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ABSTRACT

The development of advanced technologies in artificial intelligence (AI) has expanded its 
applications across various fields. Machine learning (ML), a subcategory of AI, enables 
computers to recognize patterns within extensive datasets. Furthermore, deep learning, a 
specialized form of ML, processes inputs through neural network architectures inspired by 
biological processes. The field of clinical lipidology has experienced significant growth over 
the past few years, and recently, it has begun to intersect with AI. Consequently, the purpose 
of this narrative review is to examine the applications of AI in clinical lipidology. This review 
evaluates various publications concerning the diagnosis of familial hypercholesterolemia, 
estimation of low-density lipoprotein cholesterol (LDL-C) levels, prediction of lipid goal 
attainment, challenges associated with statin use, and the influence of cardiometabolic and 
dietary factors on the discordance between apolipoprotein B and LDL-C. Given the concerns 
surrounding AI techniques, such as ethical dilemmas, opacity, limited reproducibility, and 
methodological constraints, it is prudent to establish a framework that enables the medical 
community to accurately interpret and utilize these emerging technological tools.

Keywords: Artificial intelligence; Deep learning; Dyslipidemias; Lipids; Machine learning

INTRODUCTION

Since epidemiological studies first established total cholesterol and low-density lipoprotein 
cholesterol (LDL-C) as causative factors in the development of atherosclerotic vascular 
disease, there has been an exponential increase in research in the field of lipidology.1

In recent years, artificial intelligence (AI) technologies have been transforming medicine 
and healthcare.2 AI refers to the simulation of human intelligence processes by machines, 
particularly computer systems. Machine learning (ML), a subcategory of AI, enables 
computers to identify patterns in vast datasets and formulate responses to various questions 
across multiple disciplines through the use of algorithms. Furthermore, deep learning (DL) is 
a subset of ML distinguished by its use of biologically inspired neural network architectures 
to process inputs.
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The advanced technologies developed for AI have fueled its applications in many areas, 
such as security, business administration, finance, commerce, tourism, meteorology, and 
biology, among others.3 Similarly, AI's applications in the health sciences, especially in 
medicine, are extensive and span nearly all domains, such as genomics, epidemiology, 
diagnostics, prognosis, clinician workflow, telemedicine, and administrative management.4 
Furthermore, the remarkable expansion of clinical lipidology in recent years has seen 
numerous intersections with AI. The pursuit of precision medicine within certain contexts of 
contemporary lipidology may benefit from these innovative techniques.

Therefore, the aim of this narrative review was to explore some of the applications of AI in the 
field of clinical lipidology.

MATERIALS AND METHODS

A literature search was conducted to identify studies that established connections between 
various aspects of lipidology and AI. Two independent reviewers systematically searched the 
electronic databases of PubMed/MEDLINE, Embase, Science Direct, Scopus, and SciELO. 
The search terms used included “artificial intelligence,” “deep learning,” and “machine 
learning,” which were combined with the following lipid-related terms: “cholesterol,” 
“dyslipidemia,” “low-density lipoprotein cholesterol,” “high-density lipoprotein cholesterol,” 
“triglycerides,” “hypercholesterolemia,” “lipid-lowering treatment,” and “statins.” The search 
for relevant articles concluded on July 31, 2023.

Studies that analyzed the applicability of AI techniques for different diagnostic, prognostic, 
or therapeutic aspects of lipidology were included. There were no restrictions based on 
language, geography, or publication status. Studies that were excluded consisted of expert 
opinions, reviews, and those with a patient population of fewer than 100.

1. Ethical approval
This article is based on previously conducted studies and does not contain any studies with 
human participants or animals performed by any of the authors.

DIAGNOSIS OF FAMILIAL HYPERCHOLESTEROLEMIA (FH)

FH is the most common genetic disorder of lipid metabolism. FH results in life-long 
exposure to high LDL-C levels, which, if left untreated, significantly increase the risk 
of cardiovascular events.5 A clinical diagnosis of FH is typically made by documenting 
characteristic clinical features alongside significantly raised LDL-C levels. Additionally, 
a genetic diagnosis can be confirmed through the detection of heterozygous or biallelic 
pathogenic variants, primarily in the LDLR, APOB, or PCSK9 genes.6 Nevertheless, AI 
techniques may have the potential to improve FH identification.

Using only a basic lipid profile, age, and sex, Hesse et al. demonstrated that an ML model 
more effectively identified genetically confirmed FH in a cohort of individuals suspected 
of having FH than did LDL-C cutoff values, and it performed comparably to the Dutch 
Lipid Clinic Network criteria.7 The ML model achieved an area under the receiver operating 
characteristic curve (AUROC) of 0.711 in an external dataset with a high FH prevalence 
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(n=1,376; FH prevalence=64%), outperforming the LDL-C cutoff (AUROC=0.642) and 
matching the Dutch Lipid Clinic Network criteria (AUROC=0.705). Furthermore, the model 
demonstrated higher accuracy when evaluated on individuals with medium or lower FH 
prevalence, with AUROC values of 0.801 and 0.856, respectively.

Similarly, another study employed three ML algorithms to predict the presence of FH genetic 
mutations in two independent European cohorts with FH.8 Pina et al.8 discovered that the 
three ML algorithms outperformed the clinical Dutch Lipid Score in predicting carriers of 
FH-causative mutations, with AUROC values of 0.79, 0.83, and 0.83 for the Gothenburg 
cohort, and 0.70, 0.78, and 0.76 for the Milan cohort, compared to the Dutch Lipid Score’s 
AUROC of 0.68 and 0.64 for the Gothenburg and Milan cohorts, respectively.

Nolde et al.9 demonstrated that a model based on neural networks outperformed traditional 
clinical diagnostic criteria in predicting pathogenic mutations responsible for FH. The 
AUROC for the neural network model in predicting an FH gene variant was 0.87, significantly 
higher than that of other clinical criteria (Dutch Lipid Score: AUROC of 0.743; MEDPED: 
AUROC of 0.764; Simon Broome: AUROC of 0.635). The model’s global accuracy in 
predicting mutations causing FH was 80.6%, with a specificity of 83.3%, sensitivity of 74.3%, 
negative predictive value of 88.5%, and positive predictive value of 66.0%.

Finally, Banda et al.10 developed an ML-based classifier to identify potential FH patients 
using electronic health record data. The classifier achieved a positive predictive value of 0.88, 
sensitivity of 0.75, and specificity of 0.99 for detecting genetically confirmed FH cases. In 
addition, the AUROC was more informative for low-prevalence outcomes.

Underdiagnosis and undertreatment of FH are significant problems affecting the 
management of the condition. The cardiovascular consequences of FH often remain silent 
until they manifest as premature cardiovascular mortality and morbidity. Therefore, altering 
the natural history of FH depends on early detection and the initiation of lipid-lowering 
therapies. The studies analyzed in this review suggest that an ML-based approach could 
improve the identification rate of index FH cases. The potential applicability of these novel 
diagnostic tools for FH could be significant in the future.

LDL-C ESTIMATION

In clinical settings, LDL-C is typically estimated using the Friedewald equation. However, 
this method is known to be inaccurate in cases of high triglycerides, non-fasting states, or 
when patients exhibit very low LDL-C values.11 To account for variations in triglyceride levels, 
alternative formulas have been developed to estimate LDL-C more accurately than traditional 
methods. These include the Martin-Hopkins formula and the Sampson equation.

In this context, several studies have evaluated various AI techniques for estimating LDL-C 
levels. Oh et al.12 utilized a substantial single-center electronic health record database to 
develop an ML algorithm that estimates LDL-C from standard lipid profiles, analyzing 
823,657 tests. The ML algorithms outperformed the traditional Friedewald and the more 
recent Martin-Hopkins equations in estimating LDL-C. ML algorithms employing gradient 
boosting (LDL-CX) and neural networks (LDL-CN) demonstrated a stronger correlation 
with directly measured LDL-C than the conventional methods, with correlation coefficients 
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of 0.9662 and 0.9668 for LDL-CX and LDL-CN, respectively, compared to 0.9563 and 
0.9585 for the Friedewald and Martin-Hopkins equations. Furthermore, the overall bias 
was significantly lower for LDL-CX (−0.27 mg/dL) and LDL-CN (−0.01 mg/dL) than for the 
Friedewald formula (−3.80 mg/dL) and Martin-Hopkins equation (−2.00 mg/dL), particularly 
at elevated triglyceride levels.

A retrospective study was conducted to compare the performance of an ML algorithm with 
that of a direct homogeneous LDL-C assay.13 The principal findings indicated that the ML 
algorithm demonstrated better agreement with the direct homogeneous LDL-C assay than 
other equations, particularly in cases of mild and severe hypertriglyceridemia. Overall, the 
intraclass correlation coefficients for the estimated LDL-C values compared to the directly 
measured LDL-C values were 0.894, 0.937, 0.935, 0.869, and 0.925 for the Friedewald 
formula, the Martin-Hopkins equation, the Sampson equation, the de Cordova equation, and 
the ML-based estimation, respectively (p<0.001).

Similarly, another study introduced a novel method for estimating LDL-C from the standard 
lipid profile using an ML approach, which was based on 17,500 lipid profiles from 10,936 
individuals.14 The authors found that the correlation coefficients between the estimated and 
measured LDL-C values were 0.982 for the AI model, surpassing the 0.950 achieved by the 
Friedewald equation and the 0.962 by the Martin-Hopkins method. Furthermore, the AI 
model demonstrated superior performance across various subgroups categorized by LDL-C 
and triglyceride levels. This included individuals with triglycerides greater than 500 mg/dL, 
where the mean difference in LDL-C estimation was −27.17 mg/dL compared to the Friedewald 
equation and −4.44 mg/dL compared to the Martin-Hopkins method. Similarly, for individuals 
with LDL-C levels below 70 mg/dL, the mean difference was −3.82 mg/dL when compared to 
the Friedewald equation and −1.84 mg/dL compared to the Martin-Hopkins method.

Ghayad et al.15 evaluated an ML algorithm based on age, sex, healthcare setting, and 
triglyceride levels against a direct LDL-C assay. The ML algorithm demonstrated good 
agreement with direct LDL-C measurements in patients with normal triglyceride levels and 
mild hypertriglyceridemia, as indicated by an intraclass correlation coefficient greater than 
0.9. However, its performance was less robust in patients with severe hypertriglyceridemia 
and in those with very low LDL-C levels, where the intraclass correlation coefficient was 
slightly below 0.9.

Another study applied ML techniques to three databases: health check-up participants 
at the Resource Center for Health Science (n=2,664), clinical patients at Gifu University 
Hospital (n=7,409), and clinical patients at Fujita Health University Hospital (n=14,842).16 
Subsequently, nine different ML models were developed. A separate test dataset (n=3,711) 
from Fujita Health University Hospital was used to compare and validate the models against 
the Friedewald formula and the Martin method. The coefficients of determination for the 
models using the health check-up dataset were equal to or lower than those of the Martin 
method. However, the coefficients of determination for several models using the clinical 
patient data surpassed those of the Martin method. Thus, the study's results indicate that 
the performance of ML models varies with the data source, which complicates the task of 
confirming whether new techniques outperform traditional methods.

Finally, Kwon et al.17 aimed to develop a deep neural network model for estimating LDL-C 
levels and to compare its performance with that of previous LDL-C estimation equations. 
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They used two large, independent datasets from Korean populations, comprising 176,400 
individuals. The DL method exhibited lower bias and error than the Friedewald, Martin, 
and Sampson equations, demonstrating high agreement with LDL-C levels measured by a 
homogeneous assay.

Considering these reports, new AI-based techniques could offer a valuable approach for 
estimating LDL-C levels. These methods may not only surpass the traditional Friedewald 
formula but could also outperform alternatives such as the Martin-Hopkins formula or the 
Sampson equation. Nonetheless, these models need further refinement and validation across 
diverse populations. Enhanced LDL-C estimation would lead to more accurate cardiovascular 
risk stratification and optimize lipid-lowering treatments, ultimately helping to meet the 
lipid targets suggested by clinical guidelines and reduce patients’ cardiovascular risk.

PREDICTING THE ACHIEVEMENT OF LIPID GOALS

Based on scientific evidence, current guidelines recommend using LDL-C levels as the main 
therapeutic goals.18,19 However, despite advances in lipid-lowering treatments, many patients 
do not reach the goals recommended by the guidelines.20

In this context, a study evaluated various predictors of lipid goal achievement in outpatients 
with type 2 diabetes using ML.21 The study conducted a real-world analysis of the lipid 
profiles of 11,252 patients, employing an ML model to identify the most relevant factors 
for predicting the achievement of an LDL-C level below 100 mg/dL within two years of 
initiating lipid-lowering therapy. The model exhibited strong predictive capabilities, with 
an AUROC of 0.79. The most significant predictors of achieving the treatment goal were 
baseline LDL-C values, their reduction after 6 months, and no therapy discontinuation. Other 
factors associated with a higher likelihood of success were elevated high-density lipoprotein 
cholesterol, presence of albuminuria, body mass index, younger age, male sex, lower blood 
glucose, hemoglobin A1c levels, and the use of antihypertensive medication. Notably, the ML 
model also determined the minimum LDL-C reduction required by the 6-month follow-up to 
improve the chances of meeting the therapeutic target within 2 years. For instance, to achieve 
the two-year goal, the model predicted that patients with baseline LDL-C levels ranging from 
100 to 125 mg/dL, 150 to 175 mg/dL, and over 200 mg/dL would need to reduce their LDL-C 
by at least 14%, 33%, and 47%, respectively, by the 6-month mark. The authors suggested 
that these insights could be a valuable asset for guiding therapeutic decisions and promoting 
more comprehensive analysis and validation. However, they acknowledged limitations 
such as potential biases, the challenge of generalizing results to different populations, the 
exclusion of certain data such as statin dosages or some socioeconomic factors, and issues 
related to non-adherence. These caveats underscore the necessity for additional research, 
which should also encompass other high-cardiovascular-risk groups, including patients with 
a history of cardiovascular disease, chronic renal failure, or FH.

BARRIERS RELATED TO THE USE OF STATINS

Statin intolerance remains an important clinical challenge, although the prevalence of this 
clinical scenario might often be overestimated.22 Importantly, the nocebo effect could play a 
key role in this significant public health problem.23
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A recent study demonstrated the potential of an AI approach to sift through extensive social 
media data, providing insights into public perceptions of statins.24 This qualitative research 
focused on discussions related to statins on a social media platform. A total of 10,233 statin-
related discussions authored by 5,188 individuals were identified. The three most prevalent 
topics within these discussions included concerns about elevated LDL-C levels while 
following a ketogenic diet, requests for advice and shared experiences regarding changes in 
lipid panels, and anecdotal views on the effectiveness and side effects of statins. Sentiment 
analysis conducted on the social media posts and discussions about statins indicated that the 
overall sentiment was mainly neutral to negative, with 30.8% of posts being negative, 66.6% 
neutral, and only 2.6% positive.

Sarraju et al.25 developed a DL model to classify statin nonuse and the reasons for it, utilizing 
unstructured electronic health records from a cohort of 56,530 patients with atherosclerotic 
cardiovascular disease. The DL model classifiers were able to identify statin nonuse with 
an AUROC of 0.94 and the reasons for nonuse with a weighted-average AUROC of 0.88, 
as evaluated against manual expert chart review. This DL-based approach pinpointed key 
patient-level reasons, such as side effects and patient preference, as well as clinician-level 
reasons, including guideline-discordant practices, for statin nonuse. It also highlighted 
differences by patient race or ethnicity. Similarly, a novel DL approach accurately identified 
statin nonuse in patients with diabetes (n=33,461).26 This method also classified reasons 
for statin nonuse from unstructured electronic health record data, which included patient 
reasons (side effects and statin hesitancy), clinician reasons (guideline-discordant practice), 
and system reasons (clinical inertia), with variations observed by patient race and ethnicity. 
Older individuals (>75 years of age) were more likely to experience statin-associated side 
effects or contraindications (23.4%) and were less likely to be affected by clinical inertia or 
guideline-discordant practice compared to younger individuals (p<0.05 for comparisons). 
Hispanic patients were the most likely to encounter guideline-discordant practice (24.7%, 
p<0.05), while Black patients were the most likely to be subject to clinical inertia (24.0%, 
p<0.05), in comparison to other racial groups.

Interestingly, the last two studies identified some common reasons for statin non-adherence, 
such as adverse effects or perceived inadequate lipid control/guideline-discordant practice, 
while other reasons varied, including patient preference, statin hesitancy, or clinical inertia. 
However, all these reasons have been previously documented in the medical literature.27 
Therefore, accurately identifying these barriers using AI techniques could enhance statin 
utilization among patients with high cardiovascular risk in real-world settings, offering a 
strategy to bridge significant gaps in dyslipidemia treatment. It is crucial that future research 
be tailored to the diverse geographical areas and cultural characteristics of each population.

ASSOCIATION BETWEEN CARDIOMETABOLIC AND 
DIETARY FACTORS AND APOLIPOPROTEIN B (ApoB)/
LDL-C DISCORDANCE

ApoB is an adequate representative of all atherogenic particles.28 When there is a discrepancy 
between LDL-C and ApoB levels, elevated ApoB has been shown to be a more accurate 
predictor of atherosclerotic cardiovascular disease risk.29 Webb et al.30 examined the 
influence of adiposity, diet, and inflammation on the discordance between LDL-C and 
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ApoB by employing an ML model. In this instance, the ML model was applied to data from 
the National Health and Nutrition Examination Survey to explore cardiometabolic and dietary 
factors associated with concordance or discordance between LDL-C and ApoB. The ML analysis 
revealed that body mass index, dietary saturated fatty acids, dietary fiber, serum C-reactive 
protein, and uric acid were the variables most strongly associated (R2=0.70) with the pattern of 
low LDL-C and high ApoB. Accurately identifying patients with lipid discordance is crucial, as 
their condition has been linked to a higher prevalence of atherosclerosis.31,32

A summary of the main characteristics of the studies analyzed in this review is presented in Table 1.

LIMITATIONS, CHALLENGES, AND OPPORTUNITIES 
RELATED TO AI
Adapting new AI-based techniques to meet patient needs presents a significant challenge. 
Nevertheless, it is essential to address certain concerns associated with AI techniques. 
Ethical issues, such as patient privacy, must be taken into consideration.33 Additionally, when 
interpreting information, one should be mindful of publication-related issues, including a 
lack of transparency or methodological clarity that can impact the reproducibility of results.34 
Familiarizing oneself with the specific methodological aspects of new techniques, such 
as mathematical models and software, will pose a challenge for the medical community. 
A key distinction is that conventional statistics are model-driven, whereas AI and ML are 
data-driven, operating without a predefined understanding of the relationship between 
data and outcomes.35 In AI and ML, the software identifies patterns and forms clusters of 
data with shared characteristics that may influence the outcome. Traditional statistical 
methods, on the other hand, presuppose knowledge of the model that generated the data, 
assuming a known relationship between input variables and the output. The issue here is 
that the relationship between input and output is selected by the user and may lead to a less 
than optimal model. In contrast, ML methods do not start with a presumed model; instead, 
they begin with the data, and a mathematical algorithm develops a model with prediction 
as the primary objective. Compared to traditional statistical methods, ML algorithms 
can manage more variables but also necessitate a larger sample size for analysis. Another 
challenge is integrating these technologies into existing workflows. AI is not intended to 
replace clinical judgment. Rather, the most effective use of AI in clinical settings occurs 
when it is integrated seamlessly into the clinical workflow.36 Finally, it is crucial to consider 
the specific characteristics of different geographical regions, cultures, and ethnic groups. 
In this regard, some authors have suggested the creation of a framework to guide research 
groups in designing, conducting, and reporting their studies; to assist editors and peer 
reviewers in evaluating contributions to the literature; and to enable patients, clinicians, and 
policymakers to critically assess where new findings may offer patient benefits.37

The concerns and opportunities related to AI techniques in the area of lipidology are shown 
in Fig. 1.

CONCLUSION

In this literature review, we analyzed potential applications of AI, ML, and DL in lipidology. 
Diagnostic applications, such as screening for FH or calculating LDL-C, could significantly 
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impact clinical practice. Understanding the barriers patients face with lipid-lowering 
medications could enable physicians to address these obstacles effectively. Furthermore, 
the development of improved predictive models based on lipid profiles may be anticipated 
in the near future. Additionally, novel AI techniques could uncover previously unknown 
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Table 1. Characteristics of the studies included
Study (year) Data origin Country Main results
Diagnosis of FH

Banda et al.10 (2019) Internal data set: FH patients (n=197) and matched 
non-cases (n=6,590). External data set: FH patients 
(n=466) and matched non-cases (n=5,000).

USA The ML-based classifier obtained a positive predictive value of 0.88, 
sensitivity of 0.75, and specificity of 0.99 for detecting genetically 
confirmed FH cases.

Pina et al.9 (2020) Patients diagnosed with FH Sweden The ML algorithms performed better (AUROC range between 0.70 and 
0.83) than the clinical DLCNc (AUROC range between 0.64-0.68) in 
predicting carriers of FH-causative mutations.

Hesse et al.7 (2022) Clinically suspected of having FH. Internal dataset: 
n=678. External dataset: high FH prevalence, 
n=1376; medium FH prevalence, n=3,304; low FH 
prevalence: n=1,616.

South 
Africa

The ML model achieved an AUROC value of 0.711 on the dataset with high 
FH prevalence, which was superior to the LDL-C cutoff (AUROC=0.642) 
and comparable to the DLCNc (AUROC=0.705). The model achieved 
higher accuracy when tested on individuals with medium (AUROC=0.801) 
or lower (AUROC=0.856) FH prevalence.

Nolde et al.9 (2023) Adult patients referred to a specialist lipid clinic 
(n=885).

Australia The model based on neural networks (AUROC=0.870) was superior to 
traditional clinical diagnostic criteria (AUROC range between 0.635 and 
0.764) in predicting pathogenic mutations of FH.

LDL-C estimation
Singh et al.14 (2020) Electronic health record (17,500 lipid profiles 

performed on 10,936 unique individuals).
USA The ML model had a better correlation with direct LDL-C (r=0.982) than 

the Friedewald (r=0.95) or Martin-Hopkins (r=0.962) formulas, even 
in patients with high triglycerides (mean difference of −27.17 mg/dL 
compared to Friedewald and −4.44 mg/dL compared to Martin Hopkins) 
and very low LDL-C (mean difference of −3.82 mg/dL compared to 
Friedewald and −1.84 mg/dL compared to Martin-Hopkins).

Barakett-Hamade et 
al.13 (2021)

A total of 31,922 observations from 19,279 
subjects.

Lebanon The ML algorithm agreed better with direct LDL measurement than other 
equations, especially in mild and severe hypertriglyceridemia.

Oh et al.12 (2022) Single-center electronic health record database 
(n=823,657 tests)

South 
Korea

ML algorithms (r=0.966 and r=0.967) showed better correlation with 
directly measured LDL-C than the Friedewald formula (r=0.956) and 
Martin-Hopkins equations (r=0.958).

Ghayad et al.15 (2022)The analysis comprised 31,853 retrospective and 
6,599 prospective observations.

Lebanon The ML algorithm was in satisfactory agreement with direct LDL-C in 
observations with normal triglyceridemia and mild hypertriglyceridemia 
(intraclass correlation coefficient >0.9)

Kwon et al.17 (2022) Participants from 2 independent population-based 
cohorts. Internal dataset: n=129,930; External 
dataset: n=46,470.

South 
Korea

The DL model had lower bias and root error than the Friedewald, Martin, 
and Sampson equations, showing a high agreement with LDL-C measured 
by a homogeneous assay.

Hidekazu et al.16 
(2023)

Participants from independent datasets. Three 
internal datasets: n=24,915. External dataset: 
n=3,711.

Japan The coefficients of determination of the ML models on the health check-
up dataset were equal to or inferior to those of the Martin method. 
The coefficients of determination of the ML models on clinical patients 
exceeded those of the Martin method.

Predicting the achievement of LDL-C goals
Masi et al.21 (2023) Electronic medical records of patients with 

diabetes.
Italy The ML model demonstrated good predictive performance (AUROC=0.79). 

The most significant predictors of achieving the LDL-C goal were baseline 
LDL-C levels and their reduction after 6 months.

Barriers related to the use of statins
Somani et al.24 (2022) Reddit was used as the data source. A total of 

10,233 unique statin-related discussions from 
5,188 unique authors were included.

US Anecdotal perspectives on statin efficacy and adverse effects were one of 
the most common topics of statin-related discussions. Neutral or negative 
sentiments were more frequent.

Sarraju et al.25 (2022) Adults with ASCVD from an electronic health 
record cohort (n=56,530).

US The DL approach identified statin nonuse and potentially actionable 
reasons for statin nonuse in high-risk populations (AUROC=0.94).

Sarraju et al.26 (2023) Adults with diabetes and no statin prescriptions 
from an electronic health record cohort 
(n=33,461).

US The DL approach identified statin nonuse (AUROC=0.99) and potentially 
actionable reasons for statin nonuse including key patient, clinician, and 
system factors. Reasons for nonuse varied by clinical and demographic 
characteristics.

Association between ApoB/LDL-C discordance and metabolic and diet factors
Webb et al.30 (2022) Data derived from the US NHANES (n=14,265). US ML showed that BMI, dietary saturated fatty acids, dietary fiber, C-reactive 

protein and uric acid were the most strongly associated variables with the 
low LDL-C/high ApoB pattern (R2=0.70),

FH, familial hypercholesterolemia; ML, machine learning; AUROC, area under the receiver operating characteristic curve ; DLCNc, Dutch Lipid Clinic Network 
criteria; LDL-C, low-density lipoprotein cholesterol; LDL, low-density lipoprotein; ASCVD, atherosclerotic cardiovascular disease; DL, deep learning; ApoB, 
apolipoprotein B; NHANES, National Health and Nutrition Examination Survey; BMI, body mass index.



disease correlations and facilitate the delivery of precision medicine. However, the social, 
methodological, and ethical complexities associated with these applications warrant further 
investigation and regulation.
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