice do not
demonstrate a specific obese phenotype [113]. The downregulation of
Lims2 under tesa-NPY can mediate the prevention of weight loss in
diabetic animals compared to untreated animals. In addition, FGFRL1
decreased under tesa-NPY. FGFRL1 is the fifth member of the
fibroblast growth factor receptor (FGFR). It interacts with fibroblast
growth factors to induce differentiation and plays a key role during
embryonic development [114]. This gene is highly expressed in
subcutaneous and epigonadal fat pads in mice. The expression of
FGFRL1and FGFR1 increased during adipocyte differentiation from
mesenchymal stromal cells, was more highly expressed in pre-
adipocytes compared to adipocytes, and FGFR1 knockdown further
inhibited adipocyte differentiation [115]. However, mice treated with
tesa-NPY demonstrated unregulated CXCL13, which has been shown
to be highly expressed in mature adipocytes compared to pre-
adipocytes and mediate B-cell uptake to the liver in ob/ob mice [116].
The interplay of these genes in adipogenesis and differentiation could
demonstrate the essential role of tesa-NPY treatment in active
adipocyte differentiation and maturation, supporting data from the AT
histology and cell culture studies presented.
The mice treated with free tesa showed a trend toward smaller
adipocyte size and also demonstrated a reduction in plasma FFAs and
TGs. This was because the insulin-sensitizing effects of PPARg ago-
nists do not depend only on adipogenesis. Sugii et al. showed that
PPARg activation in mature adipocytes but not preadipocytes (and
hence no activation of adipogenesis) was sufficient to improve insulin
sensitivity [109]. Thus, lower plasma FFA and TG levels can be
explained by the second PPARg-mediated mechanism, which is the
release of adipokines such as adiponectin. Adiponectin is known to
enhance FFA uptake and oxidation in the muscle and liver, leading to
decreased circulating FFAs [92,117]. The reduction in plasma FFAs
then correlates with a mobilization of lipids out of the liver and muscle,
thus improving whole body insulin sensitivity [110,118].
176
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Impaired thermoregulation is another well-documented characteristic of
diabetic mice. At temperatures of approximately 30 �C, which were used
in the present study, the body temperature of db/db mice was approxi-
mately 1 �C lower than that of lean C57BL/6N mice [119,120]. The body
temperature could be normalized by treatment with tesa, tesa-NPY, and
[F7, P34]-NPY, proving that not only tesa but also [F7, P34]-NPY can have
beneficial effects. This is in accordance with the literature, as the body
temperature of mice increases if they are administered NPY in the par-
aventricular nucleus, yet no investigation in mice has been performed to
date demonstrating the same effect for NPY administered peripherally
[121]. Moreover, in endotoxemic rats, a single dose of peripherally
injected NPY stabilized their body temperature [122].
In contrast to adipose tissue, there is very low expression of PPARg
and even less NPY1R in human and mouse livers (http://www.
informatics.jax.org/expression.shtml; https://www.proteinatlas.org).
We found that tesaglitazar significantly enhanced the expression of
PPARg in the liver. Tesa is a dual agonist of PPARa and g that im-
proves both lipidemic and glycemic abnormalities in preclinical models
of type 2 diabetes and metabolic syndrome [43, 123,124]. The tesa-
NPY conjugate also elevates PPARg expression but not significantly.
That elevation might be due to the fatty liver in db/dbmice. Db/db mice
exhibit non-alcoholic fatty liver disease (NAFLD) with adipocytes.
Further investigations will be required to determine whether isolated
hepatocytes represent stable noninfluenced PPARg expression in non-
fatty tissues.

5. CONCLUSION

In conclusion, we developed a novel system for the cell-type specific
uptake of a PPARa/g dual agonists by peptide-mediated internalization
and controlled release into adipocytes. Treatment of adipocytes with
peptide conjugate enhanced adipogenesis and adiponectin expression.
In vivo studies using db/db mice proved the ability of the peptide
conjugate to prevent diabetes progression by reducing plasma FFAs
and hypertriglyceridemia and enhancing plasma adiponectin levels as
efficient as systemically administered tesa. These data clearly
demonstrated that a peptide conjugate composed of [F7, P34]-NPY and
tesa is as efficient as free tesa and is thus a promising drug candidate
that potentially reduces the known side effects of non-selective PPARg
agonists for the treatment of T2D.
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